File size: 15,392 Bytes
d155856 ea9c4ec d155856 ea9c4ec d155856 278b3ad d155856 962104d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import os
import io
from pathlib import Path
from typing import Counter,List, Dict
import ast
import json
import torch
from svision_client import extract_scenes, add_ocr_and_faces, keyframes_every_second_extraction, extract_descripcion_escena
from asr_client import extract_audio_from_video, diarize_audio, transcribe_long_audio, transcribe_short_audio, identificar_veu
from fastapi import APIRouter, UploadFile, File, Query, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse, FileResponse
from storage.common import validate_token
from storage.files.file_manager import FileManager
from storage.embeddings_routers import get_embeddings_json
EMBEDDINGS_ROOT = Path("/data/embeddings")
MEDIA_ROOT = Path("/data/media")
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
router = APIRouter(prefix="/transcription", tags=["Initial Transcription Process"])
HF_TOKEN = os.getenv("VEUREU_TOKEN")
def get_casting(video_sha1: str):
"""Recupera els embeddings reals de càsting per a un vídeo a partir del seu SHA1.
Llegeix el JSON d'embeddings que demo ha pujat prèviament a /data/embeddings
mitjançant l'endpoint /embeddings/upload_embeddings i en retorna les
columnes face_col i voice_col.
"""
# get_embeddings_json retorna el JSON complet tal com es va pujar (casting_json)
faces_json = get_embeddings_json(video_sha1, "faces")
faces_json = faces_json["face_col"]
print("--------------")
print("la base de datos de caras es ")
print(faces_json)
voices_json = get_embeddings_json(video_sha1, "voices")
voices_json = voices_json["voice_col"]
print("--------------")
print("la base de datos de voces es ")
print(voices_json)
return faces_json, voices_json
def map_identities_per_second(frames_per_second, intervals):
for seg in intervals:
seg_start = seg["start"]
seg_end = seg["end"]
identities = []
for f in frames_per_second:
if seg_start <= f["start"] <= seg_end:
for face in f.get("faces", []):
identities.append(face)
seg["counts"] = dict(Counter(identities))
return intervals
def _fmt_srt_time(seconds: float) -> str:
"""Formatea segundos en el formato SRT HH:MM:SS,mmm"""
h = int(seconds // 3600)
m = int((seconds % 3600) // 60)
s = int(seconds % 60)
ms = int((seconds - int(seconds)) * 1000)
return f"{h:02}:{m:02}:{s:02},{ms:03}"
from pathlib import Path
from typing import List, Dict
from fastapi import HTTPException
def generate_srt_from_segments(segments: List[Dict], sha1: str) -> str:
"""
Generate an SRT subtitle file from diarization/transcription segments.
This function:
- Creates the required folder structure for storing SRTs.
- Removes any previous SRT files for the same SHA1.
- Builds the SRT content with timestamps, speaker identity and transcription.
- Saves the SRT file to disk.
- Returns the SRT content as a string (to be sent by the endpoint).
Parameters
----------
segments : List[Dict]
List of dictionaries containing:
- "start": float (start time in seconds)
- "end": float (end time in seconds)
- "speaker": dict with "identity"
- "transcription": str
sha1 : str
Identifier used to locate the target media folder.
Returns
-------
str
Full SRT file content as a string.
"""
# Path: /data/media/<sha1>
video_root = MEDIA_ROOT / sha1
video_root.mkdir(parents=True, exist_ok=True)
# Path: /data/media/<sha1>/origin_srt
srt_dir = video_root / "initial_srt"
srt_dir.mkdir(parents=True, exist_ok=True)
# Delete old SRT files
try:
for old_srt in srt_dir.glob("*.srt"):
old_srt.unlink()
except Exception as exc:
raise HTTPException(status_code=500, detail=f"Failed to delete old SRT files: {exc}")
# Save file as initial.srt
final_path = srt_dir / "initial.srt"
# Build SRT content
srt_lines = []
for i, seg in enumerate(segments, start=1):
start = seg.get("start", 0.0)
end = seg.get("end", 0.0)
transcription = seg.get("transcription", "").strip()
speaker_info = seg.get("speaker", {})
speaker = speaker_info.get("identity", "Unknown")
text = f"[{speaker}]: {transcription}" if speaker else transcription
entry = (
f"{i}\n"
f"{_fmt_srt_time(start)} --> {_fmt_srt_time(end)}\n"
f"{text}\n"
)
srt_lines.append(entry)
# Join with blank lines
srt_content = "\n".join(srt_lines)
# Write to disk
try:
with final_path.open("w", encoding="utf-8-sig") as f:
f.write(srt_content)
except Exception as exc:
raise HTTPException(status_code=500, detail=f"Failed to write SRT file: {exc}")
return srt_content
def pipeline_preprocessing_vision(video_path: str, face_col):
"""
Pipeline que toma un video y realiza todo el preprocesamiento del video de la parte de vision.
