Spaces:
Sleeping
Sleeping
File size: 20,697 Bytes
cfea739 e86c10c cfea739 a1c79cb cfea739 e86c10c cfea739 e86c10c cfea739 b372a6c cfea739 b372a6c cfea739 b372a6c cfea739 b372a6c cfea739 b372a6c cfea739 b372a6c cfea739 1265936 cfea739 1265936 cfea739 e86c10c cfea739 e86c10c cfea739 e86c10c 868635f cfea739 868635f cfea739 e86c10c cfea739 e86c10c cfea739 e86c10c 868635f e86c10c cfea739 e86c10c 66a90a7 e86c10c 66a90a7 e86c10c 66a90a7 e86c10c cfea739 e86c10c cfea739 e86c10c 4f0125c cfea739 e86c10c cfea739 e86c10c cfea739 e86c10c 868635f e86c10c cfea739 e86c10c cfea739 b372a6c cfea739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
# interactive_plot_generator.py
# Generate interactive air pollution maps for India with hover information
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
import geopandas as gpd
from pathlib import Path
from datetime import datetime
from constants import INDIA_BOUNDS, COLOR_THEMES
import plotly.io as pio
import warnings
warnings.filterwarnings('ignore')
class InteractiveIndiaMapPlotter:
def __init__(self, plots_dir="plots", shapefile_path="shapefiles/India_State_Boundary.shp"):
"""
Initialize the interactive map plotter
Parameters:
plots_dir (str): Directory to save plots
shapefile_path (str): Path to the India districts shapefile
"""
self.plots_dir = Path(plots_dir)
self.plots_dir.mkdir(exist_ok=True)
try:
self.india_map = gpd.read_file(shapefile_path)
# Ensure it's in lat/lon (WGS84)
if self.india_map.crs is not None and self.india_map.crs.to_epsg() != 4326:
self.india_map = self.india_map.to_crs(epsg=4326)
except Exception as e:
raise FileNotFoundError(f"Could not read the shapefile at '{shapefile_path}'. "
f"Please ensure the file exists. Error: {e}")
def create_india_map(self, data_values, metadata, color_theme=None, save_plot=True, custom_title=None):
"""
Create interactive air pollution map over India with hover information
Parameters:
data_values (np.ndarray): 2D array of pollution data
metadata (dict): Metadata containing lats, lons, variable info, etc.
color_theme (str): Color theme name from COLOR_THEMES
save_plot (bool): Whether to save the plot as HTML and PNG
custom_title (str): Custom title for the plot
Returns:
dict: Dictionary containing paths to saved files and HTML content
- 'html_path': Path to interactive HTML file
- 'png_path': Path to static PNG file
- 'html_content': HTML content for embedding
"""
try:
# Extract metadata
lats = metadata['lats']
lons = metadata['lons']
var_name = metadata['variable_name']
display_name = metadata['display_name']
units = metadata['units']
pressure_level = metadata.get('pressure_level')
time_stamp = metadata.get('timestamp_str')
# Determine color theme
if color_theme is None:
from constants import AIR_POLLUTION_VARIABLES
color_theme = AIR_POLLUTION_VARIABLES.get(var_name, {}).get('cmap', 'viridis')
# Map matplotlib colormaps to Plotly colormaps
# This mapping ensures all COLOR_THEMES from constants.py are supported
colormap_mapping = {
# Sequential color schemes
'viridis': 'Viridis',
'plasma': 'Plasma',
'inferno': 'Inferno',
'magma': 'Magma',
'cividis': 'Cividis',
# Single-hue sequential schemes
'YlOrRd': 'YlOrRd',
'Oranges': 'Oranges',
'Reds': 'Reds',
'Purples': 'Purples',
'Blues': 'Blues',
'Greens': 'Greens',
# Diverging schemes
'coolwarm': 'RdBu_r',
'RdYlBu': 'RdYlBu',
'Spectral': 'Spectral',
'Spectral_r': 'Spectral_r',
'RdYlGn_r': 'RdYlGn_r',
# Other schemes
'jet': 'Jet',
'turbo': 'Turbo'
}
plotly_colorscale = colormap_mapping.get(color_theme, 'Viridis')
# Create mesh grid if needed
if lons.ndim == 1 and lats.ndim == 1:
lon_grid, lat_grid = np.meshgrid(lons, lats)
else:
lon_grid, lat_grid = lons, lats
# Calculate statistics
valid_data = data_values[~np.isnan(data_values)]
if len(valid_data) == 0:
raise ValueError("All data values are NaN - cannot create plot")
from constants import AIR_POLLUTION_VARIABLES
vmax_percentile = AIR_POLLUTION_VARIABLES.get(var_name, {}).get('vmax_percentile', 90)
vmin = np.nanpercentile(valid_data, 5)
vmax = np.nanpercentile(valid_data, vmax_percentile)
if vmax <= vmin:
vmax = vmin + 1.0
