File size: 58,370 Bytes
7b78506 571e31c 7b78506 90ad2b1 d69fb4f 7b78506 7ed091e 7ce7b8c 7ed091e 7b78506 322dc74 7b78506 9c102f1 8cc7fa8 7b78506 173dcb8 7b78506 173dcb8 7b78506 8d19899 7b78506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 |
from __future__ import annotations
from fastapi import FastAPI, UploadFile, File,Query, Form, BackgroundTasks, HTTPException
from fastapi import Body
from fastapi.responses import JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from pathlib import Path
import shutil
import uvicorn
import json
import uuid
from datetime import datetime
from typing import Dict
from enum import Enum
import os
import yaml
import io
from video_processing import process_video_pipeline
from audio_tools import process_audio_for_video, extract_audio_ffmpeg, embed_voice_segments
from casting_loader import ensure_chroma, build_faces_index, build_voices_index
from narration_system import NarrationSystem
from llm_router import load_yaml, LLMRouter
from character_detection import detect_characters_from_video
from pipelines.audiodescription import generate as ad_generate
from storage.files.file_manager import FileManager
from storage.media_routers import router as media_router
app = FastAPI(title="Veureu Engine API", version="0.2.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
ROOT = Path("/tmp/veureu")
ROOT.mkdir(parents=True, exist_ok=True)
TEMP_ROOT = Path("/tmp/temp")
TEMP_ROOT.mkdir(parents=True, exist_ok=True)
VIDEOS_ROOT = Path("/tmp/data/videos")
VIDEOS_ROOT.mkdir(parents=True, exist_ok=True)
IDENTITIES_ROOT = Path("/tmp/characters")
IDENTITIES_ROOT.mkdir(parents=True, exist_ok=True)
# Sistema de jobs asíncronos
class JobStatus(str, Enum):
QUEUED = "queued"
PROCESSING = "processing"
DONE = "done"
FAILED = "failed"
jobs: Dict[str, dict] = {}
app.include_router(media_router)
def describe_image_with_svision(image_path: str, is_face: bool = True) -> tuple[str, str]:
"""
Llama al space svision para describir una imagen (usado en generación de AD).
Args:
image_path: Ruta absoluta a la imagen
is_face: True si es una cara, False si es una escena
Returns:
tuple (descripción_completa, nombre_abreviado)
"""
try:
from pathlib import Path as _P
import yaml
from llm_router import LLMRouter
# Cargar configuración
config_path = _P(__file__).parent / "config.yaml"
if not config_path.exists():
print(f"[svision] Config no encontrado: {config_path}")
return ("", "")
with open(config_path, 'r', encoding='utf-8') as f:
cfg = yaml.safe_load(f) or {}
router = LLMRouter(cfg)
# Contexto diferente para caras vs escenas
if is_face:
context = {
"task": "describe_person",
"instructions": "Descriu la persona en la imatge. Inclou: edat aproximada (jove/adult), gènere, característiques físiques notables (ulleres, barba, bigoti, etc.), expressió i vestimenta.",
"max_tokens": 256
}
else:
context = {
"task": "describe_scene",
"instructions": "Descriu aquesta escena breument en 2-3 frases: tipus de localització i elements principals.",
"max_tokens": 128
}
# Llamar a svision
descriptions = router.vision_describe([str(image_path)], context=context, model="salamandra-vision")
full_description = descriptions[0] if descriptions else ""
if not full_description:
return ("", "")
print(f"[svision] Descripció generada: {full_description[:100]}...")
return (full_description, "")
except Exception as e:
print(f"[svision] Error al descriure imatge: {e}")
import traceback
traceback.print_exc()
return ("", "")
def normalize_face_lighting(image):
"""
Normaliza el brillo de una imagen de cara usando técnicas combinadas:
1. CLAHE para ecualización adaptativa
2. Normalización de rango para homogeneizar brillo general
Esto reduce el impacto de diferentes condiciones de iluminación en los embeddings
y en la visualización de las imágenes.
Args:
image: Imagen BGR (OpenCV format)
Returns:
Imagen normalizada en el mismo formato
"""
import cv2
import numpy as np
# Paso 1: Convertir a LAB color space (más robusto para iluminación)
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
# Paso 2: Aplicar CLAHE (Contrast Limited Adaptive Histogram Equalization) al canal L
# Usar clipLimit más alto para normalización más agresiva
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
l_clahe = clahe.apply(l)
# Paso 3: Normalizar el rango del canal L para asegurar distribución uniforme
# Esto garantiza que todas las imágenes tengan un rango de brillo similar
l_min, l_max = l_clahe.min(), l_clahe.max()
if l_max > l_min:
# Estirar el histograma al rango completo [0, 255]
l_normalized = ((l_clahe - l_min) * 255.0 / (l_max - l_min)).astype(np.uint8)
else:
l_normalized = l_clahe
# Paso 4: Aplicar suavizado suave para reducir ruido introducido por la normalización
l_normalized = cv2.GaussianBlur(l_normalized, (3, 3), 0)
# Recombinar canales
lab_normalized = cv2.merge([l_normalized, a, b])
# Convertir de vuelta a BGR
normalized = cv2.cvtColor(lab_normalized, cv2.COLOR_LAB2BGR)
return normalized
def hierarchical_cluster_with_min_size(X, max_groups: int, min_cluster_size: int, sensitivity: float = 0.5) -> np.ndarray:
"""
Clustering jerárquico con silhouette score para encontrar automáticamente el mejor número de clusters.
Selecciona automáticamente el mejor número de clusters (hasta max_groups) usando silhouette score.
Filtra clusters con menos de min_cluster_size muestras (marcados como -1/ruido).
