Spaces:
Sleeping
Sleeping
File size: 14,530 Bytes
6d75d38 39e75b7 08d7562 6d75d38 13e69a3 290ef60 13e69a3 211feba ed5a9ba 170254b ed5a9ba 9cd70b3 ed5a9ba 211feba fd7ae6f e312fc3 211feba 6d75d38 13e69a3 6d75d38 866bf76 6d75d38 96b8a07 6d75d38 96b8a07 101f7e5 96b8a07 b0cb341 96b8a07 1201a5a 101f7e5 1201a5a 96b8a07 ddcc295 96b8a07 1201a5a 96b8a07 ddcc295 96b8a07 6d75d38 96b8a07 6d75d38 1201a5a 866bf76 96b8a07 ed5a9ba 6eff6f8 96b8a07 ed5a9ba 6eff6f8 96b8a07 101f7e5 96b8a07 1201a5a 96b8a07 ddcc295 96b8a07 6eff6f8 96b8a07 ddcc295 96b8a07 866bf76 96b8a07 866bf76 96b8a07 6eff6f8 96b8a07 6eff6f8 96b8a07 101f7e5 96b8a07 ddcc295 96b8a07 6eff6f8 96b8a07 ddcc295 96b8a07 866bf76 96b8a07 6d75d38 96b8a07 3b30ca9 6d75d38 96b8a07 b0cb341 96b8a07 c5acfbd 6d75d38 e472af1 6d75d38 aab6ee6 96b8a07 6d75d38 e472af1 6d75d38 c5acfbd 6d75d38 e472af1 6d75d38 aab6ee6 96b8a07 6d75d38 e472af1 6d75d38 c5acfbd 6d75d38 96b8a07 6d75d38 10fbb9d 661294c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import gradio as gr
from langchain.tools import Tool
from langchain.utilities import GoogleSearchAPIWrapper
from rank_bm25 import BM25Okapi
import sys
import nltk
nltk.download('punkt')
from langchain.chat_models import AzureChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from langchain.callbacks import get_openai_callback
import openai
import time
import pandas as pd
import random
import os
import csv
from langchain.tools import Tool
from langchain.utilities import GoogleSearchAPIWrapper
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.document_loaders import TextLoader
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
import os
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.document_loaders import TextLoader
from langchain.document_loaders import PyPDFLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
import tempfile
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import ElasticVectorSearch, Pinecone, Weaviate, FAISS
import os
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
import os
import time
# Import Azure OpenAI
from langchain.chat_models import AzureChatOpenAI
from langchain.schema import HumanMessage
from langchain.callbacks import get_openai_callback
import os
import openai
# Import Azure OpenAI
from langchain.chat_models import AzureChatOpenAI
from langchain.schema import HumanMessage
from langchain.callbacks import get_openai_callback
import sys
from langchain.chat_models import AzureChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
from langchain.callbacks import get_openai_callback
import openai
import pandas as pd
import random
import os
import csv
import numpy as np
import pickle
from rank_bm25 import BM25Okapi
from openai import OpenAI
from nltk.tokenize import word_tokenize
loaded_texts = np.load('texts.npy', allow_pickle=True)
loaded_texts= [str(text) if not isinstance(text, str) else text for text in loaded_texts]
with open('bm25_model.pkl', 'rb') as file:
bm25 = pickle.load(file)
# france credentials
BASE_URL = "https://cnerg-gpt-france.openai.azure.com/"
DEPLOYMENT_NAME = "GPT-4-France"
API_KEY = os.environ['API_KEY']
model = AzureChatOpenAI(
openai_api_base=BASE_URL,
openai_api_version="2023-05-15",
deployment_name=DEPLOYMENT_NAME,
openai_api_key=API_KEY,
openai_api_type="azure",
)
search = GoogleSearchAPIWrapper()
import os
def top10_results(query):
return search.results(query, 10)
tool = Tool(
name="Google Search",
description="Search Google for recent results.",
func=top10_results,
)
def search_results(input_text):
raw_text_list = tool.run(input_text)
return raw_text_list
def Bm25(raw_text_list,input_text,n) :
corpus = [item['snippet'] for item in raw_text_list]
tokenized_corpus = [doc.split(" ") for doc in corpus]
bm25 = BM25Okapi(tokenized_corpus)
query = input_text
tokenized_query = query.split(" ")
doc_scores = bm25.get_scores(tokenized_query)
top_5_results = bm25.get_top_n(tokenized_query, corpus, n=n)
results = '\n'.join(top_5_results)
