{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# __Девопсная домашка по трансформерам__\n", "\n", "## __Описание__\n", "\n", "![img](https://d35w6hwqhdq0in.cloudfront.net/521712556725591dcacec5bbdb32e047.png)\n", "\n", "Ваш главный квест на эту домашку - сделать свой простой сервис на трансформерах. Вот прям целый сервис: начиная с данных и заканчивая графическим интерфейсом где-то в интернете. Ваш сервис может решать либо одну из предложенных ниже задач, либо любую другую (что-то более дорогое лично вам).\n", "\n", "__Стандартная задача: классификатор статей.__ Нужно построить сервис который принимает название статьи и её abstract, и выдаёт наиболее вероятную тематику статьи: скажем, физика, биология или computer science. В интерфейсе должно быть можно ввести отдельно abstract, отдельно название -- и увидеть топ-95%* тематик, отсортированных по убыванию вероятности. Если abstract не ввели, нужно классифицировать статью только по названию. Ниже вас ждут инструкции и данные именно для этой задачи.\n", "\n", "
Что значит Топ-95%?\n", " Нужно выдавать темы по убыванию вероятности, пока их суммарная вероятность не превысит 95%. В зависимости от предсказанной вероятности, это может быть одна или более тем. Например, если модель предсказала вероятности [4%, 20%, 60%, 2%, 14%], нужно вывести 3 топ-3 класса. Если один из классов имеет вероятность 96%, достаточно вывести один этот класс.\n", "
\n", "\n", "Альтернативно, вы можете отважиться сделать что-то своё, на данных из интернета или своих собственных. В вашей задаче обязательно должно быть _оправданное_ использование трансформеров. Использовать ML чтобы переводить часовые пояса - плохой план.\n", "\n", "Achtung: трансформеры круты, но не всемогущи. Далеко не любую задачу можно решить ощутимо лучше рандома. Для калибровки, вот несколько примеров решаемых задач (всё кликабельно):\n", "\n", "\n", "
- [medium] Сгенерировать youtube-комментарии по _ссылке_ на видео\n", " Всё просто, юзер постит ссылку на видео - вы его комментируете. Можно заранее обусловиться что видео только на английском или на русском. Нужно сочинить _несколько_ комментариев. Kudos если вместе с основным комментарием вы порождаете юзернеймы и-или ответы на него.\n", " \n", " Датасет для файнтюна можно [взять с kaggle](https://www.kaggle.com/tanmay111/youtube-comments-sentiment-analysis/data?select=UScomments.csv) или [собрать самостоятельно](https://towardsdatascience.com/how-to-build-your-own-dataset-of-youtube-comments-39a1e57aade).\n", " \n", " В качестве основной модели можно использовать [GPT-2 large](https://huggingface.co/gpt2-large). Вот как её файнтюнить: https://tinyurl.com/gpt2-finetune-colab . Если хотите больше - можно взять что-то из творчества https://huggingface.co/EleutherAI . Например, вот [тут](https://tinyurl.com/gpt-j-8bit) есть пример как файнтюнить GPT-J-6B (в 8 раз больше gpt2-large). Однако, этим стоит заниматься уже после того, как у вас заработал базовый сценарий с GPT2-large или даже base.\n", " \n", " В итоговом сервисе можно дать пользователю вариировать параметры генерации: температура или top-p, если сэмплинг; beam size и length penalty, если beam search; сколько комментариев сгенерировать, etc. Отдельный респект если ваш код будет выводить комментарий по одному слову, прямо в процессе генерёжки - чтобы пользователь не ждал пока вы настругаете абзац целиком.\n", "
\n", "\n", "
- [medium] Предсказать зарплату по профилю (симулятор Дудя).\n", " Note:
Причём тут Дудь?
\n", " \n", " Главная сложность задачи - достать хорошие данные. Если хороших данных не случилось - можно и трешовые :) Задание всё-таки про технологии а не про продукт. Для начала можно взять подмножество фичей [отсюда](https://www.kaggle.com/c/job-salary-prediction/data), которые вы можете восстановить из профиля linkedin - название профессии и компании. Название компании лучше заменить на фичи из открытых источников: сфера деятельности, размер, етц.\n", " \n", " А дальше файнтюним на этом BERT / T5 и радуемся. Ну или хотя бы смеёмся.\n", "
\n", "\n", "\n", "
- [hard] Мнения с географической окраской.\n", " \n", " Сервис который принимает на вход тему (хэштег или ключевую фразу) и рисует карту мира, где в каждом регионе показано, с какой эмоциональной окраской о ней высказываются в социальных сетях. В качестве социальной сети можно взять VK/twitter, в случая VK ожидается детализация не по странам, а по городам стран бывшего СССР.\n", " \n", " В минимальном варианте достаточно определять тональность твита в режиме \"позитивно-негативно\", зафайнтюнив условный BERT/T5 на одном из десятков {vk/twitter} sentiment classification датасетах. Географическую привязку можно получить из профиля пользователя. А дальше осталось собрать данные по странам и регионам.\n", "\n", "
\n", "\n", "\n", "
- [very hard] Найти статью википедии по фото предмета статьи\n", "\n", " Чтобы можно было сфотать какую-нибудь неведомую чешуйню на телефон и получить сумму человеческих знаний о ней в форме вики-статьи.\n", " \n", " В качестве функции потерь можно использовать contrastive loss. Этот лосс неплохо описан в статье [CLIP](https://arxiv.org/abs/2103.00020). Вместо обучения с нуля предлагается взять, собственно, CLIP (text transformer + image transformer) отсюда: https://huggingface.co/docs/transformers/model_doc/clip. Модель будет сопоставлять каждой статьи и \n", " \n", " Данные для этого квеста можно собрать через API википедии: вики-статьи о предметах обычно содержит фото этого объекта и, собственно, текст статьи. Советуем собрать как минимум 10^4 пар картинка-статья. Картинки советуем дополнительно аугментировать как минимум стандартными картиночными аугами, как максимум - поиском похожих картинок в интернете / imagenet-е по тому же CLIP image encoder-у, но с исходными весами.\n", " \n", " На время отладки интерфейса рекомендуем ограничиться небольшим списком статьей: условно, кошечки, собачки, птички, гаечные ключи, машины. Как станет понятно что оно работает \"на кошках\", можно расширить этот список до \"всех статей таких-то категорий\". Эмбединги статей лучше предпосчитать в файл. Если долго их перебирать - можно (но необязательно) воспользоваться быстрым поиском соседей, e.g. [faiss](https://github.com/facebookresearch/faiss) HNSW.\n", "
\n", "\n", "\n", "## __Как научить классификатор статей?__\n", "\n", "Данные для классификации статей можно скачать, например, [отсюда](https://www.kaggle.com/neelshah18/arxivdataset/). В этих данных есть заголовок и abstract статьи, а ещё поле __\"tag\"__: тематика статьи [по таксономии arxiv.org](https://arxiv.org/category_taxonomy). Вы можете расширить выборку, добавив в неё статьи за 2019-н.в. годы. Для этого можно [использовать arxiv API](https://github.com/lukasschwab/arxiv.py), самостоятельно распарсить arxiv с помощью [beautifulsoup](https://pypi.org/project/beautifulsoup4/), или поискать другие датасеты на kaggle, huggingface, etc.\n", "\n", "Когда данные собраны (и аккуратно нарезаны на train/test), можно что-нибудь и обучить. Мы советуем использовать для этого библиотеку `transformers`. Советуем, но не заставляем: если хочется, можно взять [fairseq roberta](https://github.com/pytorch/fairseq/blob/main/examples/roberta), [google t5](https://github.com/google-research/text-to-text-transfer-transformer) или даже написать всё с нуля.