Args:
X: Array de embeddings (N, D)
max_groups: Número máximo de clusters a formar
min_cluster_size: Tamaño mínimo de cluster válido
sensitivity: Sensibilidad del clustering (0.0-1.0)
- 0.0 = muy agresivo (menos clusters)
- 0.5 = balanceado (recomendado)
- 1.0 = muy permisivo (más clusters)
Returns:
Array de labels (N,) donde -1 indica ruido
"""
import numpy as np
from scipy.cluster.hierarchy import linkage, fcluster
from sklearn.metrics import silhouette_score
from collections import Counter
if len(X) == 0:
return np.array([])
if len(X) < min_cluster_size:
# Si hay menos muestras que el mínimo, todo es ruido
return np.full(len(X), -1, dtype=int)
# Linkage usando average linkage (más flexible que ward, menos sensible a outliers)
# Esto ayuda a agrupar mejor la misma persona con diferentes ángulos/expresiones
Z = linkage(X, method='average', metric='cosine') # Cosine similarity para embeddings
# Encontrar el número óptimo de clusters usando silhouette score
best_n_clusters = 2
best_score = -1
# Probar diferentes números de clusters (de 2 a max_groups)
max_to_try = min(max_groups, len(X) - 1) # No puede haber más clusters que muestras
if max_to_try >= 2:
for n_clusters in range(2, max_to_try + 1):
trial_labels = fcluster(Z, t=n_clusters, criterion='maxclust') - 1
# Calcular cuántos clusters válidos tendríamos después del filtrado
trial_counts = Counter(trial_labels)
valid_clusters = sum(1 for count in trial_counts.values() if count >= min_cluster_size)
# Solo evaluar si hay al menos 2 clusters válidos
if valid_clusters >= 2:
try:
score = silhouette_score(X, trial_labels, metric='cosine')
# Penalización dinámica basada en sensibilidad:
# - sensitivity=0.0 → penalty=0.14 (muy agresivo, menos clusters)
# - sensitivity=0.5 → penalty=0.07 (balanceado, recomendado)
# - sensitivity=1.0 → penalty=0.01 (permisivo, más clusters)
penalty = 0.14 - (sensitivity * 0.13)
adjusted_score = score - (n_clusters * penalty)
if adjusted_score > best_score:
best_score = adjusted_score
best_n_clusters = n_clusters
except:
pass # Si falla el cálculo, ignorar esta configuración
# Usar el número óptimo de clusters encontrado
penalty = 0.14 - (sensitivity * 0.13)
print(f"Clustering óptimo: {best_n_clusters} clusters (de máximo {max_groups}), sensitivity={sensitivity:.2f}, penalty={penalty:.3f}, silhouette={best_score:.3f}")
labels = fcluster(Z, t=best_n_clusters, criterion='maxclust')
# fcluster devuelve labels 1-indexed, convertir a 0-indexed
labels = labels - 1
# Filtrar clusters pequeños
label_counts = Counter(labels)
filtered_labels = []
for lbl in labels:
if label_counts[lbl] >= min_cluster_size:
filtered_labels.append(lbl)
else:
filtered_labels.append(-1) # Ruido
return np.array(filtered_labels, dtype=int)
@app.get("/")
def root():
return {"ok": True, "service": "veureu-engine"}
@app.post("/process_video")
async def process_video(
video_file: UploadFile = File(...),
config_path: str = Form("config.yaml"),
out_root: str = Form("results"),
db_dir: str = Form("chroma_db"),
):
tmp_video = ROOT / video_file.filename
with tmp_video.open("wb") as f:
shutil.copyfileobj(video_file.file, f)
result = process_video_pipeline(str(tmp_video), config_path=config_path, out_root=out_root, db_dir=db_dir)
return JSONResponse(result)
@app.post("/create_initial_casting")
async def create_initial_casting(
background_tasks: BackgroundTasks,
video: UploadFile = File(...),
max_groups: int = Form(default=3),
min_cluster_size: int = Form(default=3),
face_sensitivity: float = Form(default=0.5),
voice_max_groups: int = Form(default=3),
voice_min_cluster_size: int = Form(default=3),
voice_sensitivity: float = Form(default=0.5),
max_frames: int = Form(default=100),
):
"""
Crea un job para procesar el vídeo de forma asíncrona usando clustering jerárquico.
Devuelve un job_id inmediatamente.
"""
# Guardar vídeo en carpeta de datos
video_name = Path(video.filename).stem
dst_video = VIDEOS_ROOT / f"{video_name}.mp4"
with dst_video.open("wb") as f:
shutil.copyfileobj(video.file, f)
# Crear job_id único
job_id = str(uuid.uuid4())
# Inicializar el job
jobs[job_id] = {
"id": job_id,
"status": JobStatus.QUEUED,
"video_path": str(dst_video),
"video_name": video_name,
"max_groups": int(max_groups),
"min_cluster_size": int(min_cluster_size),
"face_sensitivity": float(face_sensitivity),
"voice_max_groups": int(voice_max_groups),
"voice_min_cluster_size": int(voice_min_cluster_size),
"voice_sensitivity": float(voice_sensitivity),
"max_frames": int(max_frames),
"created_at": datetime.now().isoformat(),
"results": None,
"error": None
}
print(f"[{job_id}] Job creado para vídeo: {video_name}")
# Iniciar procesamiento en background
background_tasks.add_task(process_video_job, job_id)
# Devolver job_id inmediatamente
return {"job_id": job_id}
@app.get("/jobs/{job_id}/status")
def get_job_status(job_id: str):
"""
Devuelve el estado actual de un job.
El UI hace polling de este endpoint cada 5 segundos.
"""
if job_id not in jobs:
raise HTTPException(status_code=404, detail="Job not found")
job = jobs[job_id]
# Normalizar el estado a string
status_value = job["status"].value if isinstance(job["status"], JobStatus) else str(job["status"])
response = {"status": status_value}
# Incluir resultados si existen (evita condiciones de carrera)
if job.get("results") is not None:
response["results"] = job["results"]
# Incluir error si existe
if job.get("error"):
response["error"] = job["error"]
return response
@app.get("/files/{video_name}/{char_id}/{filename}")
def serve_character_file(video_name: str, char_id: str, filename: str):
"""
Sirve archivos estáticos de personajes (imágenes).
Ejemplo: /files/dif_catala_1/char1/representative.jpg
"""
# Las caras se guardan en /tmp/temp/<video>/characters/<char_id>/<filename>
file_path = TEMP_ROOT / video_name / "characters" / char_id / filename
if not file_path.exists():
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(file_path)
@app.get("/audio/{video_name}/{filename}")
def serve_audio_file(video_name: str, filename: str):
file_path = TEMP_ROOT / video_name / "clips" / filename
if not file_path.exists():
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(file_path)
def process_video_job(job_id: str):
"""
Procesa el vídeo de forma asíncrona.