# Create hover text with detailed information
hover_text = self._create_hover_text(lon_grid, lat_grid, data_values, display_name, units)
# Create the figure
fig = go.Figure()
# Add pollution data as heatmap
fig.add_trace(go.Heatmap(
x=lons,
y=lats,
z=data_values,
colorscale=plotly_colorscale,
zmin=vmin,
zmax=vmax,
hovertext=hover_text,
hoverinfo='text',
colorbar=dict(
title=dict(
text=f"{display_name}" + (f"<br>({units})" if units else ""),
side="right"
),
thickness=20,
len=0.6,
x=1.02
)
))
# Add India state boundaries
for _, row in self.india_map.iterrows():
if row.geometry.geom_type == 'Polygon':
self._add_polygon_trace(fig, row.geometry)
elif row.geometry.geom_type == 'MultiPolygon':
for polygon in row.geometry.geoms:
self._add_polygon_trace(fig, polygon)
# Create title - include pressure level and plot type
if custom_title:
title = custom_title
else:
title = f'{display_name} Concentration over India (Interactive)'
if pressure_level:
title += f' at {pressure_level} hPa'
title += f' on {time_stamp}'
# Calculate stats for annotation
stats_text = self._create_stats_text(valid_data, units)
theme_name = COLOR_THEMES.get(color_theme, color_theme)
# Auto-adjust bounds if needed
xmin, ymin, xmax, ymax = self.india_map.total_bounds
if not (INDIA_BOUNDS['lon_min'] <= xmin <= INDIA_BOUNDS['lon_max']):
lon_range = [xmin, xmax]
lat_range = [ymin, ymax]
else:
lon_range = [INDIA_BOUNDS['lon_min'], INDIA_BOUNDS['lon_max']]
lat_range = [INDIA_BOUNDS['lat_min'], INDIA_BOUNDS['lat_max']]
# Update layout for better interactivity
fig.update_layout(
title=dict(
text=title,
x=0.5,
xanchor='center',
font=dict(size=18, weight='bold')
),
xaxis=dict(
title='Longitude',
range=lon_range,
showgrid=True,
gridcolor='rgba(128, 128, 128, 0.3)',
zeroline=False
),
yaxis=dict(
title='Latitude',
range=lat_range,
showgrid=True,
gridcolor='rgba(128, 128, 128, 0.3)',
zeroline=False,
scaleanchor="x",
scaleratio=1 # Simplified to match static plot aspect ratio
),
width=1400,
height=1000,
plot_bgcolor='white',
# Enable zoom, pan and other interactive features
dragmode='zoom',
showlegend=False,
hovermode='closest',
# Add modebar with download options
modebar=dict(
bgcolor='rgba(255, 255, 255, 0.8)',
activecolor='rgb(0, 123, 255)',
orientation='h'
),
annotations=[
# Statistics box
dict(
text=stats_text.replace('\n', '<br>'),
xref='paper', yref='paper',
x=0.02, y=0.98,
xanchor='left', yanchor='top',
showarrow=False,
bgcolor='rgba(255, 255, 255, 0.9)',
bordercolor='black',
borderwidth=1,
borderpad=10,
font=dict(size=11)
),
# Theme info box
dict(
text=f'Color Theme: {theme_name}',
xref='paper', yref='paper',
x=0.98, y=0.02,
xanchor='right', yanchor='bottom',
showarrow=False,
bgcolor='rgba(211, 211, 211, 0.8)',
bordercolor='gray',
borderwidth=1,
borderpad=8,
font=dict(size=10)
),
# Instructions
dict(
text='π Zoom: Mouse wheel or zoom tool | π Hover: Show coordinates & values | π₯ Download: Camera icon',
xref='paper', yref='paper',
x=0.5, y=0.02,
xanchor='center', yanchor='bottom',
showarrow=False,
bgcolor='rgba(173, 216, 230, 0.8)',
bordercolor='steelblue',
borderwidth=1,
borderpad=8,
font=dict(size=10, color='darkblue')
)
]
)
# Configure the figure for better interactivity and downloads
config = {
'displayModeBar': True,
'displaylogo': False,
'modeBarButtonsToAdd': [
'drawline',
'drawopenpath',
'drawclosedpath',
'drawcircle',
'drawrect',
'eraseshape'
],
'modeBarButtonsToRemove': ['lasso2d', 'select2d'],
'toImageButtonOptions': {
'format': 'png',
'filename': f'india_pollution_map_{datetime.now().strftime("%Y%m%d_%H%M%S")}',
'height': 1000,
'width': 1400,
'scale': 2
},
'responsive': True
}
# Save files if requested
result = {'html_content': None, 'html_path': None, 'png_path': None}
if save_plot:
# Generate HTML content for embedding
html_content = pio.to_html(
fig,
config=config,
include_plotlyjs='cdn',
div_id='interactive-plot',
full_html=False
)
result['html_content'] = html_content
# Save as HTML file
html_path = self._save_html_plot(fig, var_name, display_name, pressure_level, color_theme, time_stamp, config)
result['html_path'] = html_path