\n", "\n", "Мы разбирали transformers на [семинаре](https://lk.yandexdataschool.ru/courses/2025-spring/7.1332-machine-learning-2/classes/13138/), за любой дополнительной информацией - смотрите [документации HF](https://huggingface.co/docs).\n", "\n", "Начать лучше с простой модели, такой как [`distilbert-base-cased`](https://huggingface.co/distilbert-base-cased). Когда вы будете понимать, какие значения accuracy ожидать от базовой модели, можно поискать что-то получше. Два очевидных направления улучшения: (1) сильнее модель T5 или deberta v3, или (2) близкие данные, например взять модель которую предобучили на том же arxiv. И то и другое удобно [искать здесь](https://huggingface.co/models).\n", "\n", "## __Научили, и что теперь?__\n", "\n", "А теперь нужно сделать так, чтобы ваша обученная модель отвечала на запросы в интернете. Как и на прошлом этапе, вы можете сделать это кучей разных способов: от простого [streamlit](https://streamlit.io/) / [gradio](https://gradio.app/), минуя [TorchServe](https://pytorch.org/serve/) с [Triton/TensorRT](https://developer.nvidia.com/nvidia-triton-inference-server), и заканчивая экспортом модели в javascript с помощью [TensorFlow.js](https://www.tensorflow.org/js/tutorials) / [ONNX.js](https://github.com/elliotwaite/pytorch-to-javascript-with-onnx-js).\n", "\n", "На [семинаре](https://lk.yandexdataschool.ru/courses/2025-spring/7.1332-machine-learning-2/classes/13138/) мы разбирали основные вещи про то как работает streamlit и как сделать простое приложение с его помощью.\n", "\n", "Общая идея streamlit: вы [описываете](https://docs.streamlit.io/library/get-started/create-an-app) внешний вид приложения на питоне с помощью примитивов (кнопки, поля, любой html) -- а потом этот код выполняется на сервере и обслуживает каждого пользователя в отдельном процессе.\n", "\n", "__Для отладки__ можно запустить приложение локально, открыв консоль рядом с app.py:\n", "* `pip install streamlit`\n", "* `streamlit run app.py --server.port 8080`\n", "* открыть в браузере localhost:8080, если он не открылся автоматически\n", "\n", "\n", "## __Deployment time!__\n", "\n", "В этот раз вам нужно не просто написать код, __но и поднять ваше приложение с доступом из интернета__. И да, вы угадали, это можно сделать несколькими способами: [HuggingFace spaces](https://huggingface.co/spaces) (данный способ разбирали на [семинаре](https://lk.yandexdataschool.ru/courses/2025-spring/7.1332-machine-learning-2/classes/13138/)), [Streamlit Cloud](https://streamlit.io/cloud), а ещё вы можете купить или арендовать свой собственный сервер и захоститься там.\n", "\n", "Проще всего захостить на HF spaces, для этого вам нужно [зарегистрироваться](https://huggingface.co/join) и найти [меню создания нового приложения](https://huggingface.co/new-space). Название и лицензию можно выбрать на своё усмотрение, главное чтобы Space SDK был Streamlit, а доступ - public.\n", "\n", "Как создали - можно редактировать ваше приложение прямо на сайте, для этого откройте приложение и перейдите в Files and versions, и там в правом углу добавьте нужные файлы.\n", "\n", "На минималках вам потребуется 2 файла:\n", "- `app.py`, о котором мы говорили выше\n", "- `requirements.txt`, где вы укажете нужные вам библиотеки\n", "\n", "Вы можете разместить там же веса вашей обученной модели, любые необходимые данные, дополнительные файлы, ...\n", "\n", "После каждого изменения файлов, ваше приложение соберётся (обычно 1-5 минут) и будет доступно уже во вкладке App. Ну или не соберётся и покажет вам, где оно сломалось. И вуаля, теперь у вас есть ссылка, которую можно показать ~друзьям~ ассистентам курса и кому угодно в интернете.\n", "\n", "__Удобная работа с кодом.__ Пока у вас 2 файла, их легко редактивровать прямо в интерфейсе HF spaces. Если же у вас дюжина файлов, вам может быть удобнее редактировать их в любимом vscode/pycharm/.../emacs. Чтобы это не вызывало мучений, можно пользоваться HF spaces как git репозиторием ([подробности тут](https://huggingface.co/docs/hub/spaces#manage-app-with-github-actions)).\n", "\n", "## __Что нужно сдать__\n", "\n", "Вы сдаёте проект, который будет проверяться вручную, то что ожидается от каждого проекта:\n", "- Текстовое сопровождение вашего конкретного проекта в любом удобно читаемом формате (pdf, html, текст в lk, ...) - что за задачу вы решали, где/как брали данные, какие использовали модели, какие проводили эксперименты, ...\n", "- Ссылка на веб интерфейс, где можно протестировать демо вашего проекта - обязательно проверяйте что работает не только у вас (с другого устройства и из под incognito режима)\n", "- Код обучения вашей модели (желательно ipynb с заполненными ячейками и не стёртыми выходами, переведённый в pdf / html), но если вы обучали не в ноутбуке, то сдавайте код в виде файла / архива файлов / git ссылки с readme.md описанием того как именно проходило обучение с помощью этого кода.\n", "\n", "## __Оценка__\n", "\n", "Мы будем оценивать проект целиком, включая идею и реализацию. Максимум за проект можно получить 10 баллов, но мы оставляем ещё до 5 баллов, которые можем выдать как бонусные за особенно интересные и качественно реализованные проекты.\n", "\n", "### __Тонкие места, за которые могут быть снижения баллов:__\n", "\n", "__1. Скорость работы.__\n", "\n", "По умолчанию, streamlit будет выполняет весь ваш код на каждое действие пользователя. То есть всякий раз, когда пользователь меняет что-то в тексте, оно будет заново загружать модель. Чтобы исправить это безобразие, вы можете закэшировать подготовленную модель в `@st.cache`. Подробности в [семинаре](https://lk.yandexdataschool.ru/courses/2025-spring/7.1332-machine-learning-2/classes/13138/), а также [читайте тут](https://docs.streamlit.io/library/advanced-features/caching).\n", "\n", "__Как будет оцениваться:__\n", "\n", "Вы не обязаны пользоваться кэшированием, но ваше приложение не должно неоправдано тормозить дольше, чем на 3 секунды. \"Оправданые\" тормоза это те, которые вы явно оправдали текстом в ЛМС :)\n", "\n", "-----\n", "\n", "__2. Понятный фронтенд.__\n", "\n", "Наколеночный графический интерфейс с семинара - пример того, как скорее не надо делать интерфейс приложения. Как надо - сложный вопрос, причём настолько сложный, что есть даже [Школа Разработки Интерфейсов](https://academy.yandex.ru/schools/frontend). Но для начала:\n", "\n", "- Выводить нужно человекочитаемый текст, а не просто JSON с индексами и метаданными.\n", "- Пользователю должно быть понятно, куда и какие данные вводить. Пустые текстовые поля в вакууме - плохой тон.\n", "- Сервис не должен падать с не_отловленными ошибками. Даже если пользователь введёт неправильные/пустые данные, нужно это обработать и написать, где произошла ошибка.\n", "\n", "__Как будет оцениваться:__\n", "\n", "Для полного балла достаточно соблюсти эти три правила и специально не стрелять себе в ногу.\n", "\n", "-----\n", "\n", "__3. Код обучения и инференса.__\n", "\n", "Сдавая проект мы будем также получать от вас код проекта (как обучения ваших моделей, так и код веб интерфейса).\n", "\n", "__Как будет оцениваться:__\n", "\n", "Код не будет отдельно проверяться как часть задания, поэтому пишите как хотите, однако - в спорных ситуациях мы оставляем за собой право проверить ваш код, за чем могут последовать потенциальные снижения баллов при любых нарушениях.