Esta función se ejecuta en background.
"""
try:
job = jobs[job_id]
print(f"[{job_id}] Iniciando procesamiento...")
# Cambiar estado a processing
job["status"] = JobStatus.PROCESSING
video_path = job["video_path"]
video_name = job["video_name"]
max_groups = int(job.get("max_groups", 5))
min_cluster_size = int(job.get("min_cluster_size", 3))
face_sensitivity = float(job.get("face_sensitivity", 0.5))
v_max_groups = int(job.get("voice_max_groups", 5))
v_min_cluster = int(job.get("voice_min_cluster_size", 3))
voice_sensitivity = float(job.get("voice_sensitivity", 0.5))
# Crear estructura de carpetas
base = TEMP_ROOT / video_name
base.mkdir(parents=True, exist_ok=True)
print(f"[{job_id}] Directorio base: {base}")
# Detección de caras y embeddings (CPU), alineado con 'originales'
try:
print(f"[{job_id}] Iniciando detección de personajes (CPU, originales)...")
print(f"[{job_id}] *** Normalización de brillo ACTIVADA ***")
print(f"[{job_id}] - CLAHE adaptativo (clipLimit=3.0)")
print(f"[{job_id}] - Estiramiento de histograma")
print(f"[{job_id}] - Suavizado Gaussiano")
print(f"[{job_id}] Esto homogeneizará el brillo de todas las caras detectadas")
import cv2
import numpy as np
try:
import face_recognition # CPU
_use_fr = True
print(f"[{job_id}] face_recognition disponible: CPU")
except Exception:
face_recognition = None # type: ignore
_use_fr = False
print(f"[{job_id}] face_recognition no disponible. Intentando DeepFace fallback.")
try:
from deepface import DeepFace # type: ignore
except Exception:
DeepFace = None # type: ignore
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise RuntimeError("No se pudo abrir el vídeo para extracción de caras")
fps = cap.get(cv2.CAP_PROP_FPS) or 25.0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0)
max_samples = job.get("max_frames", 100)
# Índices de frames equiespaciados
if total_frames > 0:
frame_indices = sorted(set(np.linspace(0, max(0, total_frames - 1), num=min(max_samples, max(1, total_frames)), dtype=int).tolist()))
else:
frame_indices = []
print(f"[{job_id}] Total frames: {total_frames}, FPS: {fps:.2f}, Muestreando {len(frame_indices)} frames equiespaciados (máx {max_samples})")
# Salidas
faces_root = base / "faces_raw"
faces_root.mkdir(parents=True, exist_ok=True)
embeddings: list[list[float]] = []
crops_meta: list[dict] = []
saved_count = 0
frames_processed = 0
frames_with_faces = 0
for frame_idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, int(frame_idx))
ret2, frame = cap.read()
if not ret2:
continue
frames_processed += 1
# Normalizar iluminación antes de procesar
frame_normalized = normalize_face_lighting(frame)
rgb = cv2.cvtColor(frame_normalized, cv2.COLOR_BGR2RGB)
if _use_fr and face_recognition is not None:
boxes = face_recognition.face_locations(rgb, model="hog") # CPU HOG
encs = face_recognition.face_encodings(rgb, boxes)
if boxes:
frames_with_faces += 1
print(f"[{job_id}] Frame {frame_idx}: {len(boxes)} cara(s) detectada(s) con face_recognition")
for (top, right, bottom, left), e in zip(boxes, encs):
crop = frame_normalized[top:bottom, left:right]
if crop.size == 0:
continue
fn = f"face_{frame_idx:06d}_{saved_count:03d}.jpg"
cv2.imwrite(str(faces_root / fn), crop)
# Normalizar embedding
e = np.array(e, dtype=float)
e = e / (np.linalg.norm(e) + 1e-9)
embeddings.append(e.astype(float).tolist())
crops_meta.append({
"file": fn,
"frame": frame_idx,
"box": [int(top), int(right), int(bottom), int(left)],
})
saved_count += 1
else:
# DeepFace fallback con detección de bounding boxes vía Haar Cascade (OpenCV)
if DeepFace is None:
pass
else:
try:
gray = cv2.cvtColor(frame_normalized, cv2.COLOR_BGR2GRAY)
try:
haar_path = getattr(cv2.data, 'haarcascades', None) or ''
face_cascade = cv2.CascadeClassifier(os.path.join(haar_path, 'haarcascade_frontalface_default.xml'))
except Exception:
face_cascade = None
boxes_haar = []
if face_cascade is not None and not face_cascade.empty():
# Parámetros más estrictos para evitar falsos positivos
faces_haar = face_cascade.detectMultiScale(gray, scaleFactor=1.08, minNeighbors=5, minSize=(50, 50))
for (x, y, w, h) in faces_haar:
top, left, bottom, right = max(0, y), max(0, x), min(frame.shape[0], y+h), min(frame.shape[1], x+w)
boxes_haar.append((top, right, bottom, left))
# Si Haar no detecta nada, intentar con DeepFace directamente
if not boxes_haar:
try:
tmp_detect = faces_root / f"detect_{frame_idx:06d}.jpg"
cv2.imwrite(str(tmp_detect), frame_normalized)
detect_result = DeepFace.extract_faces(img_path=str(tmp_detect), detector_backend='opencv', enforce_detection=False)
for det in detect_result:
facial_area = det.get('facial_area', {})
if facial_area:
x, y, w, h = facial_area.get('x', 0), facial_area.get('y', 0), facial_area.get('w', 0), facial_area.get('h', 0)
# Validar que es un bbox real, no el frame completo
# Si el bbox es prácticamente el frame completo, descartarlo
is_full_frame = (x <= 5 and y <= 5 and w >= frame.shape[1] - 10 and h >= frame.shape[0] - 10)
# Bbox mínimo de 50x50 para filtrar falsos positivos pequeños
if w > 50 and h > 50 and not is_full_frame:
top, left, bottom, right = max(0, y), max(0, x), min(frame.shape[0], y+h), min(frame.shape[1], x+w)
boxes_haar.append((top, right, bottom, left))
tmp_detect.unlink(missing_ok=True)
except Exception as _e_detect:
print(f"[{job_id}] Frame {frame_idx}: DeepFace extract_faces error: {_e_detect}")
if boxes_haar:
frames_with_faces += 1
print(f"[{job_id}] Frame {frame_idx}: {len(boxes_haar)} cara(s) detectada(s) con Haar/DeepFace")
for (top, right, bottom, left) in boxes_haar:
crop = frame_normalized[top:bottom, left:right]
if crop.size == 0:
continue
fn = f"face_{frame_idx:06d}_{saved_count:03d}.jpg"
crop_path = faces_root / fn
cv2.imwrite(str(crop_path), crop)
