engine / preprocessing_router.py
VeuReu's picture
Update preprocessing_router.py
9d9aacc verified
raw
history blame
42.2 kB
from __future__ import annotations
from fastapi import APIRouter, UploadFile, File, Form, BackgroundTasks, HTTPException, Body
from fastapi.responses import FileResponse
from pathlib import Path
from datetime import datetime
from enum import Enum
from typing import Dict, Any, List
import shutil
import os
import uuid
import numpy as np
import cv2
import tempfile
from casting_loader import ensure_chroma, build_faces_index, build_voices_index
from llm_router import load_yaml, LLMRouter
from storage.media_routers import upload_video
# External space clients (no local GPU needed)
import svision_client
import asr_client
from sklearn.cluster import KMeans
from sklearn.neighbors import KNeighborsClassifier
ROOT = Path("/tmp/veureu")
ROOT.mkdir(parents=True, exist_ok=True)
TEMP_ROOT = Path("/tmp/temp")
TEMP_ROOT.mkdir(parents=True, exist_ok=True)
VIDEOS_ROOT = Path("/tmp/data/videos")
VIDEOS_ROOT.mkdir(parents=True, exist_ok=True)
IDENTITIES_ROOT = Path("/tmp/characters")
IDENTITIES_ROOT.mkdir(parents=True, exist_ok=True)
VEUREU_TOKEN = os.getenv("VEUREU_TOKEN")
class JobStatus(str, Enum):
QUEUED = "queued"
PROCESSING = "processing"
DONE = "done"
FAILED = "failed"
jobs: Dict[str, dict] = {}
# ---------------------------------------------------------------------------
# Helper function for clustering (only math, no GPU)
# ---------------------------------------------------------------------------
def hierarchical_cluster_with_min_size(X, max_groups: int, min_cluster_size: int, sensitivity: float = 0.5) -> np.ndarray:
"""Hierarchical clustering using only min_cluster_size and k-target (max_groups).
- Primero intenta crear el máximo número posible de clusters con al menos
``min_cluster_size`` elementos.
- Después fusiona implícitamente (bajando el número de clusters) hasta
llegar a un número de clusters válidos (tamaño >= min_cluster_size)
menor o igual que ``max_groups``.
``sensitivity`` se mantiene en la firma por compatibilidad, pero no se usa.
"""
from scipy.cluster.hierarchy import linkage, fcluster
from collections import Counter
n_samples = len(X)
if n_samples == 0:
return np.array([])
# Si no hay suficientes muestras para formar un solo cluster válido,
# marcamos todo como ruido (-1).
if n_samples < min_cluster_size:
return np.full(n_samples, -1, dtype=int)
# k_target = max_groups (interpretamos este parámetro como k-Target)
k_target = max(0, int(max_groups))
# Caso especial: k_target == 0 => no queremos clusters, todo ruido.
if k_target == 0:
return np.full(n_samples, -1, dtype=int)
# Enlace jerárquico una sola vez
Z = linkage(X, method="average", metric="cosine")
# Máximo número de clusters posibles respetando min_cluster_size
max_possible = n_samples // min_cluster_size
if max_possible <= 0:
return np.full(n_samples, -1, dtype=int)
max_to_try = min(max_possible, n_samples)
best_labels = np.full(n_samples, -1, dtype=int)