"""
print(f"Procesando video para visión: {video_path}")
print("----------------------")
print(face_col)
print("Extrayendo escenas...")
threshold: float = 30.0
offset_frames: int = 240
crop_ratio: float = 0.1
result_extract_scenes = extract_scenes(video_path, threshold, offset_frames, crop_ratio)
print(result_extract_scenes)
# Obtener las rutas de las imágenes y la información de las escenas
escenas = result_extract_scenes[0] if len(result_extract_scenes) > 0 else []
escenas_paths = [f["image"] for f in escenas]
print(escenas_paths)
info_escenas = result_extract_scenes[1] if len(result_extract_scenes) > 1 else []
print(info_escenas)
print("Extrayendo imagenes por segundo...")
result_extract_per_second = keyframes_every_second_extraction(video_path)
# Obtener las rutas de las imágenes y la información de las escenas
images_per_second = result_extract_per_second[0] if len(result_extract_per_second) > 0 else []
images_per_second_paths = [f["image"] for f in images_per_second]
info_images_per_second = result_extract_per_second[1] if len(result_extract_per_second) > 1 else []
print("Aumentamos la información de las escenas viendo quién aparece en cada escena y detectando OCR...")
info_escenas_completa = []
for imagen_escena, info_escena in zip(escenas_paths, info_escenas):
result_add_ocr_and_faces = add_ocr_and_faces(imagen_escena, info_escena, face_col)
info_escenas_completa.append(result_add_ocr_and_faces)
print("Aumentamos la información de las imagenes por segundo viendo quién aparece en cada escena y detectando OCR...")
info_images_per_second_completa = []
for imagen_segundo, info_segundo in zip(images_per_second_paths, info_images_per_second):
result_add_ocr_and_faces =add_ocr_and_faces(imagen_segundo, info_segundo, face_col)
info_images_per_second_completa.append(result_add_ocr_and_faces)
print(info_escenas_completa)
print("Ahora se va a tratar los OCR (se sustituirán ciertas escenas por alguna de las imágenes por segundo si tienen mejor OCR)...")
# Se hará lo último
print("Combinando información de escenas e imágenes por segundo...")
info_escenas_completa = map_identities_per_second(info_images_per_second_completa, info_escenas_completa)
print(info_escenas_completa)
print("Ahora se incluyen en los diccionarios de las escenas la descripciones de estas.")
for escena_path, info_escena in zip(escenas_paths, info_escenas_completa):
descripcion_escena = extract_descripcion_escena(escena_path)
lista = ast.literal_eval(descripcion_escena)
frase = lista[0]
info_escena["descripcion"] = frase
del descripcion_escena
torch.cuda.empty_cache()
return info_escenas_completa, info_images_per_second_completa
def pipeline_preprocessing_audio(video_path: str, voice_col):
"""
Pipeline que toma un video y realiza todo el preprocesamiento del video de la parte de audio.
"""
print(f"Procesando video para audio: {video_path}")
print("Extrayendo audio del video...")
audio_video = extract_audio_from_video(video_path)
print(audio_video)
print("Diartizando el audio...")
diarization_audio = diarize_audio(audio_video)
print(diarization_audio)
clips_path = diarization_audio[0]
print(clips_path)
diarization_info = diarization_audio[1]
print(diarization_info)
print("Transcribiendo el video completo...")
full_transcription = transcribe_long_audio(audio_video)
print(full_transcription)
print("Transcribiendo los clips diartizados...")
for clip_path, clip_info in zip(clips_path, diarization_info):
clip_transcription = transcribe_short_audio(clip_path)
clip_info["transcription"] = clip_transcription
print("Calculando los embeddings para cada uno de los clips obtenidos y posteriormente identificar las voces...")
for clip_path, clip_info in zip(clips_path, diarization_info):
clip_speaker = identificar_veu(clip_path, voice_col)
clip_info["speaker"] = clip_speaker
return full_transcription, diarization_info
@router.post("/generate_initial_srt_and_info", tags=["Initial Transcription Process"])
async def pipeline_video_analysis(
sha1: str,
token: str = Query(..., description="Token required for authorization")
):
"""
Endpoint that processes a full video identified by its SHA1 folder, performs
complete audio-visual preprocessing, and returns an SRT subtitle file.
This pipeline integrates:
- Vision preprocessing (scene detection, keyframes, OCR, face recognition)
- Audio preprocessing (diarization, speech recognition, speaker identity matching)
- Identity mapping between vision and audio streams
- Final generation of an SRT file describing who speaks and when
Parameters
----------
sha1 : str
Identifier corresponding to the folder containing the video and related assets.
token : str
Security token required for authorization.