reps = DeepFace.represent(img_path=str(crop_path), model_name="Facenet512", enforce_detection=False)
for r in (reps or []):
emb = r.get("embedding") if isinstance(r, dict) else r
if emb is None:
continue
emb = np.array(emb, dtype=float)
emb = emb / (np.linalg.norm(emb) + 1e-9)
embeddings.append(emb.astype(float).tolist())
crops_meta.append({
"file": fn,
"frame": frame_idx,
"box": [int(top), int(right), int(bottom), int(left)],
})
saved_count += 1
except Exception as _e_df:
print(f"[{job_id}] DeepFace fallback error: {_e_df}")
cap.release()
print(f"[{job_id}] ✓ Frames procesados: {frames_processed}/{len(frame_indices)}")
print(f"[{job_id}] ✓ Frames con caras: {frames_with_faces}")
print(f"[{job_id}] ✓ Caras detectadas (embeddings): {len(embeddings)}")
# Clustering jerárquico de caras
if embeddings:
Xf = np.array(embeddings)
labels = hierarchical_cluster_with_min_size(Xf, max_groups, min_cluster_size, face_sensitivity).tolist()
print(f"[{job_id}] Clustering jerárquico de caras: {len(set([l for l in labels if l >= 0]))} clusters")
else:
labels = []
# Construir carpetas por clúster con validación DeepFace
from face_classifier import validate_and_classify_face, get_random_catalan_name_by_gender, FACE_CONFIDENCE_THRESHOLD
characters_validated = []
cluster_map: dict[int, list[int]] = {}
for i, lbl in enumerate(labels):
if isinstance(lbl, int) and lbl >= 0:
cluster_map.setdefault(lbl, []).append(i)
chars_dir = base / "characters"
chars_dir.mkdir(parents=True, exist_ok=True)
import shutil as _sh
original_cluster_count = len(cluster_map)
print(f"[{job_id}] Procesando {original_cluster_count} clusters detectados...")
for ci, idxs in sorted(cluster_map.items(), key=lambda x: x[0]):
char_id = f"char_{ci:02d}"
# PASO 1: Ordenar caras por área del bounding box (mejor calidad)
face_detections = []
for j in idxs:
meta = crops_meta[j]
box = meta.get("box", [0, 0, 0, 0])
if len(box) >= 4:
top, right, bottom, left = box
w = abs(right - left)
h = abs(bottom - top)
area_score = w * h
else:
area_score = 0
face_detections.append({
'index': j,
'score': area_score,
'file': meta['file'],
'box': box
})
# Ordenar por score descendente
face_detections_sorted = sorted(
face_detections,
key=lambda x: x['score'],
reverse=True
)
if not face_detections_sorted:
print(f"[{job_id}] [VALIDATION] ✗ Cluster {char_id}: sense deteccions, eliminant")
continue
# PASO 2: Validar SOLO la mejor cara del cluster
best_face = face_detections_sorted[0]
best_face_path = faces_root / best_face['file']
print(f"[{job_id}] [VALIDATION] Cluster {char_id}: validant millor cara (bbox_area={best_face['score']:.0f}px²)")
print(f"[{job_id}] [VALIDATION] Cluster {char_id}: millor cara path={best_face_path}")
print(f"[{job_id}] [VALIDATION] ▶▶▶ CRIDANT validate_and_classify_face() ◀◀◀")
validation = validate_and_classify_face(str(best_face_path))
print(f"[{job_id}] [VALIDATION] ▶▶▶ validate_and_classify_face() RETORNAT ◀◀◀")
if not validation:
print(f"[{job_id}] [VALIDATION] ✗ Cluster {char_id}: error en validació DeepFace, eliminant cluster")
continue
# Mostrar resultados detallados de DeepFace
print(f"[{job_id}] [DEEPFACE RESULT] Cluster {char_id}:")
print(f"[{job_id}] - is_valid_face: {validation['is_valid_face']}")
print(f"[{job_id}] - face_confidence: {validation['face_confidence']:.3f}")
print(f"[{job_id}] - man_prob: {validation['man_prob']:.3f}")
print(f"[{job_id}] - woman_prob: {validation['woman_prob']:.3f}")
print(f"[{job_id}] - gender_diff: {abs(validation['man_prob'] - validation['woman_prob']):.3f}")
print(f"[{job_id}] - gender_assigned: {validation['gender']}")
print(f"[{job_id}] - gender_confidence: {validation['gender_confidence']:.3f}")
# PASO 3: Verificar si és una cara vàlida
if not validation['is_valid_face'] or validation['face_confidence'] < FACE_CONFIDENCE_THRESHOLD:
print(f"[{job_id}] [VALIDATION] ✗ Cluster {char_id}: NO ES UNA CARA VÁLIDA (face_confidence={validation['face_confidence']:.3f} < threshold={FACE_CONFIDENCE_THRESHOLD}), eliminant tot el clúster")
continue
# PASO 4: És una cara vàlida! Crear carpeta
out_dir = chars_dir / char_id
out_dir.mkdir(parents=True, exist_ok=True)
# PASO 5: Limitar caras a mostrar (primera meitat + 1)
total_faces = len(face_detections_sorted)
max_faces_to_show = (total_faces // 2) + 1
face_detections_limited = face_detections_sorted[:max_faces_to_show]
# Copiar solo las caras limitadas
files = []
face_files_urls = []
for k, face_det in enumerate(face_detections_limited):
fname = face_det['file']
src = faces_root / fname
dst = out_dir / fname
try:
_sh.copy2(src, dst)
files.append(fname)
face_files_urls.append(f"/files/{video_name}/{char_id}/{fname}")
except Exception:
pass
# Imagen representativa (la mejor)
rep = files[0] if files else None
if rep:
rep_src = out_dir / rep
rep_dst = out_dir / "representative.jpg"
try:
_sh.copy2(rep_src, rep_dst)
except Exception:
pass
# PASO 6: Generar nombre según género
gender = validation['gender']
character_name = get_random_catalan_name_by_gender(gender, char_id)
print(f"[{job_id}] [NAME GENERATION] Cluster {char_id}:")
print(f"[{job_id}] - Gender detectado: {gender}")
print(f"[{job_id}] - Nombre asignado: {character_name}")
print(f"[{job_id}] - Seed usado: {char_id}")
character_data = {
"id": char_id,
"name": character_name,
"gender": gender,
"gender_confidence": validation['gender_confidence'],
"face_confidence": validation['face_confidence'],
"man_prob": validation['man_prob'],
"woman_prob": validation['woman_prob'],
"folder": str(out_dir),
"num_faces": len(files),
"total_faces_detected": total_faces,
"image_url": f"/files/{video_name}/{char_id}/representative.jpg" if rep else "",
"face_files": face_files_urls,
}
characters_validated.append(character_data)
print(f"[{job_id}] [VALIDATION] ✓ Cluster {char_id}: CARA VÁLIDA!")