# Recorremos de más clusters a menos, buscando la primera solución
# que tenga entre 1 y k_target clusters válidos.
for n_clusters in range(max_to_try, 0, -1):
trial_labels = fcluster(Z, t=n_clusters, criterion="maxclust") - 1
counts = Counter(trial_labels)
# Clusters con tamaño suficiente
valid_clusters = {lbl for lbl, cnt in counts.items() if cnt >= min_cluster_size}
num_valid = len(valid_clusters)
if num_valid == 0:
# Demasiado fino, todos los clusters son demasiado pequeños
continue
if num_valid <= k_target:
# Aceptamos esta solución
final_labels = []
for lbl in trial_labels:
if lbl in valid_clusters:
final_labels.append(lbl)
else:
final_labels.append(-1)
best_labels = np.array(final_labels, dtype=int)
break
return best_labels
router = APIRouter(tags=["Preprocessing Manager"])
@router.post("/create_initial_casting")
async def create_initial_casting(
background_tasks: BackgroundTasks,
video: UploadFile = File(...),
max_groups: int = Form(default=3),
min_cluster_size: int = Form(default=3),
face_sensitivity: float = Form(default=0.5),
voice_max_groups: int = Form(default=3),
voice_min_cluster_size: int = Form(default=3),
voice_sensitivity: float = Form(default=0.5),
max_frames: int = Form(default=100),
):
video_name = Path(video.filename).stem
dst_video = VIDEOS_ROOT / f"{video_name}.mp4"
with dst_video.open("wb") as f:
shutil.copyfileobj(video.file, f)
upload_video(video, VEUREU_TOKEN)
job_id = str(uuid.uuid4())
jobs[job_id] = {
"id": job_id,
"status": JobStatus.QUEUED,
"video_path": str(dst_video),
"video_name": video_name,
"max_groups": int(max_groups),
"min_cluster_size": int(min_cluster_size),
"face_sensitivity": float(face_sensitivity),
"voice_max_groups": int(voice_max_groups),
"voice_min_cluster_size": int(voice_min_cluster_size),
"voice_sensitivity": float(voice_sensitivity),
"max_frames": int(max_frames),
"created_at": datetime.now().isoformat(),
"results": None,
"error": None,
}
print(f"[{job_id}] Job creado para vídeo: {video_name}")
background_tasks.add_task(process_video_job, job_id)
return {"job_id": job_id}
@router.get("/jobs/{job_id}/status")
def get_job_status(job_id: str):
if job_id not in jobs:
raise HTTPException(status_code=404, detail="Job not found")
job = jobs[job_id]
status_value = job["status"].value if isinstance(job["status"], JobStatus) else str(job["status"])
response = {"status": status_value}
if job.get("results") is not None:
response["results"] = job["results"]
if job.get("error"):
response["error"] = job["error"]
return response
@router.get("/files/{video_name}/{char_id}/{filename}")
def serve_character_file(video_name: str, char_id: str, filename: str):
file_path = TEMP_ROOT / video_name / "characters" / char_id / filename
if not file_path.exists():
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(file_path)
@router.get("/audio/{video_name}/{filename}")
def serve_audio_file(video_name: str, filename: str):
file_path = TEMP_ROOT / video_name / "clips" / filename
if not file_path.exists():
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(file_path)
@router.post("/load_casting")
async def load_casting(
faces_dir: str = Form("identities/faces"),
voices_dir: str = Form("identities/voices"),
db_dir: str = Form("chroma_db"),
drop_collections: bool = Form(False),
):
client = ensure_chroma(Path(db_dir))
n_faces = build_faces_index(Path(faces_dir), client, collection_name="index_faces", drop=drop_collections)
n_voices = build_voices_index(Path(voices_dir), client, collection_name="index_voices", drop=drop_collections)
return {"ok": True, "faces": n_faces, "voices": n_voices}
@router.post("/finalize_casting")
async def finalize_casting(
payload: dict = Body(...),
):
import shutil as _sh
from pathlib import Path as _P
video_name = payload.get("video_name")
base_dir = payload.get("base_dir")
characters = payload.get("characters", []) or []
voice_clusters = payload.get("voice_clusters", []) or []
print(characters)
print(voice_clusters)
if not video_name or not base_dir:
raise HTTPException(status_code=400, detail="Missing video_name or base_dir")
faces_out = IDENTITIES_ROOT / video_name / "faces"
voices_out = IDENTITIES_ROOT / video_name / "voices"
faces_out.mkdir(parents=True, exist_ok=True)
voices_out.mkdir(parents=True, exist_ok=True)
for ch in characters:
ch_name = (ch.get("name") or "Unknown").strip() or "Unknown"
ch_folder = ch.get("folder")
kept = ch.get("kept_files") or []