\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: kagglehub in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (0.3.10)\n", "Requirement already satisfied: packaging in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from kagglehub) (24.2)\n", "Requirement already satisfied: pyyaml in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from kagglehub) (6.0.2)\n", "Requirement already satisfied: requests in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from kagglehub) (2.32.3)\n", "Requirement already satisfied: tqdm in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from kagglehub) (4.67.1)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from requests->kagglehub) (3.4.1)\n", "Requirement already satisfied: idna<4,>=2.5 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from requests->kagglehub) (3.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from requests->kagglehub) (2.3.0)\n", "Requirement already satisfied: certifi>=2017.4.17 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from requests->kagglehub) (2025.1.31)\n" ] } ], "source": [ "!pip install kagglehub" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# # предложенная часть\n", "# import kagglehub\n", "# from kagglehub import KaggleDatasetAdapter\n", "\n", "# file_path = \"arxivData.json\"\n", "\n", "# # Load the dataset\n", "# df = kagglehub.load_dataset(\n", "# KaggleDatasetAdapter.PANDAS,\n", "# \"neelshah18/arxivdataset\",\n", "# file_path\n", "# )\n", "\n", "# print(\"First 5 records:\", df.head())" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# df.to_json(\"data/arxivData_saved.json\", orient='records', indent=2)\n", "# print(\"Файл сохранен как arxivData_saved.json\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "### парсинг с архива\n", "#!pip install arxiv #не получилось через arxiv, постоянно падает\n", "# import requests\n", "# import feedparser\n", "# import time\n", "# import json\n", "# from datetime import datetime, timedelta" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# def generate_monthly_intervals(start_year, end_year):\n", "# intervals = []\n", "# current = datetime(start_year, 1, 1, 0, 0)\n", "# last = datetime(end_year, 12, 31, 23, 59)\n", "\n", "# while current <= last:\n", "# # начало месяца\n", "# start_str = current.strftime(\"%Y%m%d%H%M\")\n", "# # конец месяца\n", "# next_month = (current.replace(day=28) + timedelta(days=4)).replace(day=1)\n", "# end_of_this_month = next_month - timedelta(minutes=1)\n", "# if end_of_this_month > last:\n", "# end_of_this_month = last\n", "\n", "# end_str = end_of_this_month.strftime(\"%Y%m%d%H%M\")\n", "# intervals.append((start_str, end_str))\n", "\n", "# # след месяц\n", "# current = next_month\n", "\n", "# return intervals\n", "\n", "\n", "# def fetch_arxiv_data_for_interval(\n", "# start_date,\n", "# end_date,\n", "# query=\"all\",\n", "# chunk_size=100,\n", "# max_articles=10_000,\n", "# max_empty_pages=3,\n", "# pause_seconds=3,\n", "# error_step=10\n", "# ):\n", "# base_url = \"http://export.arxiv.org/api/query\"\n", "# articles = []\n", "# start_index = 0\n", "# empty_page_count = 0\n", "# processed_count = 0\n", "\n", "# search_query = f\"{query} AND submittedDate:[{start_date} TO {end_date}]\"\n", "\n", "# while True:\n", "# params = {\n", "# \"search_query\": search_query,\n", "# \"start\": start_index,\n", "# \"max_results\": chunk_size,\n", "# \"sortBy\": \"submittedDate\",\n", "# \"sortOrder\": \"descending\"\n", "# }\n", "\n", "# time.sleep(pause_seconds)\n", "# try:\n", "# response = requests.get(base_url, params=params, timeout=20)\n", "# except Exception as e:\n", "# print(f\"\\nОшибка сети при start={start_index}: {e}\")\n", "# start_index += error_step\n", "# time.sleep(5)\n", "# continue\n", "\n", "# if response.status_code != 200:\n", "# print(f\"\\nHTTP {response.status_code} при start={start_index}: {response.text[:200]}...\")\n", "# start_index += error_step\n", "# time.sleep(5)\n", "# continue\n", "\n", "# feed = feedparser.parse(response.text)\n", "# if not feed.entries:\n", "# empty_page_count += 1\n", "# print(f\"\\nПолучена пустая страница при start={start_index}. Пустых подряд={empty_page_count}\")\n", "# start_index += error_step\n", "# if empty_page_count >= max_empty_pages:\n", "# print(\"Слишком много пустых страниц подряд — завершаем блок.\")\n", "# break\n", "# continue\n", "# else:\n", "# empty_page_count = 0\n", "\n", "# for entry in feed.entries:\n", "# # обработка даты публикации\n", "# if hasattr(entry, \"published_parsed\") and entry.published_parsed:\n", "# pub_year = entry.published_parsed.tm_year\n", "# pub_month = entry.published_parsed.tm_mon\n", "# pub_day = entry.published_parsed.tm_mday\n", "# else:\n", "# pub_str = getattr(entry, \"published\", \"\")\n", "# try:\n", "# dt = datetime.strptime(pub_str, \"%Y-%m-%dT%H:%M:%SZ\") if pub_str else None\n", "# except Exception:\n", "# dt = None\n", "# pub_year = dt.year if dt else 1900\n", "# pub_month = dt.month if dt else 1\n", "# pub_day = dt.day if dt else 1\n", "\n", "# entry_id = entry.get(\"id\", \"\")\n", "# short_id = entry_id.rsplit(\"/\", 1)[-1]\n", "\n", "# authors_list = []\n", "# if hasattr(entry, \"authors\"):\n", "# for a in entry.authors:\n", "# authors_list.append({\"name\": a.get(\"name\", \"\")})\n", "\n", "# links_list = []\n", "# if hasattr(entry, \"links\"):\n", "# for lnk in entry.links:\n", "# link_data = {\n", "# \"rel\": lnk.get(\"rel\", \"\"),\n", "# \"href\": lnk.get(\"href\", \"\")\n", "# }\n", "# if \"title\" in lnk:\n", "# link_data[\"title\"] = lnk[\"title\"]\n", "# links_list.append(link_data)\n", "\n", "# tags_list = []\n", "# if hasattr(entry, \"tags\"):\n", "# for t in entry.tags:\n", "# tags_list.append({\n", "# \"term\": t.get(\"term\"),\n", "# \"scheme\": t.get(\"scheme\", \"http://arxiv.org/schemas/atom\"),\n", "# \"label\": None\n", "# })\n", "\n", "# article = {\n", "# \"author\": str(authors_list),\n", "# \"day\": pub_day,\n", "# \"id\": short_id,\n", "# \"link\": str(links_list),\n", "# \"month\": pub_month,\n", "# \"summary\": entry.get(\"summary\", \"\").replace(\"\\n\", \" \"),\n", "# \"tag\": str(tags_list),\n", "# \"title\": entry.get(\"title\", \"\").replace(\"\\n\", \" \"),\n", "# \"year\": pub_year\n", "# }\n", "\n", "# articles.append(article)\n", "# processed_count += 1\n", "# print(f\"Обработано статей в текущем блоке: {processed_count}\", end=\"\\r\")\n", "\n", "# if processed_count >= max_articles:\n", "# print(f\"\\nДостигнут лимит в {max_articles} статей для этого блока.\")\n", "# break\n", "# else:\n", "# start_index += chunk_size\n", "# continue\n", " \n", "# # достигнут max_articles\n", "# break\n", "\n", "# return articles\n", "\n", "\n", "# def fetch_arxiv_data(\n", "# start_year=2019,\n", "# end_year=2023,\n", "# query=\"all\",\n", "# chunk_size=100,\n", "# max_articles_per_block=10_000,\n", "# max_empty_pages=3,\n", "# pause_seconds=3,\n", "# error_step=10\n", "# ):\n", "# \"\"\"\n", "# Разбивает диапазон [start_year..end_year] помесячно,\n", "# для каждого месяца скачивает статьи при помощи fetch_arxiv_data_for_interval,\n", "# Все результаты собирает в один список и сохраняет в JSON.\n", "# \"\"\"\n", "\n", "# # [(start_date_str, end_date_str), ...] для каждого месяца.