print(f"[{job_id}] Nombre: {character_name}")
print(f"[{job_id}] Género: {gender} (man={validation['man_prob']:.3f}, woman={validation['woman_prob']:.3f})")
print(f"[{job_id}] Confianza género: {validation['gender_confidence']:.3f}")
print(f"[{job_id}] Confianza cara: {validation['face_confidence']:.3f}")
print(f"[{job_id}] Caras mostradas: {len(files)}/{total_faces}")
print(f"[{job_id}] Imagen representativa: {best_face_path.name}")
# Estadístiques finals
eliminated_count = original_cluster_count - len(characters_validated)
print(f"[{job_id}] [VALIDATION] Total: {len(characters_validated)} clústers vàlids "
f"(eliminats {eliminated_count} falsos positius)")
characters = characters_validated
# Escribir analysis.json compatible con 'originales'
analysis = {
"caras": [{"embeddings": e} for e in embeddings],
"voices": [],
"escenas": [],
}
analysis_path = str(base / "analysis.json")
with open(analysis_path, "w", encoding="utf-8") as f:
json.dump(analysis, f, ensure_ascii=False)
face_labels = labels
num_face_embeddings = len(embeddings)
print(f"[{job_id}] Personajes detectados: {len(characters)}")
for char in characters:
print(f"[{job_id}] - {char['name']}: {char['num_faces']} caras")
# Enriquecer info de personajes con listado real de imágenes disponibles
try:
import glob, os
for ch in characters:
folder = ch.get("folder")
face_files = []
if folder and os.path.isdir(folder):
# soportar patrones face_* y extensiones jpg/png
patterns = ["face_*.jpg", "face_*.png"]
files = []
for pat in patterns:
files.extend(glob.glob(os.path.join(folder, pat)))
# si no hay face_*, tomar cualquier jpg/png para no dejar vacío
if not files:
files.extend(glob.glob(os.path.join(folder, "*.jpg")))
files.extend(glob.glob(os.path.join(folder, "*.png")))
# normalizar nombres de fichero relativos
face_files = sorted({os.path.basename(p) for p in files})
# Garantizar que representative.(jpg|png) esté el primero si existe
for rep_name in ("representative.jpg", "representative.png"):
rep_path = os.path.join(folder, rep_name)
if os.path.exists(rep_path):
if rep_name in face_files:
face_files.remove(rep_name)
face_files.insert(0, rep_name)
ch["face_files"] = face_files
# Ajustar num_faces si hay discrepancia
if face_files:
ch["num_faces"] = len(face_files)
except Exception as _e:
print(f"[{job_id}] WARN - No se pudo enumerar face_files: {_e}")
# Procesamiento de audio: diarización, ASR y embeddings de voz
try:
cfg = load_yaml("config.yaml")
audio_segments, srt_unmod, full_txt, diar_info, connection_logs = process_audio_for_video(video_path, base, cfg, voice_collection=None)
# Loggear en consola del engine los eventos de conexión
try:
for ev in (connection_logs or []):
msg = ev.get("message") if isinstance(ev, dict) else None
if msg:
print(f"[{job_id}] {msg}")
except Exception:
pass
except Exception as e_audio:
import traceback
print(f"[{job_id}] WARN - Audio pipeline failed: {e_audio}\n{traceback.format_exc()}")
audio_segments, srt_unmod, full_txt = [], None, ""
diar_info = {"diarization_ok": False, "error": str(e_audio)}
connection_logs = []
# Fallback: si no hay segmentos de audio, crear uno mínimo del audio completo
if not audio_segments:
try:
from pathlib import Path as _P
from pydub import AudioSegment as _AS
wav_out = extract_audio_ffmpeg(video_path, base / f"{_P(video_path).stem}.wav", sr=16000)
audio = _AS.from_wav(wav_out)
clips_dir = base / "clips"
clips_dir.mkdir(parents=True, exist_ok=True)
cp = clips_dir / "segment_000.wav"
audio.export(cp, format="wav")
emb_list = embed_voice_segments([str(cp)])
audio_segments = [{
"segment": 0,
"start": 0.0,
"end": float(len(audio) / 1000.0),
"speaker": "SPEAKER_00",
"text": "",
"voice_embedding": emb_list[0] if emb_list else [],
"clip_path": str(cp),
"lang": "ca",
"lang_prob": 1.0,
}]
except Exception as _efb:
print(f"[{job_id}] WARN - Audio minimal fallback failed: {_efb}")
# Clustering jerárquico de voces sobre embeddings válidos
import numpy as np
voice_embeddings = [seg.get("voice_embedding") for seg in audio_segments if seg.get("voice_embedding")]
if voice_embeddings:
try:
Xv = np.array(voice_embeddings)
v_labels = hierarchical_cluster_with_min_size(Xv, v_max_groups, v_min_cluster, voice_sensitivity).tolist()
print(f"[{job_id}] Clustering jerárquico de voz: {len(set([l for l in v_labels if l >= 0]))} clusters")
except Exception as _e:
print(f"[{job_id}] WARN - Voice clustering failed: {_e}")
v_labels = []
else:
v_labels = []
# Guardar resultados primero y luego marcar como completado (evita carreras)
job["results"] = {
"characters": characters,
"num_characters": len(characters),
"analysis_path": analysis_path,
"base_dir": str(base),
"face_labels": face_labels,
"num_face_embeddings": num_face_embeddings,
"audio_segments": audio_segments,
"srt_unmodified": srt_unmod,
"full_transcription": full_txt,
"voice_labels": v_labels,
"num_voice_embeddings": len(voice_embeddings),
"diarization_info": diar_info,
}
job["status"] = JobStatus.DONE
# Log resumido sin embeddings
print(f"[{job_id}] ✓ Resultados guardados:")
print(f"[{job_id}] - Personatges: {len(characters)}")
print(f"[{job_id}] - Segments d'àudio: {len(audio_segments)}")
print(f"[{job_id}] - Face embeddings: {num_face_embeddings}")
print(f"[{job_id}] - Voice embeddings: {len(voice_embeddings)}")
except Exception as e_detect:
# Si falla la detección, intentar modo fallback
import traceback
print(f"[{job_id}] ✗ Error en detección: {e_detect}")
print(f"[{job_id}] Traceback: {traceback.format_exc()}")
print(f"[{job_id}] Usando modo fallback (carpetas vacías)")
# Crear carpetas básicas como fallback
for sub in ("sources", "faces", "voices", "backgrounds"):
(base / sub).mkdir(parents=True, exist_ok=True)
# Guardar resultados de fallback y luego marcar como completado
job["results"] = {
"characters": [],
"num_characters": 0,
"temp_dirs": {
"sources": str(base / "sources"),
"faces": str(base / "faces"),
"voices": str(base / "voices"),
"backgrounds": str(base / "backgrounds"),
},
"warning": f"Detección falló, usando modo fallback: {str(e_detect)}"
}
job["status"] = JobStatus.DONE
print(f"[{job_id}] ✓ Job completado exitosamente")
except Exception as e:
import traceback
print(f"[{job_id}] ✗ Error inesperado: {e}")
try:
job = jobs.get(job_id)
if job is not None:
job["status"] = JobStatus.FAILED
job["error"] = str(e)
except Exception:
pass
print(f"[{job_id}] Traceback: {traceback.format_exc()}")
@app.post("/generate_audiodescription")
async def generate_audiodescription(video: UploadFile = File(...)):
try:
import uuid
job_id = str(uuid.uuid4())
vid_name = video.filename or f"video_{job_id}.mp4"
base = TEMP_ROOT / Path(vid_name).stem
base.mkdir(parents=True, exist_ok=True)
# Save temp mp4
video_path = base / vid_name
with open(video_path, "wb") as f:
f.write(await video.read())
# Run MVP pipeline
result = ad_generate(str(video_path), base)
return {
"status": "done",
"results": {
"une_srt": result.get("une_srt", ""),
"free_text": result.get("free_text", ""),
"artifacts": result.get("artifacts", {}),
},
}
except Exception as e:
import traceback
print(f"/generate_audiodescription error: {e}\n{traceback.format_exc()}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/load_casting")
async def load_casting(
faces_dir: str = Form("identities/faces"),
voices_dir: str = Form("identities/voices"),
db_dir: str = Form("chroma_db"),
drop_collections: bool = Form(False),
):
client = ensure_chroma(Path(db_dir))
n_faces = build_faces_index(Path(faces_dir), client, collection_name="index_faces", drop=drop_collections)
n_voices = build_voices_index(Path(voices_dir), client, collection_name="index_voices", drop=drop_collections)
return {"ok": True, "faces": n_faces, "voices": n_voices}
@app.post("/finalize_casting")
async def finalize_casting(
payload: dict = Body(...),
):
"""
Consolidate selected face and voice clusters into identities directories and build indices.
Expected payload:
{
"video_name": str,
"base_dir": str, # engine temp base for this video
"characters": [
{"id": "char1", "name": "Nom", "folder": "/tmp/temp/<video>/char1", "kept_files": ["representative.jpg", ...], "description": "..."}, ...
],
"voice_clusters": [
{"label": 0, "name": "SPEAKER_00", "clips": ["segment_000.wav", ...]}, ...