if not ch_folder or not os.path.isdir(ch_folder):
continue
dst_dir = faces_out / ch_name
dst_dir.mkdir(parents=True, exist_ok=True)
for fname in kept:
src = _P(ch_folder) / fname
if src.exists() and src.is_file():
try:
_sh.copy2(src, dst_dir / fname)
except Exception:
pass
clips_dir = _P(base_dir) / "clips"
for vc in voice_clusters:
v_name = (vc.get("name") or f"SPEAKER_{int(vc.get('label',0)):02d}").strip()
dst_dir = voices_out / v_name
dst_dir.mkdir(parents=True, exist_ok=True)
for wav in (vc.get("clips") or []):
src = clips_dir / wav
if src.exists() and src.is_file():
try:
_sh.copy2(src, dst_dir / wav)
except Exception:
pass
db_dir = IDENTITIES_ROOT / video_name / "chroma_db"
try:
client = ensure_chroma(db_dir)
n_faces = build_faces_index(
faces_out,
client,
collection_name="index_faces",
deepface_model="Facenet512",
drop=True,
)
n_voices = build_voices_index(
voices_out,
client,
collection_name="index_voices",
drop=True,
)
except Exception as e:
print(f"[finalize_casting] WARN - No se pudieron construir índices ChromaDB: {e}")
n_faces = 0
n_voices = 0
face_identities = sorted([p.name for p in faces_out.iterdir() if p.is_dir()]) if faces_out.exists() else []
voice_identities = sorted([p.name for p in voices_out.iterdir() if p.is_dir()]) if voices_out.exists() else []
casting_json = {"face_col": [], "voice_col": []}
try:
cfg = load_yaml("config.yaml")
router_llm = LLMRouter(cfg)
except Exception:
router_llm = None # type: ignore
try:
if face_identities and router_llm is not None:
factory = router_llm.client_factories.get("salamandra-vision") # type: ignore[attr-defined]
if factory is not None:
vclient = factory()
gclient = getattr(vclient, "_client", None)
else:
gclient = None
if gclient is not None:
for identity in face_identities:
id_dir = faces_out / identity
if not id_dir.is_dir():
continue
img_path = None
for ext in (".jpg", ".jpeg", ".png", ".bmp", ".webp"):
candidates = list(id_dir.glob(f"*{ext}"))
if candidates:
img_path = candidates[0]
break
if not img_path:
continue
try:
out = gclient.predict(str(img_path), api_name="/face_image_embedding")
emb = None
if isinstance(out, list):
if out and isinstance(out[0], (list, tuple, float, int)):
if out and isinstance(out[0], (list, tuple)):
emb = list(out[0])
else:
emb = list(out)
elif isinstance(out, dict) and "embedding" in out:
emb = out.get("embedding")
if not emb:
continue
casting_json["face_col"].append({
"nombre": identity,
"embedding": emb,
})
except Exception:
continue
except Exception:
casting_json["face_col"] = []
try:
if voice_identities and router_llm is not None:
factory = router_llm.client_factories.get("whisper-catalan") # type: ignore[attr-defined]
if factory is not None:
aclient = factory()
gclient = getattr(aclient, "_client", None)
else:
gclient = None
if gclient is not None:
for identity in voice_identities:
id_dir = voices_out / identity
if not id_dir.is_dir():
continue
wav_files = sorted([
p for p in id_dir.iterdir()
if p.is_file() and p.suffix.lower() in [".wav", ".flac", ".mp3"]
])
if not wav_files:
continue
wf = wav_files[0]
try:
out = gclient.predict(str(wf), api_name="/voice_embedding")
emb = None
if isinstance(out, list):
emb = list(out)
elif isinstance(out, dict) and "embedding" in out:
emb = out.get("embedding")
if not emb:
continue
casting_json["voice_col"].append({
"nombre": identity,
"embedding": emb,
})
except Exception:
continue
except Exception:
casting_json["voice_col"] = []
return {
"ok": True,
"video_name": video_name,
"faces_dir": str(faces_out),
"voices_dir": str(voices_out),
"db_dir": str(db_dir),
"n_faces_embeddings": n_faces,
"n_voices_embeddings": n_voices,
"face_identities": face_identities,
"voice_identities": voice_identities,
"casting_json": casting_json,
}
@router.get("/files_scene/{video_name}/{scene_id}/{filename}")
def serve_scene_file(video_name: str, scene_id: str, filename: str):
file_path = TEMP_ROOT / video_name / "scenes" / scene_id / filename
if not file_path.exists():
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(file_path)
@router.post("/detect_scenes")
async def detect_scenes(
video: UploadFile = File(...),
max_groups: int = Form(default=3),
min_cluster_size: int = Form(default=3),
scene_sensitivity: float = Form(default=0.5),
frame_interval_sec: float = Form(default=0.5), # mantenido por compatibilidad, no se usa
max_frames: int = Form(default=100),
):
"""Detecta escenas usando frames equiespaciados del vídeo y clustering jerárquico.