combined_input = "query = " + input_text + "\n\n For the above query these are some results from a search engine: \n ".join(results) + "\n\n Give detailed and brief answer for the query write in 500-1000 words. Give detailed and well informative answer(include calculations if needed, using tables and other styles of structuring is optional for better answering ) "
return combined_input,results
def llm_route(llm):
openai_api_key = "EMPTY"
openai_api_base = ""
if llm=="llama-2-7b":
openai_api_base= os.environ['llama7_api']
if llm=="llama-2-13b":
openai_api_base= os.environ['llama13_api']
if llm=="Vicuna-13b":
openai_api_base= os.environ['vicuna13_api']
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
return model,client
# Define your functions here
def function2(input_text,one_shot_example,llm):
if llm=="GPT-4":
model = AzureChatOpenAI(
openai_api_base=BASE_URL,
openai_api_version="2023-05-15",
deployment_name=DEPLOYMENT_NAME,
openai_api_key=API_KEY,
openai_api_type="azure",
)
if len(one_shot_example)==0:
combined_input = f"please provide comprehensive and well-researched responses to the following question. Ensure that the information is up-to-date and includes relevant scientific insights and data , question : {input_text}"
generated_answer = model(
[
HumanMessage(
content=combined_input
)
]
)
return generated_answer.content
else:
combined_input = f"please provide comprehensive and well-researched responses to the following question. Ensure that the information is up-to-date and includes relevant scientific insights and data ,Below is a example question-answer pair for reference\n\n {one_shot_example} \n\n Now answer this question \n\n question :{input_text}"
generated_answer = model(
[
HumanMessage(
content=combined_input
)
]
)
return generated_answer.content
else :
model,client=llm_route(llm)
if len(one_shot_example)==0:
combined_input = f"please provide comprehensive and well-researched responses to the following question. Ensure that the information is up-to-date and includes relevant scientific insights and data , question : {input_text}"
completion = client.completions.create(
model=model,
prompt=combined_input,
max_tokens=1024, # Adjust the number of tokens as needed
n=1, # Number of completions to generate
stop=None, # Optional: specify a stop sequence
temperature=0.7 # Adjust the creativity of the response
)
return completion.choices[0].text.strip()
else:
combined_input = f"please provide comprehensive and well-researched responses to the following question. Ensure that the information is up-to-date and includes relevant scientific insights and data ,Below is a example question-answer pair for reference\n\n {one_shot_example} \n\n Now answer this question \n\n question :{input_text}"
completion = client.completions.create(
model=model,
prompt=combined_input,
max_tokens=1024, # Adjust the number of tokens as needed
n=1, # Number of completions to generate
stop=None, # Optional: specify a stop sequence
temperature=0.7 # Adjust the creativity of the response
)
return completion.choices[0].text.strip()
def function3(input_text,one_shot_example,n,llm):
n=int(n)
k=search_results(input_text)
k,results=Bm25(k,input_text,n)
if llm=="GPT-4":
model = AzureChatOpenAI(
openai_api_base=BASE_URL,
openai_api_version="2023-05-15",
deployment_name=DEPLOYMENT_NAME,
openai_api_key=API_KEY,
openai_api_type="azure",
)
if len(one_shot_example)==0:
combined_input = k
generated_answer = model(
[
HumanMessage(
content=combined_input
)
]
)
return generated_answer.content,results
else:
combined_input = k+f"\n\n Here is a sample question answer pair for reference :\n\n {one_shot_example} "
generated_answer = model(
[
HumanMessage(
content=combined_input
)
]
)
return generated_answer.content,results
else:
model,client=llm_route(llm)
if len(one_shot_example)==0:
combined_input = k
completion = client.completions.create(
model=model,
prompt=combined_input,
max_tokens=1024, # Adjust the number of tokens as needed
n=1, # Number of completions to generate
stop=None, # Optional: specify a stop sequence
temperature=0.7 # Adjust the creativity of the response
)
return completion.choices[0].text.strip(),results
else:
combined_input = k+f"\n\n Here is a sample question answer pair for reference :\n\n {one_shot_example} "