# Save as PNG for fallback (only if kaleido works)
png_path = self._save_png_plot(fig, var_name, display_name, pressure_level, color_theme, time_stamp)
result['png_path'] = png_path
else:
# Just return HTML content for display
html_content = pio.to_html(
fig,
config=config,
include_plotlyjs='cdn',
div_id='interactive-plot',
full_html=False
)
result['html_content'] = html_content
return result
except Exception as e:
raise Exception(f"Error creating interactive map: {str(e)}")
def _add_polygon_trace(self, fig, polygon):
"""Add a polygon boundary to the figure"""
x, y = polygon.exterior.xy
fig.add_trace(go.Scatter(
x=list(x),
y=list(y),
mode='lines',
line=dict(color='black', width=1),
hoverinfo='skip',
showlegend=False
))
def _create_hover_text(self, lon_grid, lat_grid, data_values, display_name, units):
"""Create formatted hover text for each point"""
hover_text = np.empty(data_values.shape, dtype=object)
units_str = f" {units}" if units else ""
for i in range(data_values.shape[0]):
for j in range(data_values.shape[1]):
lat = lat_grid[i, j] if lat_grid.ndim == 2 else lat_grid[i]
lon = lon_grid[i, j] if lon_grid.ndim == 2 else lon_grid[j]
value = data_values[i, j]
if np.isnan(value):
value_str = "N/A"
elif abs(value) >= 1000:
value_str = f"{value:.0f}{units_str}"
elif abs(value) >= 10:
value_str = f"{value:.1f}{units_str}"
else:
value_str = f"{value:.2f}{units_str}"
hover_text[i, j] = (
f"<b>{display_name}</b>: {value_str}<br>"
f"<b>Latitude</b>: {lat:.3f}Β°<br>"
f"<b>Longitude</b>: {lon:.3f}Β°"
)
return hover_text
def _create_stats_text(self, data, units):
"""Create statistics text for annotation"""
units_str = f" {units}" if units else ""
stats = {
'Min': np.nanmin(data),
'Max': np.nanmax(data),
'Mean': np.nanmean(data),
'Median': np.nanmedian(data),
'Std': np.nanstd(data)
}
def format_number(val):
if abs(val) >= 1000:
return f"{val:.0f}"
elif abs(val) >= 10:
return f"{val:.1f}"
else:
return f"{val:.2f}"
stats_lines = [f"{name}: {format_number(val)}{units_str}" for name, val in stats.items()]
return "\n".join(stats_lines)
def _save_html_plot(self, fig, var_name, display_name, pressure_level, color_theme, time_stamp, config):
"""Save the interactive plot as HTML"""
# Handle None values with fallbacks
display_name = display_name or var_name or 'Unknown'
time_stamp = time_stamp or 'Unknown_Time'
safe_display_name = display_name.replace('/', '_').replace(' ', '_').replace('β', '2').replace('β', '3').replace('.', '_')
safe_time_stamp = time_stamp.replace('-', '').replace(':', '').replace(' ', '_')
filename_parts = [f"{safe_display_name}_India_interactive"]
if pressure_level:
filename_parts.append(f"{int(pressure_level)}hPa")
filename_parts.extend([color_theme, safe_time_stamp])
filename = "_".join(filename_parts) + ".html"
plot_path = self.plots_dir / filename
# Save as interactive HTML
fig.write_html(str(plot_path), config=config, include_plotlyjs='cdn')
print(f"Interactive HTML plot saved: {plot_path}")
return str(plot_path)
def _save_png_plot(self, fig, var_name, display_name, pressure_level, color_theme, time_stamp):
"""Save the plot as PNG for download/fallback"""
safe_display_name = display_name.replace('/', '_').replace(' ', '_').replace('β', '2').replace('β', '3').replace('.', '_')
safe_time_stamp = time_stamp.replace('-', '').replace(':', '').replace(' ', '_')
filename_parts = [f"{safe_display_name}_India_static"]
if pressure_level:
filename_parts.append(f"{int(pressure_level)}hPa")
filename_parts.extend([color_theme, safe_time_stamp])
filename = "_".join(filename_parts) + ".png"
plot_path = self.plots_dir / filename
try:
# Save as static PNG with high quality
fig.write_image(str(plot_path), format='png', width=1400, height=1000, scale=2)
print(f"Static PNG plot saved: {plot_path}")
return str(plot_path)
except Exception as e:
print(f"Warning: Could not save PNG: {e}")
return None
def list_available_themes(self):
"""List available color themes"""
return COLOR_THEMES
def test_interactive_plot_generator():
"""Test function for the interactive plot generator"""
print("Testing interactive plot generator...")