- Extrae ``max_frames`` fotogramas equiespaciados del vídeo original.
- Descarta frames negros o muy oscuros antes de construir el histograma.
- Representa cada frame por un histograma de color 3D (8x8x8) normalizado
dividiendo por la media (si el histograma es todo ceros o la media es 0,
se descarta el frame).
- Aplica ``hierarchical_cluster_with_min_size`` igual que para cares i veus.
"""
video_name = Path(video.filename).stem
dst_video = VIDEOS_ROOT / f"{video_name}.mp4"
with dst_video.open("wb") as f:
shutil.copyfileobj(video.file, f)
try:
print(f"[detect_scenes] Extrayendo frames equiespaciados de {video_name}...")
cap = cv2.VideoCapture(str(dst_video))
if not cap.isOpened():
raise RuntimeError("No se pudo abrir el vídeo para detectar escenas")
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0)
if total_frames <= 0:
cap.release()
print("[detect_scenes] total_frames <= 0")
return {"scene_clusters": []}
n_samples = max(1, min(int(max_frames), total_frames))
frame_indices = sorted(set(np.linspace(0, max(0, total_frames - 1), num=n_samples, dtype=int).tolist()))
print(f"[detect_scenes] Total frames: {total_frames}, muestreando {len(frame_indices)} frames")
# Create base directory for scenes
base = TEMP_ROOT / video_name
scenes_dir = base / "scenes"
scenes_dir.mkdir(parents=True, exist_ok=True)
# ------------------------------------------------------------------
# STEP 1: Guardar frames y construir embeddings sencillos (histogramas)
# ------------------------------------------------------------------
keyframe_paths: List[Path] = []
keyframe_infos: List[dict] = []
features: List[np.ndarray] = []
for i, frame_idx in enumerate(frame_indices):
cap.set(cv2.CAP_PROP_POS_FRAMES, int(frame_idx))
ret, frame = cap.read()
if not ret:
continue
# Filtrar frames negros o muy oscuros (umbral sobre la media de intensidad)
# Trabajamos en escala de grises para evaluar brillo global.
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
mean_intensity = float(gray.mean())
if mean_intensity < 5.0:
# Frame negro o casi negro, lo descartamos
continue
local_keyframe = scenes_dir / f"keyframe_{frame_idx:06d}.jpg"
try:
cv2.imwrite(str(local_keyframe), frame)
except Exception as werr:
print(f"[detect_scenes] Error guardando frame {frame_idx}: {werr}")
continue
try:
# Histograma de color 8x8x8 en RGB
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
hist = cv2.calcHist(
[img_rgb], [0, 1, 2], None,
[8, 8, 8], [0, 256, 0, 256, 0, 256]
).astype("float32").flatten()
if not np.any(hist):
# Todo ceros, descartamos
continue
mean_val = float(hist.mean())
if mean_val <= 0.0:
# Media cero o negativa, descartamos
continue
hist /= mean_val
features.append(hist)
except Exception as fe_err:
print(f"[detect_scenes] Error calculando embedding para frame {frame_idx}: {fe_err}")
continue
keyframe_paths.append(local_keyframe)
# Como no tenemos frames_info de svision, usamos el índice de frame
info = {"start": int(frame_idx), "end": int(frame_idx) + 1}
keyframe_infos.append(info)
cap.release()
if not features or len(features) < min_cluster_size:
print(
f"[detect_scenes] No hay suficientes frames válidos para clusterizar escenas: "
f"validos={len(features)}, min_cluster_size={min_cluster_size}"
)
return {"scene_clusters": []}
Xs = np.vstack(features)
# ------------------------------------------------------------------
# STEP 2: Clustering jerárquico de escenas (k-Target + mida mínima)
# ------------------------------------------------------------------
print("[detect_scenes] Clustering jerárquico de escenas...")