completion = client.completions.create(
model=model,
prompt=combined_input,
max_tokens=1024, # Adjust the number of tokens as needed
n=1, # Number of completions to generate
stop=None, # Optional: specify a stop sequence
temperature=0.7 # Adjust the creativity of the response
)
return completion.choices[0].text.strip(),results
def function4(input_text, one_shot_example, n,llm):
tokenized_query = word_tokenize(input_text.lower())
doc_scores = bm25.get_scores(tokenized_query)
sorted_docs = [doc for _, doc in sorted(zip(doc_scores, loaded_texts), reverse=True)]
n=int(n)
k=""
for doc in sorted_docs[:n]:
k+=doc
results=k
if llm=="GPT-4":
model = AzureChatOpenAI(
openai_api_base=BASE_URL,
openai_api_version="2023-05-15",
deployment_name=DEPLOYMENT_NAME,
openai_api_key=API_KEY,
openai_api_type="azure",
)
if len(one_shot_example)==0:
combined_input = f"please provide comprehensive and well-researched responses to the following question. Ensure that the information is up-to-date and includes relevant scientific insights and data , context:{k} \n\n question : {input_text}"
generated_answer = model(
[
HumanMessage(
content=combined_input
)
]
)
return generated_answer.content,results
else:
combined_input = f"please provide comprehensive and well-researched responses to the following question. Ensure that the information is up-to-date and includes relevant scientific insights and data \n\n context:{k} \n\n,Below is an example question-answer pair for reference\n\n {one_shot_example} \n\n Now answer this question \n\n question :{input_text}"
generated_answer = model(
[
HumanMessage(
content=combined_input
)
]
)
return generated_answer.content,results
else:
model,client=llm_route(llm)
if len(one_shot_example)==0:
combined_input = f"please provide comprehensive and well-researched responses to the following question. Ensure that the information is up-to-date and includes relevant scientific insights and data , context:{k} \n\n question : {input_text}"
completion = client.completions.create(
model=model,
prompt=combined_input,
max_tokens=1024, # Adjust the number of tokens as needed
n=1, # Number of completions to generate
stop=None, # Optional: specify a stop sequence
temperature=0.7 # Adjust the creativity of the response
)
return completion.choices[0].text.strip(),results
else:
completion = client.completions.create(
model=model,
prompt=combined_input,
max_tokens=1024, # Adjust the number of tokens as needed
n=1, # Number of completions to generate
stop=None, # Optional: specify a stop sequence
temperature=0.7 # Adjust the creativity of the response
)
return completion.choices[0].text.strip(),results
# Define the dropdown options
dropdown_options = ["1", "2", "3"]
dropdown_options_4 = ["1","2","3","4","5","6","7","8","9","10"]
llm_dropdown=["GPT-4","llama-2-7b","llama-2-13b"]
# ,"Vicuna-13b"
# Create individual interfaces for each function
# iface1 = gr.Interface(gpt4, inputs="text", outputs="text")
#iface2 = gr.Interface(gpt4, inputs=["text", "text"], outputs="text")
iface2 = gr.Interface(
function2,
inputs=[
gr.Textbox(label="Input Text"),
gr.Textbox(label="One Shot Example"),
gr.Dropdown(choices=llm_dropdown, label="LLM")
],
outputs="text"
)
iface3 = gr.Interface(
function3,
inputs=[
gr.Textbox(label="Input Text"),
gr.Textbox(label="One Shot Example"),
gr.Dropdown(choices=dropdown_options, label="Number of top search results"),
gr.Dropdown(choices=llm_dropdown, label="LLM")
],
outputs=[
gr.Textbox(label="LLM Answer"),
gr.Textbox(label="Google Search Result")
]
)
iface4 = gr.Interface(
function4,
inputs=[
gr.Textbox(label="Input Text"),
gr.Textbox(label="One Shot Example"),
gr.Dropdown(choices=dropdown_options_4, label="Number of top k documents"),
gr.Dropdown(choices=llm_dropdown, label="LLM")
],
outputs=[
gr.Textbox(label="LLM Answer"),
gr.Textbox(label="Abstract Search Result")
]
)
# Create a parallel interface that combines all individual interfaces
iface = gr.TabbedInterface([iface2, iface3, iface4],
tab_names=["LLM Inference", "LLM with internet search", "LLM with Abstract Search"])
# Launch the interface
if __name__ == "__main__":
iface.launch(share=True)
#a |