# Create test data
lats = np.linspace(6, 38, 50)
lons = np.linspace(68, 98, 60)
lon_grid, lat_grid = np.meshgrid(lons, lats)
data = np.sin(lat_grid * 0.1) * np.cos(lon_grid * 0.1) * 100 + 50
data += np.random.normal(0, 10, data.shape)
metadata = {
'variable_name': 'pm25',
'display_name': 'PM2.5',
'units': 'Β΅g/mΒ³',
'lats': lats,
'lons': lons,
'pressure_level': None,
'timestamp_str': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
}
shapefile_path = "shapefiles/India_State_Boundary.shp"
if not Path(shapefile_path).exists():
print(f"β Test failed: Shapefile not found at '{shapefile_path}'.")
print("Please make sure you have unzipped 'India_State_Boundary.zip' into a 'shapefiles' folder.")
return False
plotter = InteractiveIndiaMapPlotter(shapefile_path=shapefile_path)
try:
result = plotter.create_india_map(data, metadata, color_theme='YlOrRd')
if result.get('html_path'):
print(f"β
Test interactive HTML plot created successfully: {result['html_path']}")
if result.get('png_path'):
print(f"β
Test static PNG plot created successfully: {result['png_path']}")
return True
except Exception as e:
print(f"β Test failed: {str(e)}")
import traceback
traceback.print_exc()
return False
def test_color_themes():
"""Test all available color themes for compatibility"""
from constants import COLOR_THEMES
# Create colormap mapping
colormap_mapping = {
# Sequential color schemes
'viridis': 'Viridis',
'plasma': 'Plasma',
'inferno': 'Inferno',
'magma': 'Magma',
'cividis': 'Cividis',
# Single-hue sequential schemes
'YlOrRd': 'YlOrRd',
'Oranges': 'Oranges',
'Reds': 'Reds',
'Purples': 'Purples',
'Blues': 'Blues',
'Greens': 'Greens',
# Diverging schemes
'coolwarm': 'RdBu_r',
'RdYlBu': 'RdYlBu',
'Spectral': 'Spectral',
'Spectral_r': 'Spectral_r',
'RdYlGn_r': 'RdYlGn_r',
# Other schemes
'jet': 'Jet',
'turbo': 'Turbo'
}
print("π¨ Testing color theme mappings:")
print(f"{'Color Theme':<15} {'Plotly Colorscale':<20} {'Status'}")
print("-" * 50)
for theme_key in COLOR_THEMES.keys():
if theme_key in colormap_mapping:
plotly_scale = colormap_mapping[theme_key]
status = "β
Mapped"
else:
plotly_scale = "Viridis (default)"
status = "β οΈ Missing"
print(f"{theme_key:<15} {plotly_scale:<20} {status}")
missing_themes = set(COLOR_THEMES.keys()) - set(colormap_mapping.keys())
if missing_themes:
print(f"\nβ Missing mappings for: {', '.join(missing_themes)}")
return False
else:
print(f"\nβ
All {len(COLOR_THEMES)} color themes are properly mapped!")
return True
if __name__ == "__main__":
test_interactive_plot_generator() |