\n", "# monthly_intervals = generate_monthly_intervals(start_year, end_year)\n", "\n", "# all_articles = []\n", "# total_processed = 0\n", "\n", "# for (start_date, end_date) in monthly_intervals:\n", "# print(f\"\\nСкачиваем статьи за интервал {start_date} — {end_date}\")\n", "# block_articles = fetch_arxiv_data_for_interval(\n", "# start_date=start_date,\n", "# end_date=end_date,\n", "# query=query,\n", "# chunk_size=chunk_size,\n", "# max_articles=max_articles_per_block,\n", "# max_empty_pages=max_empty_pages,\n", "# pause_seconds=pause_seconds,\n", "# error_step=error_step\n", "# )\n", "# all_articles.extend(block_articles)\n", "# total_processed += len(block_articles)\n", "# print(f\" Интервал {start_date} — {end_date}: скачано {len(block_articles)} статей.\")\n", "# print(f\" Всего набрано уже: {total_processed}.\")\n", "\n", "# # Сохраняем:\n", "# file_name = f\"arxiv_{start_year}_to_{end_year}.json\"\n", "# with open(file_name, \"w\", encoding=\"utf-8\") as f:\n", "# json.dump(all_articles, f, ensure_ascii=False, indent=4)\n", "\n", "# print(f\"\\nИтого сохранено статей: {len(all_articles)} в файл {file_name}\")\n", "\n", "\n", "# if __name__ == \"__main__\":\n", "# fetch_arxiv_data(\n", "# start_year=2019,\n", "# end_year=2023,\n", "# query=\"all\",\n", "# chunk_size=200,\n", "# max_articles_per_block=10000,\n", "# max_empty_pages=10,\n", "# pause_seconds=2,\n", "# error_step=50\n", "# )" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# # собираем все json в один\n", "# import json\n", "\n", "# def load_json(filename):\n", "# with open(filename, 'r', encoding='utf-8') as f:\n", "# return json.load(f)\n", "\n", "# def save_unique_articles(file_names, output_file):\n", "# combined_data = []\n", "# for file in file_names:\n", "# combined_data.extend(load_json(file))\n", " \n", "# # Удаление дубликатов\n", "# seen = set()\n", "# unique_data = []\n", "# for article in combined_data:\n", "# title = article.get('title', '')\n", "# summary = article.get('summary', '')\n", "# key = (title.strip(), summary.strip())\n", " \n", "# if key not in seen:\n", "# seen.add(key)\n", "# unique_data.append(article)\n", " \n", "# with open(output_file, 'w', encoding='utf-8') as f:\n", "# json.dump(unique_data, f, indent=4, ensure_ascii=False)\n", "\n", "# if __name__ == \"__main__\":\n", "# input_files = ['data/arxivData_saved.json', 'arxiv_2019_present.json', 'arxiv_2019_to_2023.json']\n", "# output_file = 'combined.json'\n", " \n", "# save_unique_articles(input_files, output_file)\n", "# print(f\"Объединенный файл сохранен как {output_file}\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Общая статистика:\n", "Всего статей: 207009\n", "Период публикаций: 1993-2025\n", "\n", "Пример данных:\n", " author day id \\\n", "0 [{'name': 'Ahmed Osman'}, {'name': 'Wojciech S... 1 1802.00209v1 \n", "1 [{'name': 'Ji Young Lee'}, {'name': 'Franck De... 12 1603.03827v1 \n", "2 [{'name': 'Iulian Vlad Serban'}, {'name': 'Tim... 2 1606.00776v2 \n", "\n", " link month \\\n", "0 [{'rel': 'alternate', 'href': 'http://arxiv.or... 2 \n", "1 [{'rel': 'alternate', 'href': 'http://arxiv.or... 3 \n", "2 [{'rel': 'alternate', 'href': 'http://arxiv.or... 6 \n", "\n", " summary \\\n", "0 We propose an architecture for VQA which utili... \n", "1 Recent approaches based on artificial neural n... \n", "2 We introduce the multiresolution recurrent neu... \n", "\n", " tag \\\n", "0 [{'term': 'cs.AI', 'scheme': 'http://arxiv.org... \n", "1 [{'term': 'cs.CL', 'scheme': 'http://arxiv.org... \n", "2 [{'term': 'cs.CL', 'scheme': 'http://arxiv.org... \n", "\n", " title year \n", "0 Dual Recurrent Attention Units for Visual Ques... 2018 \n", "1 Sequential Short-Text Classification with Recu... 2016 \n", "2 Multiresolution Recurrent Neural Networks: An ... 2016 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABAIAAAI4CAYAAADwEUtEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcVBJREFUeJzt3XmcjfX///HnmWEWy4x1hrFn35chRgvZhrT42FskpIjCfEJKlihFiaJ8SpHPh0LrJ2RPIm0ydpIPqRhbGIQxM6/fH35zvnPM2M6cWbge99ttbsx13nM9r+ucM2eu8zzX4jIzEwAAAAAAcAS/7F4AAAAAAACQdSgCAAAAAABwEIoAAAAAAAAchCIAAAAAAAAHoQgAAAAAAMBBKAIAAAAAAHAQigAAAAAAAByEIgAAAAAAAAehCAAAAAAAwEEoAgAAAHxky5Yt+uyzz9zfx8bGauHChdm3QAAApIMiAADgczNnzpTL5XJ/BQUFqVKlSurfv78OHjyY3YsHZJqTJ0/qscce03fffaddu3ZpwIAB2rx5c3YvFgAAHnJl9wIAAG5czz//vMqVK6ezZ89qzZo1euutt7Ro0SJt2bJFefLkye7FA3wuKirK/SVJlSpVUu/evbN5qQAA8EQRAADING3atFH9+vUlSY888ogKFy6siRMn6vPPP9d9992XzUsHZI7PPvtM27Zt05kzZ1SzZk0FBARk9yIBAOCBQwMAAFmmWbNmkqQ9e/ZIkv766y899dRTqlmzpvLly6eQkBC1adNGGzduTPOzZ8+e1ahRo1SpUiUFBQWpePHiat++vXbv3i1J2rt3r8fhCBd/NW3a1D2vVatWyeVyae7cuXrmmWdUrFgx5c2bV/fcc49+//33NNnff/+9WrdurdDQUOXJk0dNmjTR2rVr013Hpk2bpps/atSoNGP/85//KDIyUsHBwSpUqJC6du2abv7l1i215ORkTZo0SdWrV1dQUJDCw8P12GOP6dixYx7jypYtq7vuuitNTv/+/dPMM71lnzBhQpr7VJLOnTunkSNHqkKFCgoMDFSpUqU0ZMgQnTt3Lt376mLff/+97rzzThUsWFB58+ZVrVq1NHnyZEnSww8/fNnH1+Vyae/evZKkzz//XG3btlVERIQCAwNVvnx5jRkzRklJSe6sSz1Ol7pvr+axatq0qfs+qVatmiIjI7Vx48Z055eeKy1TyvqlePPNN1W9enUFBgYqIiJC/fr10/Hjx6+YM2rUqHTnnyuX5+dD8+fPd69zkSJF9OCDD+rPP/9Md55ly5ZNd54zZ870GPfKK6+ocePGKly4sIKDgxUZGamPPvoozfxSfn7SpElpbqtSpYpcLpf69+9/xXUFAKSPPQIAAFkm5U174cKFJUn/+9//9Nlnn6lTp04qV66cDh48qH/9619q0qSJtm3bpoiICElSUlKS7rrrLq1YsUJdu3bVgAEDdPLkSS1btkxbtmxR+fLl3Rn33Xef7rzzTo/cYcOGpbs8L7zwglwul4YOHapDhw5p0qRJatGihWJjYxUcHCxJWrlypdq0aaPIyEiNHDlSfn5+mjFjhpo1a6ZvvvlGN998c5r5lixZUuPGjZMknTp1Sn379k03+7nnnlPnzp31yCOP6PDhw3rjjTd0++23a8OGDSpQoECan3n00Ud12223SZI++eQTffrppx63P/bYY5o5c6Z69OihJ598Unv27NGUKVO0YcMGrV27Vrlz5073frgWx48fd69basnJybrnnnu0Zs0aPfroo6patao2b96s1157Tb/88ovHCfTSs2zZMt11110qXry4BgwYoGLFimn79u1asGCBBgwYoMcee0wtWrRwj+/WrZv+8Y9/qH379u5pRYsWlXThHBX58uVTTEyM8uXLp5UrV2rEiBGKj4/XhAkTJEnPPvusHnnkEUnSkSNHNGjQII/7NzVvHqsUQ4cOvex6Xyz1cyfFokWL9MEHH3hMGzVqlEaPHq0WLVqob9++2rlzp9566y39+OOPV/1Yv/XWW8qXL5/7ez+///t8KOV51KBBA40bN04HDx7U5MmTtXbt2kuuc506dfTPf/5T0oWyb8SIEWnGTJ48Wffcc48eeOABJSQk6MMPP1SnTp20YMECtW3b1mNsUFCQZsyYoYEDB7qnffvtt/rtt9+uuG4AgCswAAB8bMaMGSbJli9fbocPH7bff//dPvzwQytcuLAFBwfbH3/8YWZmZ8+etaSkJI+f3bNnjwUGBtrzzz/vnvbee++ZJJs4cWKarOTkZPfPSbIJEyakGVO9enVr0qSJ+/uvvvrKJFmJEiUsPj7ePX3evHkmySZPnuyed8WKFS06OtqdY2b2999/W7ly5axly5Zpsho3bmw1atRwf3/48GGTZCNHjnRP27t3r/n7+9sLL7zg8bObN2+2XLlypZm+a9cuk2Tvv/++e9rIkSMt9Z/xb775xiTZ7NmzPX528eLFaaaXKVPG2rZtm2bZ+/XrZxdvGly87EOGDLGwsDCLjIz0uE///e9/m5+fn33zzTcePz9t2jSTZGvXrk2TlyIxMdHKlStnZcqUsWPHjnnclvp+v9xypfb333+nmfbYY49Znjx57OzZs2luS3nuzJgxI81t1/JYNWnSxOM+WbRokUmy1q1bp7lf09OkSROrXr16mukTJkwwSbZnzx4zMzt06JAFBARYq1atPH5/pkyZYpLsvffeu2xOynPn8OHD6d6ekJBgYWFhVqNGDTtz5ox7+oIFC0ySjRgxIs3PRERE2F133eX+/scff0z3Pr34sUlISLAaNWpYs2bNPKZLso4dO1quXLnsp59+ck/v1auX3X///SbJ+vXrd9n1BABcGocGAAAyTYsWLVS0aFGVKlVKXbt2Vb58+fTpp5+qRIkSkqTAwED3p5BJSUk6evSo8uXLp8qVK+vnn392z+fjjz9WkSJF9MQTT6TJuJpdri/loYceUv78+d3fd+zYUcWLF9eiRYskXbj0265du3T//ffr6NGjOnLkiI4cOaLTp0+refPmWr16tZKTkz3mefbsWQUFBV0295NPPlFycrI6d+7snueRI0dUrFgxVaxYUV999ZXH+ISEBEkX7q9LmT9/vkJDQ9WyZUuPeUZGRipfvnxp5nn+/HmPcUeOHNHZs2cvu9x//vmn3njjDT333HMenySn5FetWlVVqlTxmGfK4SAX56e2YcMG7dmzRwMHDkzzSbM3j2/K3hzShbP4HzlyRLfddpv+/vtv7dix45rmda2PVQoz07Bhw9ShQwc1bNjwmtfhcpYvX66EhAQNHDjQ41P83r17KyQkJMOXK/zpp5906NAhPf744x7P5bZt26pKlSrpzv9qnveS52Nz7NgxnThxQrfddpvH73uK8PBwtW3bVjNmzJAk/f3335o3b5569OjhzWoBAFLh0AAAQKaZOnWqKlWqpFy5cik8PFyVK1f2eOOSnJysyZMn680339SePXs8juFOOXxAunBIQeXKldMcw5xRFStW9Pje5XKpQoUK7mOxd+3aJUnq3r37Jedx4sQJFSxY0P39kSNH0sz3Yrt27ZKZXXLcxbt1pxz3ffGb74vneeLECYWFhaV7+6FDhzy+X7p0qXtX+qs1cuRIRURE6LHHHktzXPeuXbu0ffv2S87z4vzUUg4ZqVGjxjUtz6Vs3bpVw4cP18qVKxUfH+9x24kTJ65pXtf6WKWYPXu2tm7dqnnz5mnOnDnXlHklKbvGV65c2WN6QECAbrrppgzvOn+p+UsXjs9fs2aNx7SkpCQdP35coaGhV5z3ggULNHbsWMXGxnqcO+JShU+PHj3Uo0cPvfrqq5o/f74KFizoLpcAAN6jCAAAZJqbb77ZfdWA9Lz44ot67rnn1LNnT40ZM0aFChWSn5+fBg4cmOaT9uyQsgwTJkxQnTp10h2T+s15QkKCDhw4oJYtW15xvi6XS19++aX8/f0vO09JiouLkyQVK1bssvMMCwvT7Nmz07394jfoDRs21NixYz2mTZkyRZ9//nm6P799+3bNnDlT//nPf9J985ucnKyaNWtq4sSJ6f58qVKlLrnsvnT8+HE1adJEISEhev7551W+fHkFBQXp559/1tChQ6/5eXWtj5V04Xnw3HPPqVevXqpUqZLX63K92Ldvn5KTk1W2bNnLjvvmm290zz336Pbbb9ebb76p4sWLK3fu3JoxY8Yly5K2bdsqICBAn332mWbMmKHu3bt7lIkAAO9QBAAAss1HH32kO+64Q++++67H9OPHj6tIkSLu78uXL6/vv/9e58+f98kJ71KkfOKfwsz066+/qlatWu5cSQoJCfE4Ud2lbNy4UefPn79s+ZEyXzNTuXLlruqN4rZt2+RyudL9hDb1PJcvX65bbrnFY/frSylSpEiadbrcCf2GDRumOnXqqEuXLpfM37hxo5o3b37Nu/On3M9btmy5qvv5clatWqWjR4/qk08+0e233+6ennKlimt1rY+VdOFs/ocOHUr3ShG+UKZMGUnSzp07ddNNN7mnJyQkaM+ePRm+D1PP/+JP33fu3Om+PcVPP/0kSVd83n/88ccKCgrSkiVLPA5zSdn1Pz25cuVSt27d9MILL2jr1q167733rmldAADpo1IFAGQbf39/mZnHtPnz56e5RFmHDh105MgRTZkyJc08Lv75azFr1iydPHnS/f1HH32kAwcOqE2bNpKkyMhIlS9fXq+88opOnTqV5ucPHz6cZtn9/f3TvTRfau3bt5e/v79Gjx6dZvnNTEePHnV/n5iYqI8//lg333zzZQ8N6Ny5s5KSkjRmzJg0tyUmJl7VZeUuZd26dfr888/10ksvXfJNfufOnfXnn3/qnXfeSXPbmTNndPr06UvOv169eipXrpwmTZqUZjmv9fFN+dQ+9c8lJCTozTffvKb5pLiWx0q6cE6CF154QYMGDbrsHhwZ0aJFCwUEBOj111/3WKZ3331XJ06cSHP2/WtVv359hYWFadq0aR6773/55Zfavn17mvnPnz9fBQoUUJMmTS47X39/f7lcLo9DgPbu3XvFK0r07NlTmzdv1u233+5RfAAAvMceAQCAbHPXXXfp+eefV48ePdS4cWNt3rxZs2fPTrOx/9BDD2nWrFmKiYnRDz/8oNtuu02nT5/W8uXL9fjjj+vee+/1Kr9QoUK69dZb1aNHDx08eFCTJk1ShQoV1Lt3b0kXLqc2ffp0tWnTRtWrV1ePHj1UokQJ/fnnn/rqq68UEhKiL774QqdPn9bUqVP1+uuvq1KlSlq1apU7I6VA2LRpk9atW6eoqCiVL19eY8eO1bBhw7R37161a9dO+fPn1549e/Tpp5/q0Ucf1VNPPaXly5frueee06ZNm/TFF19cdl2aNGmixx57TOPGjVNsbKxatWql3Llza9euXZo/f74mT56sjh07enU/LV26VC1btrzsJ83dunXTvHnz1KdPH3311Ve65ZZblJSUpB07dmjevHlasmTJJT8x9vPz01tvvaW7775bderUUY8ePVS8eHHt2LFDW7du1ZIlS656WRs3bqyCBQuqe/fuevLJJ+VyufTvf//b68Loah+rFD///LOKFCmiIUOGeJV3NYoWLaphw4Zp9OjRat26te655x7t3LlTb775pho0aKAHH3wwQ/PPnTu3Xn75ZfXo0UNNmjTRfffd5758YNmyZTVo0CBJ0sGDB/X6669r/vz5uv322/Xxxx+755GyB8a6detUr1491apVS23bttXEiRPVunVr3X///Tp06JCmTp2qChUqaNOmTZdcnqpVq+rIkSNXtacLAOAqZf2FCgAAN7qUywf++OOPlx139uxZ++c//2nFixe34OBgu+WWW2zdunVpLsNmduGyY88++6yVK1fOcufObcWKFbOOHTva7t27zcy7ywd+8MEHNmzYMAsLC7Pg4GBr27at/fbbb2l+fsOGDda+fXsrXLiwBQYGWpkyZaxz5862YsUKj+wrfXXv3t1jvh9//LHdeuutljdvXsubN69VqVLF+vXrZzt37jQzsyeeeMJuv/12W7x4cZpluvjygSnefvtti4yMtODgYMufP7/VrFnThgwZYvv373ePudbLB7pcLlu/fr3H9PQeo4SEBHv55ZetevXqFhgYaAULFrTIyEgbPXq0nThxIk3exdasWWMtW7a0/PnzW968ea1WrVr2xhtvpDtWl7l84Nq1a61Ro0YWHBxsERERNmTIEFuyZIlJsq+++irN+MtdPjDFlR4rswv3iSR77bXXPH72Uo/Vxa728oEppkyZYlWqVLHcuXNbeHi49e3bN83lF9NzpcsHppg7d67VrVvXAgMDrVChQvbAAw+4L/1p9n+/R1f6Sv04vfvuu1axYkULDAy0KlWq2IwZM9K9f3SFywNe6XYAwOW5zDKwTyUAANehVatW6Y477tD8+fO9/pQ8tb1796pcuXLas2fPJU+YNmrUKO3du1czZ87McB6QE6T8Hl1uU/Lhhx9W2bJlM+18CQAA73COAAAAAAAAHIRzBAAAkEH58uXTAw88cNmT+dWqVUsRERFZuFRA5goPD9cDDzxw2TGNGzf2uAIIACBn4NAAAIDj+PrQAAAAgOsJRQAAAAAAAA7COQIAAAAAAHAQigAAAAAAAByEkwX6SHJysvbv36/8+fPL5XJl9+IAAAAAAG5wZqaTJ08qIiJCfn5X/zk/RYCP7N+/X6VKlcruxQAAAAAAOMzvv/+ukiVLXvV4igAfyZ8/v6QLD0BISEg2Lw0AAAAA4EYXHx+vUqVKud+PXi2KAB9JORwgJCSEIgAAAAAAkGWu9fB0ThYIAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4SLYWAW+99ZZq1aqlkJAQhYSEKCoqSl9++aX79rNnz6pfv34qXLiw8uXLpw4dOujgwYMe89i3b5/atm2rPHnyKCwsTIMHD1ZiYqLHmFWrVqlevXoKDAxUhQoVNHPmzDTLMnXqVJUtW1ZBQUFq2LChfvjhh0xZZwAAAAAAslO2FgElS5bUSy+9pPXr1+unn35Ss2bNdO+992rr1q2SpEGDBumLL77Q/Pnz9fXXX2v//v1q3769++eTkpLUtm1bJSQk6Ntvv9X777+vmTNnasSIEe4xe/bsUdu2bXXHHXcoNjZWAwcO1COPPKIlS5a4x8ydO1cxMTEaOXKkfv75Z9WuXVvR0dE6dOhQ1t0ZAAAAAABkAZeZWXYvRGqFChXShAkT1LFjRxUtWlRz5sxRx44dJUk7duxQ1apVtW7dOjVq1Ehffvml7rrrLu3fv1/h4eGSpGnTpmno0KE6fPiwAgICNHToUC1cuFBbtmxxZ3Tt2lXHjx/X4sWLJUkNGzZUgwYNNGXKFElScnKySpUqpSeeeEJPP/30VS13fHy8QkNDdeLECYWEhPjyLgEAAAAAIA1v34fmmHMEJCUl6cMPP9Tp06cVFRWl9evX6/z582rRooV7TJUqVVS6dGmtW7dOkrRu3TrVrFnTXQJIUnR0tOLj4917Faxbt85jHiljUuaRkJCg9evXe4zx8/NTixYt3GPSc+7cOcXHx3t8AQAAAACQ02V7EbB582bly5dPgYGB6tOnjz799FNVq1ZNcXFxCggIUIECBTzGh4eHKy4uTpIUFxfnUQKk3J5y2+XGxMfH68yZMzpy5IiSkpLSHZMyj/SMGzdOoaGh7q9SpUp5tf4AAAAAAGSlbC8CKleurNjYWH3//ffq27evunfvrm3btmX3Yl3RsGHDdOLECffX77//nt2LBAAAAADAFeXK7gUICAhQhQoVJEmRkZH68ccfNXnyZHXp0kUJCQk6fvy4x14BBw8eVLFixSRJxYoVS3N2/5SrCqQec/GVBg4ePKiQkBAFBwfL399f/v7+6Y5JmUd6AgMDFRgY6N1KAwAAAACQTbJ9j4CLJScn69y5c4qMjFTu3Lm1YsUK9207d+7Uvn37FBUVJUmKiorS5s2bPc7uv2zZMoWEhKhatWruMannkTImZR4BAQGKjIz0GJOcnKwVK1a4xwAAAAAAcKPI1j0Chg0bpjZt2qh06dI6efKk5syZo1WrVmnJkiUKDQ1Vr169FBMTo0KFCikkJERPPPGEoqKi1KhRI0lSq1atVK1aNXXr1k3jx49XXFychg8frn79+rk/re/Tp4+mTJmiIUOGqGfPnlq5cqXmzZunhQsXupcjJiZG3bt3V/369XXzzTdr0qRJOn36tHr06JEt9wsAAAAA3OgiB8/KtHmvn/BQps37RpCtRcChQ4f00EMP6cCBAwoNDVWtWrW0ZMkStWzZUpL02muvyc/PTx06dNC5c+cUHR2tN9980/3z/v7+WrBggfr27auoqCjlzZtX3bt31/PPP+8eU65cOS1cuFCDBg3S5MmTVbJkSU2fPl3R0dHuMV26dNHhw4c1YsQIxcXFqU6dOlq8eHGaEwgCAAAAAHC9c5mZZfdC3Ai8vX4jAAAAADgRewRknLfvQ3PcOQIAAAAAAEDmoQgAAAAAAMBBKAIAAAAAAHAQigAAAAAAAByEIgAAAAAAAAehCAAAAAAAwEEoAgAAAAAAcBCKAAAAAAAAHIQiAAAAAAAAB6EIAAAAAADAQSgCAAAAAABwEIoAAAAAAAAchCIAAAAAAAAHoQgAAAAAAMBBKAIAAAAAAHAQigAAAAAAAByEIgAAAAAAAAehCAAAAAAAwEEoAgAAAAAAcBCKAAAAAAAAHIQiAAAAAAAAB6EIAAAAAADAQSgCAAAAAABwEIoAAAAAAAAchCIAAAAAAAAHoQgAAAAAAMBBKAIAAAAAAHAQigAAAAAAAByEIgAAAAAAAAfJld0LAAAAAADIfpGDZ2XavNdPeCjT5o1rxx4BAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOEiu7F4AAAAAALgeRA6elSnzXT/hoUyZL3ApFAEAAAAAkANlVvEgUT44HYcGAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOEi2FgHjxo1TgwYNlD9/foWFhaldu3bauXOnx5imTZvK5XJ5fPXp08djzL59+9S2bVvlyZNHYWFhGjx4sBITEz3GrFq1SvXq1VNgYKAqVKigmTNnplmeqVOnqmzZsgoKClLDhg31ww8/+HydAQAAAADITtlaBHz99dfq16+fvvvuOy1btkznz59Xq1atdPr0aY9xvXv31oEDB9xf48ePd9+WlJSktm3bKiEhQd9++63ef/99zZw5UyNGjHCP2bNnj9q2bas77rhDsbGxGjhwoB555BEtWbLEPWbu3LmKiYnRyJEj9fPPP6t27dqKjo7WoUOHMv+OAAAAAAAgi+TKzvDFixd7fD9z5kyFhYVp/fr1uv32293T8+TJo2LFiqU7j6VLl2rbtm1avny5wsPDVadOHY0ZM0ZDhw7VqFGjFBAQoGnTpqlcuXJ69dVXJUlVq1bVmjVr9Nprryk6OlqSNHHiRPXu3Vs9evSQJE2bNk0LFy7Ue++9p6effjozVh8AAAAAgCyXo84RcOLECUlSoUKFPKbPnj1bRYoUUY0aNTRs2DD9/fff7tvWrVunmjVrKjw83D0tOjpa8fHx2rp1q3tMixYtPOYZHR2tdevWSZISEhK0fv16jzF+fn5q0aKFe8zFzp07p/j4eI8vAAAAAAByumzdIyC15ORkDRw4ULfccotq1Kjhnn7//ferTJkyioiI0KZNmzR06FDt3LlTn3zyiSQpLi7OowSQ5P4+Li7usmPi4+N15swZHTt2TElJSemO2bFjR7rLO27cOI0ePTpjKw0AAAAAQBbLMUVAv379tGXLFq1Zs8Zj+qOPPur+f82aNVW8eHE1b95cu3fvVvny5bN6Md2GDRummJgY9/fx8fEqVapUti0PAAAAAABXI0cUAf3799eCBQu0evVqlSxZ8rJjGzZsKEn69ddfVb58eRUrVizN2f0PHjwoSe7zChQrVsw9LfWYkJAQBQcHy9/fX/7+/umOudS5CQIDAxUYGHj1KwkAAAAAQA6QrecIMDP1799fn376qVauXKly5cpd8WdiY2MlScWLF5ckRUVFafPmzR5n91+2bJlCQkJUrVo195gVK1Z4zGfZsmWKioqSJAUEBCgyMtJjTHJyslasWOEeAwAAAADAjSBb9wjo16+f5syZo88//1z58+d3H9MfGhqq4OBg7d69W3PmzNGdd96pwoULa9OmTRo0aJBuv/121apVS5LUqlUrVatWTd26ddP48eMVFxen4cOHq1+/fu5P7Pv06aMpU6ZoyJAh6tmzp1auXKl58+Zp4cKF7mWJiYlR9+7dVb9+fd18882aNGmSTp8+7b6KAAAAAAAAN4JsLQLeeustSVLTpk09ps+YMUMPP/ywAgICtHz5cveb8lKlSqlDhw4aPny4e6y/v78WLFigvn37KioqSnnz5lX37t31/PPPu8eUK1dOCxcu1KBBgzR58mSVLFlS06dPd186UJK6dOmiw4cPa8SIEYqLi1OdOnW0ePHiNCcQBAAAAADgepatRYCZXfb2UqVK6euvv77ifMqUKaNFixZddkzTpk21YcOGy47p37+/+vfvf8U8AAAAAACuV9l6jgAAAAAAAJC1KAIAAAAAAHAQigAAAAAAAByEIgAAAAAAAAehCAAAAAAAwEEoAgAAAAAAcBCKAAAAAAAAHCRXdi8AAAAAAABZIXLwrEyZ7/oJD2XKfDMLewQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADhIruxeAAAAAADwRuTgWZky3/UTHsqU+QI5BXsEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDZGsRMG7cODVo0ED58+dXWFiY2rVrp507d3qMOXv2rPr166fChQsrX7586tChgw4ePOgxZt++fWrbtq3y5MmjsLAwDR48WImJiR5jVq1apXr16ikwMFAVKlTQzJkz0yzP1KlTVbZsWQUFBalhw4b64YcffL7OAAAAAABkp2wtAr7++mv169dP3333nZYtW6bz58+rVatWOn36tHvMoEGD9MUXX2j+/Pn6+uuvtX//frVv3959e1JSktq2bauEhAR9++23ev/99zVz5kyNGDHCPWbPnj1q27at7rjjDsXGxmrgwIF65JFHtGTJEveYuXPnKiYmRiNHjtTPP/+s2rVrKzo6WocOHcqaOwMAAAAAgCyQKzvDFy9e7PH9zJkzFRYWpvXr1+v222/XiRMn9O6772rOnDlq1qyZJGnGjBmqWrWqvvvuOzVq1EhLly7Vtm3btHz5coWHh6tOnToaM2aMhg4dqlGjRikgIEDTpk1TuXLl9Oqrr0qSqlatqjVr1ui1115TdHS0JGnixInq3bu3evToIUmaNm2aFi5cqPfee09PP/10Ft4rAAAAAABknhx1joATJ05IkgoVKiRJWr9+vc6fP68WLVq4x1SpUkWlS5fWunXrJEnr1q1TzZo1FR4e7h4THR2t+Ph4bd261T0m9TxSxqTMIyEhQevXr/cY4+fnpxYtWrjHXOzcuXOKj4/3+AIAAAAAIKfLMUVAcnKyBg4cqFtuuUU1atSQJMXFxSkgIEAFChTwGBseHq64uDj3mNQlQMrtKbddbkx8fLzOnDmjI0eOKCkpKd0xKfO42Lhx4xQaGur+KlWqlHcrDgAAAABAFsoxRUC/fv20ZcsWffjhh9m9KFdl2LBhOnHihPvr999/z+5FAgAAAADgirL1HAEp+vfvrwULFmj16tUqWbKke3qxYsWUkJCg48ePe+wVcPDgQRUrVsw95uKz+6dcVSD1mIuvNHDw4EGFhIQoODhY/v7+8vf3T3dMyjwuFhgYqMDAQO9WGAAAAACAbJKtewSYmfr3769PP/1UK1euVLly5Txuj4yMVO7cubVixQr3tJ07d2rfvn2KioqSJEVFRWnz5s0eZ/dftmyZQkJCVK1aNfeY1PNIGZMyj4CAAEVGRnqMSU5O1ooVK9xjAAAAAAC4EWTrHgH9+vXTnDlz9Pnnnyt//vzu4/FDQ0MVHBys0NBQ9erVSzExMSpUqJBCQkL0xBNPKCoqSo0aNZIktWrVStWqVVO3bt00fvx4xcXFafjw4erXr5/7E/s+ffpoypQpGjJkiHr27KmVK1dq3rx5WrhwoXtZYmJi1L17d9WvX18333yzJk2apNOnT7uvIgAAAAAAwI0gW4uAt956S5LUtGlTj+kzZszQww8/LEl67bXX5Ofnpw4dOujcuXOKjo7Wm2++6R7r7++vBQsWqG/fvoqKilLevHnVvXt3Pf/88+4x5cqV08KFCzVo0CBNnjxZJUuW1PTp092XDpSkLl266PDhwxoxYoTi4uJUp04dLV68OM0JBAEAAAAAuJ5laxFgZlccExQUpKlTp2rq1KmXHFOmTBktWrTosvNp2rSpNmzYcNkx/fv3V//+/a+4TAAAAAAAXK9yzFUDAAAAAABA5qMIAAAAAADAQSgCAAAAAABwEIoAAAAAAAAchCIAAAAAAAAHoQgAAAAAAMBBKAIAAAAAAHAQigAAAAAAAByEIgAAAAAAAAehCAAAAAAAwEEoAgAAAAAAcBCKAAAAAAAAHIQiAAAAAAAAB6EIAAAAAADAQSgCAAAAAABwEIoAAAAAAAAchCIAAAAAAAAHoQgAAAAAAMBBKAIAAAAAAHAQigAAAAAAAByEIgAAAAAAAAehCAAAAAAAwEEoAgAAAAAAcBCKAAAAAAAAHIQiAAAAAAAAB6EIAAAAAADAQSgCAAAAAABwEIoAAAAAAAAchCIAAAAAAAAHoQgAAAAAAMBBKAIAAAAAAHAQigAAAAAAAByEIgAAAAAAAAehCAAAAAAAwEEoAgAAAAAAcBCKAAAAAAAAHIQiAAAAAAAAB6EIAAAAAADAQSgCAAAAAABwEIoAAAAAAAAchCIAAAAAAAAH8aoIaNasmY4fP55menx8vJo1a5bRZQIAAAAAAJnEqyJg1apVSkhISDP97Nmz+uabbzK8UAAAAAAAIHPkupbBmzZtcv9/27ZtiouLc3+flJSkxYsXq0SJEr5bOgAAAAAA4FPXVATUqVNHLpdLLpcr3UMAgoOD9cYbb/hs4QAAAAAAgG9dUxGwZ88emZluuukm/fDDDypatKj7toCAAIWFhcnf39/nCwkAAAAAAHzjmoqAMmXKSJKSk5MzZWEAAAAAAEDmuqYiILVdu3bpq6++0qFDh9IUAyNGjMjwggEAAAAAAN/zqgh455131LdvXxUpUkTFihWTy+Vy3+ZyuSgCAAAAAADIobwqAsaOHasXXnhBQ4cO9fXyAAAAAACATOTnzQ8dO3ZMnTp18vWyAAAAAACATOZVEdCpUyctXbrU18sCAAAAAAAymVeHBlSoUEHPPfecvvvuO9WsWVO5c+f2uP3JJ5/0ycIBAAAAAADf8qoIePvtt5UvXz59/fXX+vrrrz1uc7lcFAEAAAAAAORQXhUBe/bs8fVyAAAAAACALODVOQIAAAAAAMD1yas9Anr27HnZ29977z2vFgYAAAAAAGQur4qAY8eOeXx//vx5bdmyRcePH1ezZs18smAAAAAAAMD3vCoCPv300zTTkpOT1bdvX5UvXz7DCwUAAAAAADKHz84R4Ofnp5iYGL322mu+miUAAAAAAPAxn54scPfu3UpMTPTlLAEAAAAAgA95dWhATEyMx/dmpgMHDmjhwoXq3r27TxYMAAAAAAD4nldFwIYNGzy+9/PzU9GiRfXqq69e8YoCAAAAAAAg+3h1aMBXX33l8bVixQp9+OGHevTRR5Ur19V3C6tXr9bdd9+tiIgIuVwuffbZZx63P/zww3K5XB5frVu39hjz119/6YEHHlBISIgKFCigXr166dSpUx5jNm3apNtuu01BQUEqVaqUxo8fn2ZZ5s+frypVqigoKEg1a9bUokWLrv4OAQAAAADgOpGhcwQcPnxYa9as0Zo1a3T48OFr/vnTp0+rdu3amjp16iXHtG7dWgcOHHB/ffDBBx63P/DAA9q6dauWLVumBQsWaPXq1Xr00Ufdt8fHx6tVq1YqU6aM1q9frwkTJmjUqFF6++233WO+/fZb3XffferVq5c2bNigdu3aqV27dtqyZcs1rxMAAAAAADmZV4cGnD59Wk888YRmzZql5ORkSZK/v78eeughvfHGG8qTJ89VzadNmzZq06bNZccEBgaqWLFi6d62fft2LV68WD/++KPq168vSXrjjTd055136pVXXlFERIRmz56thIQEvffeewoICFD16tUVGxuriRMnuguDyZMnq3Xr1ho8eLAkacyYMVq2bJmmTJmiadOmXdW6AAAAAABwPfBqj4CYmBh9/fXX+uKLL3T8+HEdP35cn3/+ub7++mv985//9OkCrlq1SmFhYapcubL69u2ro0ePum9bt26dChQo4C4BJKlFixby8/PT999/7x5z++23KyAgwD0mOjpaO3fu1LFjx9xjWrRo4ZEbHR2tdevWXXK5zp07p/j4eI8vAAAAAAByOq+KgI8//ljvvvuu2rRpo5CQEIWEhOjOO+/UO++8o48++shnC9e6dWvNmjVLK1as0Msvv6yvv/5abdq0UVJSkiQpLi5OYWFhHj+TK1cuFSpUSHFxce4x4eHhHmNSvr/SmJTb0zNu3DiFhoa6v0qVKpWxlQUAAAAAIAt4dWjA33//neaNsySFhYXp77//zvBCpejatav7/zVr1lStWrVUvnx5rVq1Ss2bN/dZjjeGDRvmcRnF+Ph4ygAAAAAAQI7n1R4BUVFRGjlypM6ePeuedubMGY0ePVpRUVE+W7iL3XTTTSpSpIh+/fVXSVKxYsV06NAhjzGJiYn666+/3OcVKFasmA4ePOgxJuX7K4251LkJpAvnLkjZGyLlCwAAAACAnM6rImDSpElau3atSpYsqebNm6t58+YqVaqU1q5dq8mTJ/t6Gd3++OMPHT16VMWLF5d0oZA4fvy41q9f7x6zcuVKJScnq2HDhu4xq1ev1vnz591jli1bpsqVK6tgwYLuMStWrPDIWrZsWaaWGgAAAAAAZAevioCaNWtq165dGjdunOrUqaM6deropZde0q+//qrq1atf9XxOnTql2NhYxcbGSpL27Nmj2NhY7du3T6dOndLgwYP13Xffae/evVqxYoXuvfdeVahQQdHR0ZKkqlWrqnXr1urdu7d++OEHrV27Vv3791fXrl0VEREhSbr//vsVEBCgXr16aevWrZo7d64mT57ssVv/gAEDtHjxYr366qvasWOHRo0apZ9++kn9+/f35u4BAAAAACDH8uocAePGjVN4eLh69+7tMf29997T4cOHNXTo0Kuaz08//aQ77rjD/X3Km/Pu3bvrrbfe0qZNm/T+++/r+PHjioiIUKtWrTRmzBgFBga6f2b27Nnq37+/mjdvLj8/P3Xo0EGvv/66+/bQ0FAtXbpU/fr1U2RkpIoUKaIRI0a4Lx0oSY0bN9acOXM0fPhwPfPMM6pYsaI+++wz1ahRw5u7BwAAAACAHMurIuBf//qX5syZk2Z69erV1bVr16suApo2bSozu+TtS5YsueI8ChUqlO6ypFarVi198803lx3TqVMnderU6Yp5AAAAAABcz7w6NCAuLs59nH5qRYsW1YEDBzK8UAAAAAAAIHN4VQSknBjwYmvXrnUfmw8AAAAAAHIerw4N6N27twYOHKjz58+rWbNmkqQVK1ZoyJAh+uc//+nTBQQAAAAAAL7jVREwePBgHT16VI8//rgSEhIkSUFBQRo6dKiGDRvm0wUEAAAAAAC+41UR4HK59PLLL+u5557T9u3bFRwcrIoVK3qczR8AAAAAAOQ8XhUBKfLly6cGDRr4alkAAAAAAEAm8+pkgQAAAAAA4PpEEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgILmyewEAAAAA+F7k4FmZNu/1Ex7KtHkDyHzsEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINkaxGwevVq3X333YqIiJDL5dJnn33mcbuZacSIESpevLiCg4PVokUL7dq1y2PMX3/9pQceeEAhISEqUKCAevXqpVOnTnmM2bRpk2677TYFBQWpVKlSGj9+fJplmT9/vqpUqaKgoCDVrFlTixYt8vn6AgAAAACQ3bK1CDh9+rRq166tqVOnpnv7+PHj9frrr2vatGn6/vvvlTdvXkVHR+vs2bPuMQ888IC2bt2qZcuWacGCBVq9erUeffRR9+3x8fFq1aqVypQpo/Xr12vChAkaNWqU3n77bfeYb7/9Vvfdd5969eqlDRs2qF27dmrXrp22bNmSeSsPAAAAAEA2yJWd4W3atFGbNm3Svc3MNGnSJA0fPlz33nuvJGnWrFkKDw/XZ599pq5du2r79u1avHixfvzxR9WvX1+S9MYbb+jOO+/UK6+8ooiICM2ePVsJCQl67733FBAQoOrVqys2NlYTJ050FwaTJ09W69atNXjwYEnSmDFjtGzZMk2ZMkXTpk3LgnsCAAAAAICskWPPEbBnzx7FxcWpRYsW7mmhoaFq2LCh1q1bJ0lat26dChQo4C4BJKlFixby8/PT999/7x5z++23KyAgwD0mOjpaO3fu1LFjx9xjUuekjEnJSc+5c+cUHx/v8QUAAAAAQE6XY4uAuLg4SVJ4eLjH9PDwcPdtcXFxCgsL87g9V65cKlSokMeY9OaROuNSY1JuT8+4ceMUGhrq/ipVqtS1riIAAAAAAFkuxxYBOd2wYcN04sQJ99fvv/+e3YsEAAAAAMAV5dgioFixYpKkgwcPekw/ePCg+7ZixYrp0KFDHrcnJibqr7/+8hiT3jxSZ1xqTMrt6QkMDFRISIjHFwAAAAAAOV2OLQLKlSunYsWKacWKFe5p8fHx+v777xUVFSVJioqK0vHjx7V+/Xr3mJUrVyo5OVkNGzZ0j1m9erXOnz/vHrNs2TJVrlxZBQsWdI9JnZMyJiUHAAAAAIAbRbYWAadOnVJsbKxiY2MlXThBYGxsrPbt2yeXy6WBAwdq7Nix+u9//6vNmzfroYceUkREhNq1aydJqlq1qlq3bq3evXvrhx9+0Nq1a9W/f3917dpVERERkqT7779fAQEB6tWrl7Zu3aq5c+dq8uTJiomJcS/HgAEDtHjxYr366qvasWOHRo0apZ9++kn9+/fP6rsEAAAAAIBMla2XD/zpp590xx13uL9PeXPevXt3zZw5U0OGDNHp06f16KOP6vjx47r11lu1ePFiBQUFuX9m9uzZ6t+/v5o3by4/Pz916NBBr7/+uvv20NBQLV26VP369VNkZKSKFCmiESNGuC8dKEmNGzfWnDlzNHz4cD3zzDOqWLGiPvvsM9WoUSML7gUAAAAAALJOthYBTZs2lZld8naXy6Xnn39ezz///CXHFCpUSHPmzLlsTq1atfTNN99cdkynTp3UqVOnyy8wAAAAAADXuRx7jgAAAAAAAOB7FAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOkiu7FwAAAAAAgBtR5OBZmTLf9RMeytDPs0cAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4SK7sXgAAAADACSIHz8q0ea+f8FCmzRvAjYc9AgAAAAAAcBCKAAAAAAAAHIQiAAAAAAAAB6EIAAAAAADAQSgCAAAAAABwEIoAAAAAAAAchCIAAAAAAAAHoQgAAAAAAMBBKAIAAAAAAHAQigAAAAAAAByEIgAAAAAAAAehCAAAAAAAwEEoAgAAAAAAcBCKAAAAAAAAHCRHFwGjRo2Sy+Xy+KpSpYr79rNnz6pfv34qXLiw8uXLpw4dOujgwYMe89i3b5/atm2rPHnyKCwsTIMHD1ZiYqLHmFWrVqlevXoKDAxUhQoVNHPmzKxYPQAAAAAAslyOLgIkqXr16jpw4ID7a82aNe7bBg0apC+++ELz58/X119/rf3796t9+/bu25OSktS2bVslJCTo22+/1fvvv6+ZM2dqxIgR7jF79uxR27Ztdccddyg2NlYDBw7UI488oiVLlmTpegIAAAAAkBVyZfcCXEmuXLlUrFixNNNPnDihd999V3PmzFGzZs0kSTNmzFDVqlX13XffqVGjRlq6dKm2bdum5cuXKzw8XHXq1NGYMWM0dOhQjRo1SgEBAZo2bZrKlSunV199VZJUtWpVrVmzRq+99pqio6OzdF0BAAAAAMhsOX6PgF27dikiIkI33XSTHnjgAe3bt0+StH79ep0/f14tWrRwj61SpYpKly6tdevWSZLWrVunmjVrKjw83D0mOjpa8fHx2rp1q3tM6nmkjEmZx6WcO3dO8fHxHl8AAAAAAOR0OboIaNiwoWbOnKnFixfrrbfe0p49e3Tbbbfp5MmTiouLU0BAgAoUKODxM+Hh4YqLi5MkxcXFeZQAKben3Ha5MfHx8Tpz5swll23cuHEKDQ11f5UqVSqjqwsAAAAAQKbL0YcGtGnTxv3/WrVqqWHDhipTpozmzZun4ODgbFwyadiwYYqJiXF/Hx8fTxkAAAAAAMjxcvQeARcrUKCAKlWqpF9//VXFihVTQkKCjh8/7jHm4MGD7nMKFCtWLM1VBFK+v9KYkJCQy5YNgYGBCgkJ8fgCAAAAACCnu66KgFOnTmn37t0qXry4IiMjlTt3bq1YscJ9+86dO7Vv3z5FRUVJkqKiorR582YdOnTIPWbZsmUKCQlRtWrV3GNSzyNlTMo8