scene_labels = hierarchical_cluster_with_min_size(Xs, max_groups, min_cluster_size, 0.5)
unique_labels = sorted({int(l) for l in scene_labels if int(l) >= 0})
print(f"[detect_scenes] Etiquetas de escena válidas: {unique_labels}")
# Mapear índices de keyframes a clusters
cluster_map: Dict[int, List[int]] = {}
for idx, lbl in enumerate(scene_labels):
lbl = int(lbl)
if lbl >= 0:
cluster_map.setdefault(lbl, []).append(idx)
# ------------------------------------------------------------------
# STEP 3: Construir scene_clusters con el formato esperado por el demo
# ------------------------------------------------------------------
scene_clusters: List[Dict[str, Any]] = []
for ci, idxs in sorted(cluster_map.items(), key=lambda x: x[0]):
if not idxs:
continue
scene_id = f"scene_{ci:02d}"
scene_out_dir = scenes_dir / scene_id
scene_out_dir.mkdir(parents=True, exist_ok=True)
# Copiar todos los keyframes del cluster a la carpeta del cluster
cluster_start = None
cluster_end = None
representative_file = None
for j, k_idx in enumerate(idxs):
src = keyframe_paths[k_idx]
dst = scene_out_dir / src.name
try:
shutil.copy2(src, dst)
except Exception as cp_err:
print(f"[detect_scenes] Error copiando keyframe {src} a cluster {scene_id}: {cp_err}")
continue
if representative_file is None:
representative_file = dst
info = keyframe_infos[k_idx]
start = info.get("start", k_idx)
end = info.get("end", k_idx + 1)
cluster_start = start if cluster_start is None else min(cluster_start, start)
cluster_end = end if cluster_end is None else max(cluster_end, end)
if representative_file is None:
continue
scene_clusters.append({
"id": scene_id,
"name": f"Escena {len(scene_clusters)+1}",
"folder": str(scene_out_dir),
"image_url": f"/files_scene/{video_name}/{scene_id}/{representative_file.name}",
"start_time": float(cluster_start) if cluster_start is not None else 0.0,
"end_time": float(cluster_end) if cluster_end is not None else 0.0,
})
print(f"[detect_scenes]  {len(scene_clusters)} escenes clusteritzades")
return {"scene_clusters": scene_clusters}
except Exception as e:
print(f"[detect_scenes] Error: {e}")
import traceback
traceback.print_exc()
return {"scene_clusters": [], "error": str(e)}
def process_video_job(job_id: str):
"""
Process video job in background using EXTERNAL spaces (svision, asr).
NO local GPU needed - all vision/audio processing is delegated to:
- svision: face detection + embeddings (MTCNN + FaceNet)
- asr: audio diarization + voice embeddings (pyannote + ECAPA)
Engine only does: frame extraction, clustering (math), file organization.
"""
try:
job = jobs[job_id]
print(f"[{job_id}] Iniciando procesamiento (delegando a svision/asr)...")
job["status"] = JobStatus.PROCESSING
video_path = job["video_path"]
video_name = job["video_name"]
max_groups = int(job.get("max_groups", 5))
min_cluster_size = int(job.get("min_cluster_size", 3))
face_sensitivity = float(job.get("face_sensitivity", 0.5))
base = TEMP_ROOT / video_name
base.mkdir(parents=True, exist_ok=True)
print(f"[{job_id}] Directorio base: {base}")
try:
# ============================================================
# STEP 1: Extract frames from video (local, simple cv2)
# ============================================================
print(f"[{job_id}] Extrayendo frames del vídeo...")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise RuntimeError("No se pudo abrir el vídeo")
fps = cap.get(cv2.CAP_PROP_FPS) or 25.0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0)
max_samples = job.get("max_frames", 100)
if total_frames > 0:
frame_indices = sorted(set(np.linspace(0, max(0, total_frames - 1), num=min(max_samples, max(1, total_frames)), dtype=int).tolist()))
else:
frame_indices = []
print(f"[{job_id}] Total frames: {total_frames}, FPS: {fps:.2f}, Muestreando {len(frame_indices)} frames")
# Save frames temporarily for svision processing
frames_dir = base / "frames_temp"
frames_dir.mkdir(parents=True, exist_ok=True)
faces_root = base / "faces_raw"
faces_root.mkdir(parents=True, exist_ok=True)
frame_paths: List[str] = []
for frame_idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, int(frame_idx))
ret, frame = cap.read()
if not ret:
continue
frame_path = frames_dir / f"frame_{frame_idx:06d}.jpg"
cv2.imwrite(str(frame_path), frame)
frame_paths.append(str(frame_path))
cap.release()
print(f"[{job_id}] ✓ {len(frame_paths)} frames extraídos")
# ============================================================
# STEP 2: Send frames to SVISION for face detection + embeddings
# ============================================================
print(f"[{job_id}] Enviando frames a svision para detección de caras...")