]
}
"""
import os
import shutil
from pathlib import Path as _P
video_name = payload.get("video_name")
base_dir = payload.get("base_dir")
characters = payload.get("characters", []) or []
voice_clusters = payload.get("voice_clusters", []) or []
if not video_name or not base_dir:
raise HTTPException(status_code=400, detail="Missing video_name or base_dir")
faces_out = IDENTITIES_ROOT / video_name / "faces"
voices_out = IDENTITIES_ROOT / video_name / "voices"
faces_out.mkdir(parents=True, exist_ok=True)
voices_out.mkdir(parents=True, exist_ok=True)
# Consolidate faces per character name (merge same names)
for ch in characters:
ch_name = (ch.get("name") or "Unknown").strip() or "Unknown"
ch_folder = ch.get("folder")
kept = ch.get("kept_files") or []
if not ch_folder or not os.path.isdir(ch_folder):
continue
dst_dir = faces_out / ch_name
dst_dir.mkdir(parents=True, exist_ok=True)
for fname in kept:
src = _P(ch_folder) / fname
if src.exists() and src.is_file():
try:
shutil.copy2(src, dst_dir / fname)
except Exception:
pass
# Consolidate voices per cluster name
clips_dir = _P(base_dir) / "clips"
for vc in voice_clusters:
v_name = (vc.get("name") or f"SPEAKER_{int(vc.get('label',0)):02d}").strip()
dst_dir = voices_out / v_name
dst_dir.mkdir(parents=True, exist_ok=True)
for wav in (vc.get("clips") or []):
src = clips_dir / wav
if src.exists() and src.is_file():
try:
shutil.copy2(src, dst_dir / wav)
except Exception:
pass
# Build indices using casting_loader helpers
db_dir = IDENTITIES_ROOT / video_name / "chroma_db"
client = ensure_chroma(db_dir)
n_faces = build_faces_index(faces_out, client, collection_name="index_faces", deepface_model='Facenet512', drop=True)
n_voices = build_voices_index(voices_out, client, collection_name="index_voices", drop=True)
# Summary of identities
face_identities = sorted([p.name for p in faces_out.iterdir() if p.is_dir()]) if faces_out.exists() else []
voice_identities = sorted([p.name for p in voices_out.iterdir() if p.is_dir()]) if voices_out.exists() else []
return {
"ok": True,
"video_name": video_name,
"faces_dir": str(faces_out),
"voices_dir": str(voices_out),
"db_dir": str(db_dir),
"n_faces_embeddings": n_faces,
"n_voices_embeddings": n_voices,
"face_identities": face_identities,
"voice_identities": voice_identities,
}
@app.get("/files_scene/{video_name}/{scene_id}/{filename}")
def serve_scene_file(video_name: str, scene_id: str, filename: str):
file_path = TEMP_ROOT / video_name / "scenes" / scene_id / filename
if not file_path.exists():
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(file_path)
@app.post("/detect_scenes")
async def detect_scenes(
video: UploadFile = File(...),
max_groups: int = Form(default=3),
min_cluster_size: int = Form(default=3),
scene_sensitivity: float = Form(default=0.5),
frame_interval_sec: float = Form(default=0.5),
):
"""
Detecta clústers d'escenes mitjançant clustering jeràrquic d'histogrames de color.
Retorna una llista de scene_clusters estructurada de forma similar a characters.
"""
import cv2
import numpy as np
# Guardar el vídeo temporalment
video_name = Path(video.filename).stem
dst_video = VIDEOS_ROOT / f"{video_name}.mp4"
with dst_video.open("wb") as f:
shutil.copyfileobj(video.file, f)
cap = cv2.VideoCapture(str(dst_video))
if not cap.isOpened():
raise HTTPException(status_code=400, detail="Cannot open video")
fps = cap.get(cv2.CAP_PROP_FPS) or 25.0
step = max(1, int(frame_interval_sec * fps))
frames = []
metas = []
idx = 0
while True:
ret = cap.grab()
if not ret:
break
if idx % step == 0:
ret2, frame = cap.retrieve()
if not ret2:
break
# Reduir mida per estabilitat i càlcul ràpid
small = cv2.resize(frame, (160, 90))
hsv = cv2.cvtColor(small, cv2.COLOR_BGR2HSV)
# Histograma per canal
h_hist = cv2.calcHist([hsv],[0],None,[32],[0,180]).flatten()
s_hist = cv2.calcHist([hsv],[1],None,[32],[0,256]).flatten()
v_hist = cv2.calcHist([hsv],[2],None,[32],[0,256]).flatten()
hist = np.concatenate([h_hist, s_hist, v_hist])
hist = hist / (np.linalg.norm(hist) + 1e-8)
frames.append(hist)
metas.append({"index": idx, "time_sec": idx/float(fps)})
idx += 1
cap.release()
if not frames:
return {"scene_clusters": []}
X = np.array(frames)
labels = hierarchical_cluster_with_min_size(X, max_groups, min_cluster_size, scene_sensitivity).tolist()
initial_clusters = len(set([l for l in labels if l >= 0]))
print(f"Scene clustering jeràrquic inicial: {initial_clusters} clusters")
# Agrupar per etiqueta (>=0)
clusters = {}
for i, lbl in enumerate(labels):
if lbl is None or lbl < 0:
continue
clusters.setdefault(int(lbl), []).append(i)
# VALIDACIÓ MILLORADA: Fusionar clusters molt similars de forma més agressiva
# Calcular centroides (histograma promig de cada cluster)
centroids = {}
for lbl, idxs in clusters.items():
cluster_histograms = X[idxs]
centroids[lbl] = np.mean(cluster_histograms, axis=0)
print(f"[SCENE VALIDATION] Validant similaritat entre {len(centroids)} clusters...")
