File size: 7,271 Bytes
6d75d38
 
 
 
 
 
 
 
 
 
 
 
 
 
13e69a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211feba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca7ac3a
 
6d75d38
13e69a3
 
ca7ac3a
6d75d38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import gradio as gr
from langchain.tools import Tool
from langchain.utilities import GoogleSearchAPIWrapper
from rank_bm25 import BM25Okapi
import sys
from langchain.chat_models import AzureChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from langchain.callbacks import get_openai_callback
import openai
import time
import pandas as pd
import random
import os
import csv
from langchain.tools import Tool
from langchain.utilities import GoogleSearchAPIWrapper
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.document_loaders import TextLoader
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA

from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI

import os 
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.document_loaders import TextLoader
from langchain.document_loaders import PyPDFLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
import tempfile
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import ElasticVectorSearch, Pinecone, Weaviate, FAISS
import os

from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
import os

# Import Azure OpenAI
from langchain.chat_models import AzureChatOpenAI
from langchain.schema import HumanMessage
from langchain.callbacks import get_openai_callback
import os
import openai
# Import Azure OpenAI
from langchain.chat_models import AzureChatOpenAI
from langchain.schema import HumanMessage
from langchain.callbacks import get_openai_callback
import sys
from langchain.chat_models import AzureChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from langchain.callbacks import get_openai_callback
import openai
import time
import pandas as pd
import random
import os
import csv

# france credentials
BASE_URL = "https://cnerg-gpt-france.openai.azure.com/"
API_KEY = "1b68ed6e70d044558517db7721de6fac"
DEPLOYMENT_NAME = "GPT-4-France"

model = AzureChatOpenAI(
    openai_api_base=BASE_URL,
    openai_api_version="2023-05-15",
    deployment_name=DEPLOYMENT_NAME,
    openai_api_key=API_KEY,
    openai_api_type="azure",
)

os.environ["GOOGLE_CSE_ID"] = "67517d07b1ea049f6"
os.environ["GOOGLE_API_KEY"] = "AIzaSyAkU0I5NcrKIPMtB2Ry28Mu9umJA4Rw4UE"
search = GoogleSearchAPIWrapper()
import os


def top10_results(query):
    return search.results(query, 10)

tool = Tool(
    name="Google Search",
    description="Search Google for recent results.",
    func=top10_results,
)

def search_results(input_text):
  raw_text_list = tool.run(input_text)
  return raw_text_list

def Bm25(raw_text_list,input_text,n) :
  corpus = [item['snippet'] for item in raw_text_list]
  tokenized_corpus = [doc.split(" ") for doc in corpus]
  bm25 = BM25Okapi(tokenized_corpus)
  query = input_text
  tokenized_query = query.split(" ")
  doc_scores = bm25.get_scores(tokenized_query)
  top_5_results = bm25.get_top_n(tokenized_query, corpus, n=n)
  results = '\n'.join(top_5_results)
  combined_input = "query = " + input_text + "\n\n For the above query these are some results from a search engine: \n ".join(results)  + "\n\n Give detailed and brief answer for the query write in 500-1000 words. Give detailed and well informative answer(include calculations if needed, using tables and other styles of structuring is optional for better answering ) "
  return combined_input

# Define your functions here
def gpt4(input_text,one_shot_example):
  model = AzureChatOpenAI(
      openai_api_base=BASE_URL,
      openai_api_version="2023-05-15",
      deployment_name=DEPLOYMENT_NAME,
      openai_api_key=API_KEY,
      openai_api_type="azure",
    )
  if len(one_shot_example)==0:
    combined_input = f"please provide comprehensive and well-researched responses to the following question. Ensure that the information is up-to-date and includes relevant scientific insights and data , question : {input_text}"
    generated_answer = model(
          [
              HumanMessage(
                  content=combined_input
              )
          ]
      )
    return generated_answer.content
  else:
    combined_input = f"please provide comprehensive and well-researched responses to the following question. Ensure that the information is up-to-date and includes relevant scientific insights and data ,Below is a example question-answer pair for reference\n\n {one_shot_example} \n\n  Now answer this question \n\n question :{input_text}"
    generated_answer = model(
          [
              HumanMessage(
                  content=combined_input
              )
          ]
      )
    return generated_answer.content

  

def function2(input_text, one_shot_example):
    # Your logic for function 2
    return f"Output of Function 2 with input: {input_text} and one shot example: {one_shot_example}"

def function3(input_text,one_shot_example,n):
  n=int(n)
  model = AzureChatOpenAI(
      openai_api_base=BASE_URL,
      openai_api_version="2023-05-15",
      deployment_name=DEPLOYMENT_NAME,
      openai_api_key=API_KEY,
      openai_api_type="azure",
    )
  k=search_results(input_text)
  k=Bm25(k,input_text,n)
  if len(one_shot_example)==0:
    combined_input = k
    generated_answer = model(
          [
              HumanMessage(
                  content=combined_input
              )
          ]
      )
    return generated_answer.content
  else:
    combined_input = k+f"\n\n Here is a sample question answer pair for reference :\n\n {one_shot_example} "
    generated_answer = model(
          [
              HumanMessage(
                  content=combined_input
              )
          ]
      )
    return generated_answer.content


def function4(input_text, one_shot_example, n):
  n=int(n)

    # Your logic for function 4
  return f"Output of Function 4 with input: {input_text}, one shot example: {one_shot_example} and parameter: {parameter}"

# Define the dropdown options
dropdown_options = ["1", "2", "3"]

# Create individual interfaces for each function
# iface1 = gr.Interface(gpt4, inputs="text", outputs="text")
iface2 = gr.Interface(gpt4, inputs=["text", "text"], outputs="text")
iface3 = gr.Interface(
    function3, 
    inputs=[
        gr.Textbox(label="Input Text"), 
        gr.Textbox(label="One Shot Example"), 
        gr.Dropdown(choices=dropdown_options, label="Number of top search results")
    ], 
    outputs="text"
)
iface4 = gr.Interface(
    function4, 
    inputs=[
        gr.Textbox(label="Input Text"), 
        gr.Textbox(label="One Shot Example"), 
        gr.Dropdown(choices=dropdown_options, label="Select K")
    ], 
    outputs="text"
)

# Create a parallel interface that combines all individual interfaces
iface = gr.TabbedInterface([iface2, iface3, iface4], 
                           tab_names=["GPT-4 ", "GPT 4 search", "GPT 4 BM25"])



# Launch the interface
if __name__ == "__main__":
    iface.launch()