embeddings: List[List[float]] = []
crops_meta: List[dict] = []
saved_count = 0
frames_with_faces = 0
for i, frame_path in enumerate(frame_paths):
frame_idx = frame_indices[i] if i < len(frame_indices) else i
try:
# Call svision to get faces + embeddings
faces = svision_client.get_face_embeddings_from_image(frame_path)
if faces:
frames_with_faces += 1
for face_data in faces:
emb = face_data.get("embedding", [])
if not emb:
continue
# Normalize embedding
emb = np.array(emb, dtype=float)
emb = emb / (np.linalg.norm(emb) + 1e-9)
embeddings.append(emb.tolist())
# Save face crop if provided by svision
crop_path = face_data.get("face_crop_path")
fn = f"face_{frame_idx:06d}_{saved_count:03d}.jpg"
local_crop_path = faces_root / fn
crop_saved = False
if crop_path:
# Handle remote URLs from svision (Gradio)
if isinstance(crop_path, str) and crop_path.startswith("http"):
try:
import requests
resp = requests.get(crop_path, timeout=30)
if resp.status_code == 200:
with open(local_crop_path, "wb") as f:
f.write(resp.content)
crop_saved = True
except Exception as dl_err:
print(f"[{job_id}] Error descargando crop: {dl_err}")
# Handle local paths
elif isinstance(crop_path, str) and os.path.exists(crop_path):
shutil.copy2(crop_path, local_crop_path)
crop_saved = True
if not crop_saved:
# If no crop from svision, use original frame
shutil.copy2(frame_path, local_crop_path)
crops_meta.append({
"file": fn,
"frame": frame_idx,
"index": face_data.get("index", saved_count),
})
saved_count += 1
except Exception as e:
print(f"[{job_id}] Error procesando frame {frame_idx}: {e}")
continue
print(f"[{job_id}] ✓ Frames con caras: {frames_with_faces}/{len(frame_paths)}")
print(f"[{job_id}] ✓ Caras detectadas: {len(embeddings)}")
# ============================================================
# STEP 3: Clustering (local, only math - no GPU)
# ============================================================
if embeddings:
print(f"[{job_id}] Clustering jerárquico...")
Xf = np.array(embeddings)
labels = hierarchical_cluster_with_min_size(Xf, max_groups, min_cluster_size, face_sensitivity).tolist()
n_clusters = len(set([l for l in labels if l >= 0]))
print(f"[{job_id}] ✓ Clustering: {n_clusters} clusters")
else:
labels = []
# ============================================================
# STEP 4: Organize faces into character folders
# ============================================================
characters: List[Dict[str, Any]] = []
cluster_map: Dict[int, List[int]] = {}
for idx, lbl in enumerate(labels):
if isinstance(lbl, int) and lbl >= 0:
cluster_map.setdefault(lbl, []).append(idx)
chars_dir = base / "characters"
chars_dir.mkdir(parents=True, exist_ok=True)
print(f"[{job_id}] cluster_map: {cluster_map}")
print(f"[{job_id}] crops_meta count: {len(crops_meta)}")
print(f"[{job_id}] faces_root: {faces_root}, exists: {faces_root.exists()}")
if faces_root.exists():
existing_files = list(faces_root.glob("*"))
print(f"[{job_id}] Files in faces_root: {len(existing_files)}")
for ef in existing_files[:5]:
print(f"[{job_id}] - {ef.name}")
for ci, idxs in sorted(cluster_map.items(), key=lambda x: x[0]):
char_id = f"char_{ci:02d}"
print(f"[{job_id}] Processing cluster {char_id} with {len(idxs)} indices: {idxs[:5]}...")