# Thresholds més agressius per fusionar escenes similars
SIMILARITY_THRESHOLD = 0.25 # Aumentado de 0.15 a 0.25 (fusiona más)
CORRELATION_THRESHOLD = 0.85 # Correlación mínima para considerar similares
# Calcular matriu de distàncies i correlacions entre centroides
cluster_labels = sorted(centroids.keys())
similarities = {}
for i, lbl1 in enumerate(cluster_labels):
for lbl2 in cluster_labels[i+1:]:
# Distancia euclidiana (normalizada)
dist = np.linalg.norm(centroids[lbl1] - centroids[lbl2])
# Correlación de Pearson entre histogramas
corr = np.corrcoef(centroids[lbl1], centroids[lbl2])[0, 1]
# Son similares si:
# - Distancia baja (< threshold) O
# - Correlación alta (> threshold)
are_similar = (dist < SIMILARITY_THRESHOLD) or (corr > CORRELATION_THRESHOLD)
similarities[(lbl1, lbl2)] = {
'distance': dist,
'correlation': corr,
'similar': are_similar
}
if are_similar:
print(f"[SCENE VALIDATION] Clusters {lbl1} i {lbl2} són similars: "
f"dist={dist:.3f} (threshold={SIMILARITY_THRESHOLD}), "
f"corr={corr:.3f} (threshold={CORRELATION_THRESHOLD})")
# Union-Find para fusionar clusters transitivamente
# Si A~B y B~C, entonces A~B~C (todos en el mismo grupo)
parent = {lbl: lbl for lbl in cluster_labels}
def find(x):
if parent[x] != x:
parent[x] = find(parent[x]) # Path compression
return parent[x]
def union(x, y):
root_x = find(x)
root_y = find(y)
if root_x != root_y:
parent[root_y] = root_x
# Fusionar todos los clusters similares
fusion_count = 0
for (lbl1, lbl2), sim in similarities.items():
if sim['similar']:
union(lbl1, lbl2)
fusion_count += 1
# Aplicar fusió als clusters
new_clusters = {}
for lbl, idxs in clusters.items():
root = find(lbl)
if root not in new_clusters:
new_clusters[root] = []
new_clusters[root].extend(idxs)
# Reordenar labels para que sean consecutivos
final_clusters_dict = {}
for i, (root, idxs) in enumerate(sorted(new_clusters.items())):
final_clusters_dict[i] = idxs
clusters = final_clusters_dict
final_clusters = len(clusters)
eliminated = initial_clusters - final_clusters
print(f"[SCENE VALIDATION] ===== RESULTADO =====")
print(f"[SCENE VALIDATION] Clusters inicials: {initial_clusters}")
print(f"[SCENE VALIDATION] Fusions realitzades: {fusion_count}")
print(f"[SCENE VALIDATION] Clusters finals: {final_clusters}")
print(f"[SCENE VALIDATION] Clusters eliminats (fusionats): {eliminated}")
print(f"[SCENE VALIDATION] Reducció: {(eliminated/initial_clusters*100):.1f}%")
print(f"[SCENE VALIDATION] =======================")
# Escriure imatges representatives per a cada clúster
base = TEMP_ROOT / video_name / "scenes"
base.mkdir(parents=True, exist_ok=True)
scene_list = []
cap = cv2.VideoCapture(str(dst_video))
for lbl, idxs in sorted(clusters.items(), key=lambda x: x[0]):
scene_id = f"scene_{int(lbl):02d}"
out_dir = base / scene_id
out_dir.mkdir(parents=True, exist_ok=True)
frame_files = []
# Guardar fins a 12 frames per clúster
for k, fi in enumerate(idxs[:12]):
frame_num = metas[fi]["index"]
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num)
ret2, frame = cap.read()
if not ret2:
continue
fn = f"frame_{k:03d}.jpg"
cv2.imwrite(str(out_dir / fn), frame)
frame_files.append(fn)
# Representative
rep = frame_files[0] if frame_files else None
image_url = f"/files_scene/{video_name}/{scene_id}/{rep}" if rep else ""
# Llamar a svision para describir la escena representativa
scene_description = ""
scene_name = f"Escena {lbl+1}"
if rep:
rep_full_path = out_dir / rep
if rep_full_path.exists():
print(f"Llamando a svision para describir {scene_id}...")
try:
scene_description, scene_name = describe_image_with_svision(str(rep_full_path), is_face=False)
if not scene_name:
scene_name = f"Escena {lbl+1}"
# Si tenemos descripción, generar nombre corto con schat
if scene_description:
print(f"Llamando a schat para generar nombre corto de {scene_id}...")
try:
# Usar LLMRouter para llamar a schat
config_path = os.getenv("CONFIG_YAML", "config.yaml")
if os.path.exists(config_path):
with open(config_path, 'r', encoding='utf-8') as f:
cfg = yaml.safe_load(f) or {}
router = LLMRouter(cfg)
prompt = f"Basant-te en aquesta descripció d'una escena, genera un nom curt de menys de 3 paraules que la resumeixi:\n\n{scene_description}\n\nNom de l'escena:"
short_name = router.instruct(
prompt=prompt,
system="Ets un assistent que genera noms curts i descriptius per a escenes. Respon NOMÉS amb el nom, sense explicacions.",
model="salamandra-instruct"
).strip()
# Limpiar posibles comillas o puntuación extra
short_name = short_name.strip('"\'.,!?').strip()
if short_name and len(short_name) > 0:
scene_name = short_name
print(f"[schat] Nom generat: {scene_name}")
else:
print(f"[schat] No s'ha generat nom, usant fallback")
except Exception as e_schat:
print(f"Error generando nombre con schat: {e_schat}")
# Mantener el nombre de svision si schat falla
except Exception as e:
print(f"Error describiendo {scene_id}: {e}")
scene_list.append({
"id": scene_id,
"name": scene_name,
"description": scene_description,
"folder": str(out_dir),
"num_frames": len(frame_files),
"image_url": image_url,
"frame_files": frame_files,
})
cap.release()
return {"scene_clusters": scene_list, "base_dir": str(base)}
@app.post("/refine_narration")
async def refine_narration(
dialogues_srt: str = Form(...),
frame_descriptions_json: str = Form("[]"),
config_path: str = Form("config.yaml"),
):
cfg = load_yaml(config_path)
frames = json.loads(frame_descriptions_json)
model_name = cfg.get("narration", {}).get("model", "salamandra-instruct")
use_remote = model_name in (cfg.get("models", {}).get("routing", {}).get("use_remote_for", []))
if use_remote:
router = LLMRouter(cfg)
system_msg = (
"Eres un sistema de audiodescripción que cumple UNE-153010. "
"Fusiona diálogos del SRT con descripciones concisas en los huecos, evitando redundancias. "
"Devuelve JSON con {narrative_text, srt_text}."
)
prompt = json.dumps({"dialogues_srt": dialogues_srt, "frames": frames, "rules": cfg.get("narration", {})}, ensure_ascii=False)
try:
txt = router.instruct(prompt=prompt, system=system_msg, model=model_name)
out = {}
try:
out = json.loads(txt)
except Exception:
out = {"narrative_text": txt, "srt_text": ""}
return {
"narrative_text": out.get("narrative_text", ""),
"srt_text": out.get("srt_text", ""),
"approved": True,
"critic_feedback": "",
}
except Exception:
ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("narration_une_guidelines_path", "UNE_153010.txt"))
res = ns.run(dialogues_srt, frames)
return {"narrative_text": res.narrative_text, "srt_text": res.srt_text, "approved": res.approved, "critic_feedback": res.critic_feedback}
ns = NarrationSystem(model_url=None, une_guidelines_path=cfg.get("narration", {}).get("une_guidelines_path", "UNE_153010.txt"))
out = ns.run(dialogues_srt, frames)
return {"narrative_text": out.narrative_text, "srt_text": out.srt_text, "approved": out.approved, "critic_feedback": out.critic_feedback}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|