Returns
-------
str
The generated SRT file (as text) containing time-aligned subtitles with
speaker identities and transcriptions.
"""
validate_token(token)
# Resolve directories
file_manager = FileManager(MEDIA_ROOT)
sha1_folder = MEDIA_ROOT / sha1
clip_folder = sha1_folder / "clip"
if not sha1_folder.exists() or not sha1_folder.is_dir():
raise HTTPException(status_code=404, detail="SHA1 folder not found")
if not clip_folder.exists() or not clip_folder.is_dir():
raise HTTPException(status_code=404, detail="Clip folder not found")
# Locate video file
mp4_files = list(clip_folder.glob("*.mp4"))
if not mp4_files:
raise HTTPException(status_code=404, detail="No MP4 files found")
video_path = mp4_files[0]
# Convert absolute path to a relative path for FileManager
video_path = MEDIA_ROOT / video_path.relative_to(MEDIA_ROOT)
print(f"Processing full video: {video_path}")
# Get face and voice embeddings for casting
face_col, voice_col = get_casting(sha1)
# Vision processing pipeline
info_escenas, info_images_per_second = pipeline_preprocessing_vision(video_path, face_col)
torch.cuda.empty_cache()
# Audio processing pipeline
full_transcription, info_clips = pipeline_preprocessing_audio(video_path, voice_col)
# Merge identities from vision pipeline with audio segments
info_clips = map_identities_per_second(info_images_per_second, info_clips)
# Generate the final SRT subtitle file
srt = generate_srt_from_segments(info_clips, sha1)
# Create result JSON
result_json = {
"full_transcription": full_transcription,
"info_escenas": info_escenas,
"info_clips": info_clips
}
# Path: /data/media/<sha1>
video_root = MEDIA_ROOT / sha1
video_root.mkdir(parents=True, exist_ok=True)
# Path: /data/media/<sha1>/origin_srt
srt_dir = video_root / "initial_srt"
srt_dir.mkdir(parents=True, exist_ok=True)
final_path = srt_dir / "initial_info.json"
with final_path.open("w", encoding="utf-8") as f:
json.dump({
"full_transcription": full_transcription,
"info_escenas": info_escenas,
"info_clips": info_clips
}, f, ensure_ascii=False, indent=4)
# The endpoint returns OK message info
return {"status": "ok", "message": "Initial SRT and info JSON generated"}
def get_initial_info_path(sha1:str):
video_root = MEDIA_ROOT / sha1
srt_dir = video_root / "initial_srt"
final_path = srt_dir / "initial_info.json"
if not video_root.exists() or not video_root.is_dir():
raise HTTPException(status_code=404, detail="SHA1 folder not found")
if not srt_dir.exists() or not srt_dir.is_dir():
raise HTTPException(status_code=404, detail="initial_srt folder not found")
if not final_path.exists() or not final_path.is_file():
raise HTTPException(status_code=404, detail="initial_info JSON not found")
return final_path
def get_initial_srt_path(sha1:str):
video_root = MEDIA_ROOT / sha1
srt_dir = video_root / "initial_srt"
final_path = srt_dir / "initial.srt"
if not video_root.exists() or not video_root.is_dir():
raise HTTPException(status_code=404, detail="SHA1 folder not found")
if not srt_dir.exists() or not srt_dir.is_dir():
raise HTTPException(status_code=404, detail="initial_srt folder not found")
if not final_path.exists() or not final_path.is_file():
raise HTTPException(status_code=404, detail="initial.srt SRT not found")
return final_path
@router.get("/download_initial_srt", tags=["Initial Transcription Process"])
def download_initial_srt(
sha1: str,
token: str = Query(..., description="Token required for authorization")
):
"""
Download the cast CSV for a specific video identified by its SHA-1.
The CSV is expected under:
/data/media/<sha1>/cast/cast.csv
Steps:
- Validate the token.
- Ensure /data/media/<sha1> and /cast exist.
- Return the CSV as a FileResponse.
- Raise 404 if any folder or file is missing.
"""
validate_token(token)
file_path = get_initial_srt_path(sha1)
return FileResponse(
path=file_path,
media_type="text/srt",
filename="initial.srt"
)
@router.get("/download_initial_info", tags=["Initial Transcription Process"])
def download_initial_info(
sha1: str,
token: str = Query(..., description="Token required for authorization")
):
"""
Download the cast CSV for a specific video identified by its SHA-1.
The CSV is expected under:
/data/media/<sha1>/cast/cast.csv
Steps:
- Validate the token.
- Ensure /data/media/<sha1> and /cast exist.
- Return the CSV as a FileResponse.
- Raise 404 if any folder or file is missing.
"""
validate_token(token)
file_path = get_initial_info_path(sha1)
return FileResponse(
path=file_path,
media_type="text/json",
filename="initial_info.json"
) |