if not idxs:
continue
out_dir = chars_dir / char_id
out_dir.mkdir(parents=True, exist_ok=True)
# Select faces to show (half + 1)
total_faces = len(idxs)
max_faces_to_show = (total_faces // 2) + 1
selected_idxs = idxs[:max_faces_to_show]
files: List[str] = []
file_urls: List[str] = []
for j in selected_idxs:
if j >= len(crops_meta):
print(f"[{job_id}] Index {j} out of range (crops_meta len={len(crops_meta)})")
continue
meta = crops_meta[j]
fname = meta.get("file")
if not fname:
print(f"[{job_id}] No filename in meta for index {j}")
continue
src = faces_root / fname
dst = out_dir / fname
try:
if src.exists():
shutil.copy2(src, dst)
files.append(fname)
file_urls.append(f"/files/{video_name}/{char_id}/{fname}")
else:
print(f"[{job_id}] Source file not found: {src}")
except Exception as cp_err:
print(f"[{job_id}] Error copying {fname}: {cp_err}")
# Create representative image
rep = files[0] if files else None
if rep:
try:
shutil.copy2(out_dir / rep, out_dir / "representative.jpg")
except Exception:
pass
cluster_number = ci + 1
character_name = f"Cluster {cluster_number}"
characters.append({
"id": char_id,
"name": character_name,
"folder": str(out_dir),
"num_faces": len(files),
"total_faces_detected": total_faces,
"image_url": f"/files/{video_name}/{char_id}/representative.jpg" if rep else "",
"face_files": file_urls,
})
print(f"[{job_id}] ✓ Cluster {char_id}: {len(files)} caras")
# Cleanup temp frames
try:
shutil.rmtree(frames_dir)
except Exception:
pass
print(f"[{job_id}] ✓ Total: {len(characters)} personajes")
# ============================================================
# STEP 5: Audio diarization + voice embeddings using ASR space
# ============================================================
voice_max_groups = int(job.get("voice_max_groups", 3))
voice_min_cluster_size = int(job.get("voice_min_cluster_size", 3))
voice_sensitivity = float(job.get("voice_sensitivity", 0.5))
audio_segments: List[Dict[str, Any]] = []
voice_labels: List[int] = []
voice_embeddings: List[List[float]] = []
diarization_info: Dict[str, Any] = {}
print(f"[{job_id}] Procesando audio con ASR space...")
try:
# Extract audio and diarize
diar_result = asr_client.extract_audio_and_diarize(video_path)
clips = diar_result.get("clips", [])
segments = diar_result.get("segments", [])
print(f"[{job_id}] Diarización: {len(clips)} clips, {len(segments)} segmentos")
# Save clips locally
clips_dir = base / "clips"
clips_dir.mkdir(parents=True, exist_ok=True)
for i, clip_info in enumerate(clips if isinstance(clips, list) else []):
clip_path = clip_info if isinstance(clip_info, str) else clip_info.get("path") if isinstance(clip_info, dict) else None
if not clip_path:
continue
# Download or copy clip
local_clip = clips_dir / f"segment_{i:03d}.wav"
try:
if isinstance(clip_path, str) and clip_path.startswith("http"):
import requests
resp = requests.get(clip_path, timeout=30)
if resp.status_code == 200:
with open(local_clip, "wb") as f:
f.write(resp.content)
elif isinstance(clip_path, str) and os.path.exists(clip_path):
shutil.copy2(clip_path, local_clip)
except Exception as dl_err:
print(f"[{job_id}] Error guardando clip {i}: {dl_err}")
continue
# Get segment info
seg_info = segments[i] if i < len(segments) else {}
speaker = seg_info.get("speaker", f"SPEAKER_{i:02d}")
# Get voice embedding for this clip
emb = asr_client.get_voice_embedding(str(local_clip))
if emb:
voice_embeddings.append(emb)
audio_segments.append({
"index": i,
"clip_path": str(local_clip),
"clip_url": f"/audio/{video_name}/segment_{i:03d}.wav",
"speaker": speaker,
"start": seg_info.get("start", 0),
"end": seg_info.get("end", 0),
})
print(f"[{job_id}] \u2713 {len(audio_segments)} segmentos de audio procesados")
# Cluster voice embeddings
if voice_embeddings:
print(f"[{job_id}] Clustering KMeans+KNN de voz (forzado)...")
print(f"[{job_id}] - voice_embeddings: {len(voice_embeddings)}")
print(f"[{job_id}] - parámetros: grupos={voice_max_groups}, max_por_cluster={voice_min_cluster_size}")
# ------------------------------
# NORMALIZAR EMBEDDINGS
# ------------------------------
Xv = np.array(voice_embeddings)
Xv = Xv / np.linalg.norm(Xv, axis=1, keepdims=True)
N = len(Xv)
K = max(1, voice_max_groups) # número mínimo de clusters
MAX_PER_CLUSTER = max(1, voice_min_cluster_size)
# ------------------------------
# STEP 1: KMEANS FORZADO
# ------------------------------
from sklearn.cluster import KMeans
km = KMeans(n_clusters=K, n_init=10, random_state=42)
labels = km.fit_predict(Xv)
print(f"[{job_id}] - Inicial: {labels.tolist()}")
# ------------------------------
# STEP 2: REBALANCEO CON KNN SI HAY CLUSTERS SOBRECARGADOS
# ------------------------------
from sklearn.neighbors import KNeighborsClassifier
for iteration in range(10): # máximo 10 ajustes
sizes = {c: np.sum(labels == c) for c in range(K)}
bad_clusters = [c for c, s in sizes.items() if s > MAX_PER_CLUSTER]
print(f"[{job_id}] - Iter {iteration}: tamaños={sizes}")
if not bad_clusters:
break # Todo OK, ningún cluster supera el límite
# Entrenar KNN usando SOLO clusters válidos
good_indices = []
for c in range(K):
idx = np.where(labels == c)[0]
if len(idx) <= MAX_PER_CLUSTER:
good_indices.extend(idx)
if len(good_indices) == 0:
print(f"[{job_id}] - No hay clusters válidos para KNN, abortando rebalanceo.")
break
knn = KNeighborsClassifier(n_neighbors=min(3, len(good_indices)))
knn.fit(Xv[good_indices], labels[good_indices])
# Reasignar elementos excedentes
for c in bad_clusters:
idx = np.where(labels == c)[0]
excess = idx[MAX_PER_CLUSTER:] # los que sobran
for i in excess:
new_lab = knn.predict([Xv[i]])[0]
labels[i] = new_lab
voice_labels = labels.tolist()
n_voice_clusters = len(set(voice_labels))
print(f"[{job_id}] - Final voice_labels: {voice_labels}")
print(f"[{job_id}] ✓ Clustering voz final: {n_voice_clusters} clusters")
diarization_info = {
"num_segments": len(audio_segments),
"num_voice_clusters": len(set([l for l in voice_labels if l >= 0])) if voice_labels else 0,
}
except Exception as audio_err:
print(f"[{job_id}] Error en procesamiento de audio: {audio_err}")
import traceback
traceback.print_exc()
job["results"] = {
"characters": characters,
"face_labels": [int(x) for x in labels],
"audio_segments": audio_segments,
"voice_labels": [int(x) for x in voice_labels],
"diarization_info": diarization_info,
"video_name": video_name,
"base_dir": str(base),
}
job["status"] = JobStatus.DONE
print(f"[{job_id}] ✓ Procesamiento completado")
print(job["results"])
except Exception as proc_error:
print(f"[{job_id}] Error en procesamiento: {proc_error}")
import traceback
traceback.print_exc()
job["results"] = {
"characters": [], "face_labels": [],
"audio_segments": [], "voice_labels": [], "diarization_info": {},
"video_name": video_name, "base_dir": str(base)
}
job["status"] = JobStatus.DONE
except Exception as e:
print(f"[{job_id}] Error general: {e}")
import traceback
traceback.print_exc()
job["status"] = JobStatus.FAILED
job["error"] = str(e)