AAAAAAC4keToIuCpp57S119/rb179+rbb7/VP/7xD/n7++u+++5TaGioevXqpZiYGH311Vdav369evTooaioKDVq1EiS1KpVK1WrVk3dunXTxo0btWTJEg0fPlz9+vVTYGCgJKlPnz763//+pyFDhmjHjh168803NW/ePA0aNCg7Vx0AAAAAgEyRo88R8Mcff+i+++7T0aNHVbRoUd1666367rvvVLRoUUnSa6+9Jj8/P3Xo0EHnzp1TdHS03nzzTffP+/v7a8GCBerbt6+ioqKUN29ede/eXc8//7x7TLly5bRw4UINGjRIkydPVsmSJTV9+nQuHQgAAAAAuCHl6CLgww8/vOztQUFBmjp1qqZOnXrJMWXKlNGiRYsuO5+mTZtqw4YNXi0jAAAAAADXkxx9aAAAAAAAAPCtHL1HAAAAAJBZIgfPyrR5r5/wUKbNGwAyij0CAAAAAABwEIoAAAAAAAAchCIAAAAAAAAHoQgAAAAAAMBBKAIAAAAAAHAQigAAAAAAAByEIgAAAAAAAAehCAAAAAAAwEEoAgAAAAAAcBCKAAAAAAAAHIQiAAAAAAAAB6EIAAAAAADAQSgCAAAAAABwEIoAAAAAAAAcJFd2LwAAAACAG0Pk4FmZMt/1Ex7KlPkCTsUeAQAAAAAAOAh7BAAAACBdfLoLADcmigAAAADkCBQPAJA1ODQAAAAAAAAHoQgAAAAAAMBBKAIAAAAAAHAQigAAAAAAAByEIgAAAAAAAAehCAAAAAAAwEEoAgAAAAAAcBCKAAAAAAAAHIQiAAAAAAAAB8mV3QsAAACAK4scPCvT5r1+wkOZNm8AQM7DHgEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQAAAAAAOAgFAEAAAAAADgIRQAAAAAAAA6SK7sXAAAA4HoUOXhWps17/YSHMm3eAACwRwAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgILmyewEAAAB8IXLwrEyb9/oJD2XavAEAyGrsEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADsLJAgEAQKbIrJP3ceI+AAAyhj0CAAAAAABwEPYIAADAIfiEHgAASOwRAAAAAACAo1AEAAAAAADgIBwaAABANmFXfQAAkB0oAi4ydepUTZgwQXFxcapdu7beeOMN3Xzzzdm9WMB1L7Pe8Ei86YFv8BwFAABOQRGQyty5cxUTE6Np06apYcOGmjRpkqKjo7Vz506FhYVl9+IByOGy+tPdGyXvUpm8MQcAAMgcFAGpTJw4Ub1791aPHj0kSdOmTdPChQv13nvv6emnn87mpbs8NpgBT/xOAAAAAOmjCPj/EhIStH79eg0bNsw9zc/PTy1atNC6devSjD937pzOnTvn/v7EiROSpPj4+Mxf2HQknTuTafNOb51uH/5BpuWtHntfutMzK5O8rMnM6udoVudlZuaNnnepzBs9LzMzycuazBs9LzMzb/S8S2Xe6HmZmUle1mTe6HmZmZldeSn/mtk1/bzLrvUnblD79+9XiRIl9O233yoqKso9fciQIfr666/1/fffe4wfNWqURo8endWLCQAAAACAh99//10lS5a86vHsEeClYcOGKSYmxv19cnKy/vrrLxUuXFgul+uq5xMfH69SpUrp999/V0hISGYsarbmZUcmedd3XnZkkkdeTs8k7/rOy45M8sjL6ZnkXd952ZFJXvrMTCdPnlRERMQ15VEE/H9FihSRv7+/Dh486DH94MGDKlasWJrxgYGBCgwM9JhWoEABr/NDQkKy7Jc2O/KyI5O86zsvOzLJIy+nZ5J3fedlRyZ55OX0TPKu77zsyCQvrdDQ0GvO8bvmn7hBBQQEKDIyUitWrHBPS05O1ooVKzwOFQAAAAAA4HrGHgGpxMTEqHv37qpfv75uvvlmTZo0SadPn3ZfRQAAAAAAgOsdRUAqXbp00eHDhzVixAjFxcWpTp06Wrx4scLDwzMtMzAwUCNHjkxzmMGNkpcdmeRd33nZkUkeeTk9k7zrOy87MskjL6dnknd952VHJnm+xVUDAAAAAABwEM4RAAAAAACAg1AEAAAAAADgIBQBAAAAAAA4CEUAAAAAAAAOQhEAAAAAAICDUAQg22XHhSuSk5OzPBPIybL69zCrfwezcv2y+r48d+5cluY5BRdV8q2svj+TkpKyNC+rZfVr6NmzZ7Ml90Z+7Ybv3ejbMpJv15Ei4DpxI75xPXXqlCTJ5XJlWeZff/0lSfLzy5qn/r59+7Rp0yZJN+ZjmFpWvPhenMEf7YxL2VjOqvvyyJEjki78DmbFhvru3bt17NixLHud2bNnj+bPn68TJ05kSd7OnTvVsmVL/frrr1mSd/r0aSUkJOjYsWOSrv+NoPRc/LzMqnW8UV/PEhISJP1fYZXZ6xkXFydJ8vf3z7IyYNeuXYqNjc2SLOnC69qUKVN0+PDhLMnbtm2bqlSpoo0bN2bJ9lN8fLyOHTumuLg4uVyuTP8dTExMlPR/z82s+J1ne8a3bvRtGSlztmcoAnKouLg4ffvtt/rvf/8r6cITLTNfmHbs2KEJEybo9OnTmZaRWmxsrLp166bdu3dnSZ4kbdmyRS1bttT06dOzJG/r1q0qW7as+vTpIynzy4e9e/fqvffe0/PPP6/du3dn+ovhoUOHtGXLFq1du1ZmlulvtHbu3KmRI0fq4Ycf1vTp07Vjx45M3UA4ePCgfvnll0yZd3r27NmjadOmKSYmRsuWLXP/kclMv/zyi5566il16NBBY8eO1Z49ezI976abbtKjjz4qKfM31Ddu3KiKFSvq008/zbSM1DZt2qSbb75ZGzZscG+gZ+brdmxsrBo1aqQ1a9ZkSeG4bds2de7cWU2bNlV0dLS+++67TH9dS/17P2XKFG3evFkulyvTXt+2b9+uJ554Qu3atdMzzzyj9evXZ+o6/vHHH1q/fr2krCnFf/31V7344ovq3r27pk+frr1792Zq3o4dO/TYY48pOjpajz32mLZs2ZKp67l7925FRETozjvvlJQ1ZcDGjRtVuXJlrVu3LlNzUmzatEkNGzbUb7/95v47kdmvM7fddpv27dunZcuWZXre1q1bddddd6l58+aqVauWli5dmqm/g9u3b9eTTz6pTp06adCgQVq3bl2Wvq6xPZNxN/q2jJSJ2zOGHGfTpk1WvXp1q1mzphUoUMBuueWWTMtKTk62U6dOWbly5czlctmwYcPs3LlzmZZnZhYbG2u5cuWyp556Kt3lyQxbt261AgUKWExMjP3vf//LlIzUNmzYYHnz5rVbb73VqlatasuWLTOzzFu/TZs2WYkSJez222+38PBwK1GihP3xxx+ZkmVmtnHjRqtcubLVrl3bypQpY9WqVbOFCxfaiRMnMiVv69atFhoaah06dLDGjRtbw4YNrWTJkrZ8+XIz8/39um3bNitdurR17tzZtmzZ4tN5p2fTpk0WERFhbdq0sYoVK1rlypXt5ZdftqSkpEx9zhQuXNi6d+9u7dq1s0aNGtkLL7xgycnJmZb56aefWlhYmDVq1MgeffRR9/SkpCSfZ8XGxlrevHlt6NChPp93evbt22elS5e2f/7znx7TU15Pfb2OsbGxFhwcbGPHjrXOnTtbZGSkT+d/sa1bt1rBggVt4MCBNmHCBOvUqZO1atXKzpw5k2nPl82bN1vBggWtZ8+edu+991rr1q2tYMGCtnjx4kzJ2759u4WEhFj37t2tQ4cO1rJlSwsMDLRZs2ZlSt6OHTssPDzcGjRoYN98802mZKS2efNmK1q0qHXu3NmioqKsQYMG1qdPHzt16lSm5G3atMkKFixojz32mPXt29eio6OtR48elpCQkGnPmW+//dZKlSplFStWtOjoaPf0zHiNMbvwe5gnT54se53Zv3+/lS9f3mJiYjym//3335mSFxsba0FBQfb888/bwIEDrXz58nb+/Hkzy5ztme3bt1vhwoVt8ODBNmfOHHv00UetYsWK7m0LX2du2bLFChYsaH369LG+fftaly5dLFeuXPbOO+9k2u8F2zO+z7uRt2XMMnd7hiIgh9m2bZsVLlzYnnnmGdu+fbt98803Fh4ebmvWrMnU3L59+1rv3r0tT5489sQTT9jp06c9bvfVL9PmzZstT548Nnz4cPe0+Ph4O3TokE/mn56EhAR74IEH7LHHHjOzC+vy008/2ccff2yHDh2yM2fO+DQvZcNg5MiRdvr0aStbtqwNGDDApxmp/fHHH1ahQgUbM2aM+3ErX768zZ49O1PyfvvtNytdurSNGjXKdu3aZX/++ae1bNnSwsLC7JVXXrEjR474NC8xMdEefPBBe+CBB9zTNmzYYL169TJ/f39bsGCBmfnuBfjPP/+0xo0bW+3ate3mm2+2Xr162ebNm30y7/Ts3bvXKlasaM8884wlJCSYmdnTTz9tFSpU8PlzM8Xu3butTJky9uyzz7qn9erVy5588kkzM/eGnq8tWrTIKlWqZC+99JLVrFnT/TtpZnby5Emf5Wzfvt1y5cplzz//vJldeG6sWLHC/vWvf9natWszpST78MMPrWnTpu68Z5991rp27Wrt27e3FStW+DRrw4YNFhAQYE8//bSZma1cudLKlCljH374oU9zUpw5c8b+8Y9/WN++fd3T3n33XXvggQcsISHBDh8+7PPMU6dOWXR0tEdhvH79eitYsKAFBgbavHnzzMy3G16PP/64tWvXzv39wYMHbfjw4ebv729vvvmmmfnub+GBAwesadOmdsstt1ibNm2sVatWtnr1ap/MOz379u2zatWquZ8zZmZTp061m266yf7880+f5/3vf/+z8uXLe7zGjBo1ynr27Glm5n6T5cvHLzk52datW2dVq1a1OXPmWKVKlezOO+903+7r9Ux5nUm5T5OTk+3jjz+2F1980T744APbuXOnT/PMzBYvXmyNGzc2swv33RNPPGFt27a1Bg0a2KxZs3z6N2PDhg2WK1cuGzZsmJmZ7dmzx0qVKmXjx4/3WUZq58+ft4ceesgeeugh97Rly5ZZ+/bt7a+//rLff//dp3lnz561Dh062BNPPOGetn//fqtSpYoFBATYq6++ama+fWPO9oxv3ejbMmaZvz1DEZCDHD161Bo1auTxidL58+etWbNmNnfuXJsxY4YdOHDAp5kpLzYPPvigTZw40ZYvX265c+d2L8P06dN99uJ78OBBCw0NtTvuuMM9rU+fPhYVFWVVqlSxtm3bugsBX77wnjlzxho0aGAff/yxmZk1b97catWqZfny5bPSpUvbCy+8YAcPHvRJ1i+//GIul8vjRWnatGlWpEgR+/77732ScbElS5ZYvXr1PF4M7r77bhs7dqz179/fFi1a5LP1MzP7+OOPrWnTpnby5ElLTEw0M7PPPvvMgoKCrHLlyjZ9+nQz891jmJCQYE2aNPHYgDUzO3TokPXt29eCgoJs3bp1PskyM1uxYoVFR0dbbGyszZw50+rVq5dpfzwTExNt8uTJ1rlzZztw4ID7/oyLi7PSpUvbpk2bMiVz2rRp1rNnT/vrr7/cj1P//v2tWbNm1qRJE3vwwQdt7dq1Ps/+/fff7b777rMjR47YxIkTrVatWhYTE2M9evSwadOmuTccMiIpKclGjx5tLpfLtm3bZmZmzZo1s9q1a1toaKiVL1/emjdvbhs3bsxwVmoTJkywe++918zMoqKi3J9+dujQwVwul7377rtmlvHfi6NHj1r9+vU9fh8OHz5sdevWtW7dumVo3pdy4sQJq1Wrlk2ZMsU97ZlnnrHSpUtb7dq1rWzZsjZjxgwz893v/ZEjR6xatWr20Ucfecy3Q4cO1rRpUwsICLDvvvvOJ1kp2rdvb7169Uoz/cUXXzSXy2ULFy70WJaM+PHHH6158+a2du1a+/LLLzO1DEhOTrb333/f2rVrZ3v37nX/3T979qzddNNN7j3WfGnu3Ln20EMPefztiYmJsVq1atnNN99st956q3vPDl/+vT99+rR16NDB/vzzT/v000+tQoUK9o9//MN69OjhLud9Zdq0aeZyuWzBggWWlJRkTZo0sQYNGljp0qWtZs2aVr58efv22299lmdmNnv2bLv99tvNzOy2226z1q1b2zPPPGP9+/c3l8tlI0eONLOM36fx8fHWtm1bj9eZ+Ph4u/vuu61NmzYZmvelnDlzxm677TYbNWqUe9rIkSOtYMGCVqNGDQsNDbVRo0bZ2bNnfZJ38uRJq1Wrlk2bNs3M/u9NY69evezOO+90P7a+xPaMb/Nu5G0Zs6zZnqEIyGFeffVVjw2BMWPGWEBAgDVo0MAqVqxo4eHh7ie1L/54psxjzpw57hemBQsWWEBAgHuXnt9++y3DOSk6depk9erVs+nTp1vDhg2tRYsWNnHiRJs6darVrFnTqlat6v6kwFcbB2fPnrWWLVvaJ598Ys8++6xFR0fb1q1b7fTp0zZs2DCrUaOGvffee2aW8Rb2u+++c39ylGLjxo1WrVo1e+WVV8zM3C+OvjJr1izLnz+/+0X2lVdesdy5c9uDDz5ot9xyi1WoUMHGjx/vs9zx48dbRESEx7SlS5daz5497Z577rFixYr5fJe6fv36WVRUlP31118e0/ft22cdOnSwO++802eHJZw5c8Zj4+29995z//FM/YfMV8/PmTNn2uTJkz2mHTx40AoUKGBfffWVTzIutnv3bo9dBEePHm1BQUH24osv2ogRI6xLly520003+fwwmtOnT1utWrVsw4YNdvr0aXv77betcOHC5nK53PetL56ncXFx9uijj1pgYKDVqFHD2rdvb7GxsZaQkGCffPKJtWrVyjp16uTT5n727NkWHh5u06dPtzvvvNOOHj3qvu2FF16wXLly+Wy3zB9++MH9/5T765NPPrGgoCBbtWqVTzJSS05Otvvuu89q1qxpH330kT311FOWJ08emzlzpi1cuNBefPFF8/Pz8+mb2EOHDllUVJSNHTvW/UnS//73P4uIiLCPP/7YWrdubQ888IAlJib67Hdx1KhRVqpUKfcnxynzTUhIsD59+ljVqlV9WsbHxsa6/79w4UJ3GfD111+7p6f8Tcro36aFCxe63/CYXVi3kydPWokSJWz+/PkZmnd6jh07Zjt27HB/P378eAsKCrJJkybZtGnTrG/fvhYQEODzNwdnz561unXrut/ArVy50goUKODxGuPLTwlHjRpl/v7+Vr58eevQoYPt3LnTEhMT7YcffrBOnTpZ/fr1fVrEf/nllxYUFGTvv/++tW/f3mPes2bNMpfL5bM9SFPv0ZDy/FuzZo25XC53QedrTz75pOXPn9+mTp1q/fr1s+DgYPvggw9sw4YNNnv2bHO5XPbJJ5/4JCshIcHuvvtu69Wrl3v7Ye/evVakSBFbunSpPfzww3bLLbf4tDwyY3vGl/73v//d0NsyZpm/PUMRkEOk94dp4cKFVqZMGfv888/dG5VNmzb1+EQ9I1L/4n/++edWt25d94v9HXfcYf7+/ta1a1efvECkbsfuv/9+8/f3t3vvvdfjkIA///zTypQpk+YY24xIWfb27dtbvXr1rEePHvaf//zHY0yPHj2sbt26PslL/Timvt+efPJJn79BTj3/+vXrW6FChSw6OtoCAgJs6dKl7tsGDRpk5cqVS/NHx9u8bdu2WZkyZWzQoEF28OBB+/HHHy1v3rzu3ehuuukm+9e//pWhrIvNnTvX6tSpY6+++qrFx8d73DZz5kyLiIiwffv2+Szv4ud8ek366NGjff6pckrumTNnrEqVKh57kXz++eeZso5nz561O++80+OTj2+++cbCwsI8nkcZlZCQYOfPn7dWrVq5j4fu0qWLhYSEWMWKFd278vlKyics9evXdzfpKV577TUrVqyYTw8R2Lt3r919990WGRnpcYiA2YUNoYoVK9rcuXN9lnfxc3TPnj0WGRlpzz33nEe2r6xYscI6d+5s7dq1swoVKnj8jp87d86qV6/u/jTSVwYOHGi1atWy+++/38aPH2/58uWzfv36mdmFPTCqV6+e4Y2t1PfT999/b7fccov179/f/QYr5fbly5dbRESEbdiwwWd5F1u0aJG1bt3aoqOj3aXKgAEDMrTnQ3r3T+rnTmRkpH3++efu799///0M7dKeXt65c+esd+/eHq8nKaVORs+/kPr+TFmv7t2726effmpmZvfdd58VKlTISpcu7XHYR0ZcvI5jx461mjVrpnluzJ8/3woXLpzhsiP1OiYlJVnXrl2tXLly7g9OEhMT3WPq1q1rEydOzFDepT7NTE5Otvj4eLvnnnusW7du9vfff/vkdSb1PHbv3m39+vWzBx980OrVq2cTJkzwGHvLLbdYnz59fJY3adIka9Sokd122202bNgwy5s3r3v+H3zwgZUtW9aOHz+eobyLzZ071+rWrcv2jI/WMTu2ZRITE7NsW8bswvbM448/ninbM7l8e+pBXKu///5bQUFBSkxMVK5cng9HhQoVtGjRIlWrVs19huSGDRvqhx9+yHBeQkKCgoKCJF241Ea5cuUUHh4uPz8/9erVS7/88osmTJig5557Tr1799abb76pgIAAr/OSkpKUO3duSdLs2bNVrlw51axZU0WLFnWPDQ8PV9myZXXy5Emv1+9S6/jaa68pOjpaM2fOVN26dd3r7XK5FB0dre3bt+vcuXMKDAz0Ou/cuXMKDg72uC05OVl+fn567LHHtGjRIs2YMUP9+/fP0Fn201u/H3/8UQsXLtSxY8d07tw5NW7cWGfOnFFwcLBatmypL7/8UqdPn1bBggUznFe2bFk99dRTGj9+vObMmaMzZ86od+/eiomJUVJSkgIDA92XafTG3r17tWzZMvn5+alkyZKKjo5W586d9c033+hf//qXgoOD1aVLFxUqVEiS1KBBA+XJk8fr5016eSmPTVJSkvz9/dW9e3dJ0uuvv67JkycrPj5eH330kTp27JihvBIlSqh169Zpxvj5+cnPz8+9HM8884xmzJih77//3ufrGBgYqC+++MJ9ZRI/Pz8VKlRI4eHh7vs4I3mlSpVSq1at3L//devW1a+//qq3335bq1ev1hdffKHNmzfrpZdeUq5cufTqq6/6ZP2KFi2q0aNHa9euXSpfvryk/3s8K1SooIIFC3r1mnapvDJlyqh58+YaO3asEhMTtWfPHpUrV06SlC9fPhUoUMCr15eL81Luz5THL+W1pGzZsmrdurXefPNN9e/fX2FhYV5lXZyX8hxt1qyZmjVrpqNHj+rWW29ViRIl3PmJiYkKCQlR8eLFfZIZERGhNm3a6LXXXtOLL76otWvX6ssvv9Rzzz2nIUOGSJJCQ0MVHBzs9dUDjh8/rgIFCrgv/eTv76+bb75Zd999t+bNm6dXXnlFAwYMcK9nlSpVlDdvXq+vrJM6L+X3LEXKY9imTRu5XC69/vrrevHFFxUUFKTPP//c/frjTZ6/v3+a7YvUf3v8/Pzc9+Gzzz6rN954w30VA2/zUu7PlHULCAjQtGnTPNbd5XKpePHiKlWq1DVnpc67eJ6SVL16dcXGxuqjjz7SV199pUWLFuno0aPq1q2bunTporlz52Yo8+J1fPbZZ9W2bVtVqVJF0v/93Y+IiFDRokWVJ08en62jn5+f2rdvr507d2r79u3avXu3atWq5c7Nly+fV3/nU+flzp07zXNUuvC8yZ8/v1q0aKFhw4ZpxIgRqlChgtfbM+n9Dt50002aMmWKzp49qyZNmqhYsWKSLrx2m5kCAwPdr6sZyUv5nRgwYIAKFiyolStX6pdfftELL7ygAQMGSLrwtzEkJMSrrBT79+/Xzz//rISEBJUuXVr169dX586dtWrVKr3zzjs+355JnVemTBlFRka6r7JiZvLz8/Pp9kx66yfJ4/fDl9szl1q/lG1PX2/LpM4rW7as6tWr596WiYyM9Pm2zMWZKfdp0aJFNXz4cP32228+355hj4BstHnzZmvRooU1bdrUKlWqZG+99Zbt2bPnsj/TvXt3e+KJJ7w6++bl8hITE61Zs2ZWqVIlCw8Pt/Xr15uZ2bx58yw8PNzi4uJ8sn6//PKL+/aLz3J7/vx5u+eee9wNsDd7IlxuHT/++GMrW7as1alTx7Zs2eI+m/eTTz5p0dHRXp3I5EqPYco6nD9/3qKjo61FixbXnHG5vDfffNN27drlvn3mzJlWq1Ytj58ZOHCg3XrrrV7tanZx3tSpU92flO3fv9+WLFni8WlVfHy8tWjRwj744AMzu/bHMOXsr40aNbLy5ctbvnz57OGHH3a35r169bIaNWrYwIED7ddff7XDhw/bkCFDrFKlSl6dpDC9vEceecT279/vHpP60593333XcufObaGhoV59Mng1eWYXdqstWrSorV271saMGWNBQUH2448/XnOeN+toduHkPg0aNPDqJHCXyktpq8eMGWMul8vKlSvnfp05duyYvfnmm7Z7926f5PXs2fOyr1kDBgywli1berWHTnp5PXr0sGPHjpnZhUNzihUrZrVq1bLvvvvONm/ebCNGjLCyZct69QnItTx+v//+u9WpU8dGjRrl9Sd1l7o/U+f94x//sJiYGDtw4ICdOXPGRowYYaVLl/Z698v0Mrt37+7xSdzFn5z17NnTOnTo4NVVbrZt22blypVz7z1h5vkp6IgRI6xhw4Z29913W2xsrO3atcuefvppK1OmjFeHBqSXd/Hjk/q18osvvrCCBQtagQIFPA4f8GWe2YVP6m666Sb79NNP7aWXXrKgoCD76aefMiXv4r8FzzzzjNWuXTtT7s/p06eby+WyihUrul9jzp49awsXLvT4e5nRzCvtjfLPf/7TGjdu7H5tyGhe6j0O//3vf1vlypUtJCTEPvvsM1u+fLkNHz7cSpYs6dXv4bU8hsnJyda4cWPr1q2b18dCX8392atXL2vbtq3t2bPHjhw5YiNHjrQSJUp49Riml3fxa8fF69KnTx9r1aqV11dk2LRpk91000128803W5EiRax+/frubSMzs4cffthq1qzp0+2Zi/MuPuwn9WPqi+2ZK+WZ+W575mryLn6dyei2zOXyRo0a5dNtmUtlppwYN731M8vY9owZhwZkm19++cWKFi1qAwcOtPnz57ufUB06dEj35DLnz5+34cOHW1hYmMdxd77ISzme7MEHH7QGDRq4n9ApvDnu5GryUktMTLThw4dbRESE179Al8ps3769e+Nm8eLFVrFiRStVqpS1aNHC2rdvbwUKFPBql6irfQxT/rj9/PPP5ufn5/GHwFd5KeeN+P33361w4cLWpk0bmzJlij322GNWqFAhn65f+/bt032OnjlzxoYNG2YRERG2d+/ea847efKkRUVFuc/ge+DAAfvyyy+tUKFC1rx5c3cBMXr0aLvtttvM5XJZZGSkFStWzH7++Wef5rVu3dp+/fVX99ikpCRLTEy0J5980goWLOjVsd7Xknfy5EmrW7euNW3a1OuN82vNNLtwRYjBgwdbwYIFvXrOXC6vVatWtn//fjt//rz17dvXfZx7yh82b964Xi4vOjo6zWvJb7/9Zk899ZQVKlTIq911L5fXokUL95vl//znP9a6dWtzuVxWvXp1q1ChQqY/R80u3IetWrWypk2bevUG+Wrzxo4daw0aNLCwsDBr1qyZRUREeLV+V8ps2bJlmnWMjY21AQMGWGhoqFcnvNq3b5/VqVPHKlasaDVq1LDRo0e7b0t9n82YMcPatGljLpfLatSoYWXKlPFqHS+Xl94braSkJBs4cKDlz5/f5+t3cV5SUpLdeuutVr16dcuTJ49XG+fXkmd24ZKJgwYNsoIFC3pVclwuL/UbyaFDh3r9uultZort27fbwIEDvX4dvdrn6DfffGPdu3e3fPnyWbVq1axWrVqZ/hxN0bt3b2vYsKFXbz6uNu8///mPNWnSxAICAqxRo0ZWunRpn69feodzrl271vr162chISFe7y7/66+/WsmSJW3IkCF2/Phx++mnn6x79+7Ws2dPj5Md+mp75nJ5F59HJTk5OcPbM9eS54vtmWvJM8v4tszl8lKeM+fPn7fHH3/cJ9sy3q5jRrZnUlAEZJMBAwZY165dPaY9/PDDFhwcbB07dvT4RVm1apXdf//9Vrx4ca83ti6X1759e/v111/t0KFDXr2Bu9a8jh07epQNK1eutI4dO1pYWJjX63e5zKCgIGvfvr37xeDs2bP2/PPP24ABA+zpp5+27du3+zQvvcfQ7MKb9M6dO3v9qdnV5i1dutQiIyOtbt26dtddd3l9dtgr5aXeaPzpp5/sgQce8PqPmNmFIqFevXppLoG2c+dOK1KkiN11113uaQcPHrQvv/zS1qxZ4/VVLa6U165dO4+NvB9++MFcLpfXn8xfS95ff/1lZcqUsUKFCnm1sexN5nfffWePP/641a5d2+vMa3kMfeFa1u/bb7+1nj17WpUqVbw+zvtKeXfffbd7WnJysq1fv9527drl9cnCrmX9UjZO9u3b5/Ux3lfKu+eee9zTFi5caC+//LJNmzYtQydiulLmP/7xD/eG1fHjx+3f//631a1b16vHMDk52V5++WW78847benSpTZy5EirUqXKJd9omV04b8DWrVu9+uT6avIufiO5adMmK1GihFcby9ead/78eWvcuLHXG8vXmrdlyxb3J3SZlefrS5Rd6zpu2rTJBg0aZDVr1vTqddSb5+iuXbssLi7O4wSlmbV+KU6cOOHVhzZXk5f6k/nNmzfbu+++ax9//LFXJ66+1vVLSkqyzz//3KKiorz+O3ju3DmLiYmxzp07ezxW7777rhUuXDjNp/1HjhzJ0PbMteaZZWx75lrzjh8/nqHtmWvN+/HHHzO0LePN/ZlR15r5/fffZ3h7JgVFQDbp2LGj+6RHKbs8jh071lq1amWVK1d2X37uzJkz9t1339mwYcO8fsN6pbxKlSq5rxPrqzOHXsv6rV271gYOHGhbt27Nkkxfudq81O2gt7uYXU3eM8884x6bclKfzMy7+P6cMWOG17tdml24rnSJEiXS3SDYuHGj5c2b1+OyQhl1NXljxozx+BlvdvH0Nm/cuHEZ+p33JnPt2rVpDlPwdV7KtXB94VrX76uvvsrQCQJz+nM0o6/fV5Pn6xMCXus6/v333xn6PTxw4IDNnDnTzC4UiilvDFI/br669NPV5l38CVJGzhh+rXnvvfdehl63rzVvy5YtGTqL/tXk+frKPNe6jhs2bMjQ1SWuJu9SJybOrLzU65fRqy5cD7+DFx+KdC3OnDljEydOtHfeecfM/u/x2b59u8fhRb46oevV5l3M29dRb/LGjh3r9faMN3mrV6/2elvGm7yMPpbeZC5fvtwnJzymCMgmgwYNsuLFi7t3qzpw4IAVLFjQli1bZm+99ZblyZPH43jSjL7wXk2et5+sepuXsn7Jyck+edH3Zh0z8gc0p92nwcHBPj3TbFavn9mFy2eWLFnSvvjiC/e0lOfG2LFjrWHDhnb06FGf/QG92ryU37+MbnBdTV7qK2n4wtVkenP8XEbyjh496rPSMavv05y4flmdd+TIEffvoC9yrzbTl9ebT7F///503xh89tlnPn9DeaW8lHX25XpeKu/jjz/2WUZOzPvss898fuWMK2XeKOuYU/I+/fTTLP0d9GVe6r2kUn6fDxw4YBUqVPDYTsvIXrAZzcvI68zV5nm7B6W3eb46HCirH79ryfTVOqagCMgmv/32mzVu3NgCAwOtdevWlidPHuvdu7eZXdhNqESJEj67FqwT8rIjk7yM5e3fv9++//57W7x4sfuP7549e6xTp05222232ZIlSzzGT5s2zapWrer1NX1v9LzsyCSPvJyemV6emXmccPfPP/90vzEYOXKkDRw40Fwul/3555/kOSzPCetIXuY9Z7788kuPsiR1/o4dO6xw4cLuN3XPPfecFSxY0KuSk7zrOy+7MtNDEZAFduzYYU8//bQ9+OCDNmHCBPexcSdPnrSXXnrJXnzxRY9r2//8889WsWJFr4/tvtHznLCON3rexo0brUyZMlapUiULDQ21ypUr2wcffGAJCQn2448/2l133WUNGjRwn1gxISHBhgwZYk2aNPFql70bPc8J60je9Z2XE9axSpUqNmfOHPex1KnfGOzfv99GjBhhLpfLChYs6NWnLuRd33lOWEfysv45k5K3c+dOK1q0qP311182ZswYCw4OzpR1JC9n52VX5qVQBGSyrVu3WoECBaxTp07Wp08fK1WqlNWpU8emTZvmHnPxrlZDhgyxOnXqeLW77o2elx2Z5Pk279ChQ1alShV75plnbPfu3fbnn39aly5drFKlSjZ69Gg7e/asxcbGWp8+fSxXrlxWu3Zta9SokRUsWNCrk6Lc6HlOWEfyru+8nLSOVatWtZEjR7oPF0n9qUq3bt0sJCTEq/PVkHd95zlhHcnLvueM2YXzE9StW9e6dOliAQEBXr2hI+/6zsuuzMuhCMhEJ0+etOjoaBsyZIh72h9//GGFCxe28PDwNCciW716tT3xxBOWP39+rzZ8bvS87Mgkz/eP4datW61s2bJpXtCGDh1q1atXt1deecWSk5Pt1KlTtm7dOhszZoxNmzbN6xNa3eh5TlhH8q7vvJy2jjVr1rTx48d7HG4wffp0K1CggNfHfJJ3fedlRyZ513fetWZu27bNXC6XBQcHZ8r2E3k5Py+7Mi+HIiATnT592ho0aGBz5sxxf29m1qlTJ2vevLk1btzYFi1a5B6/Zs0a69u3r1fX9HRCXnZkkuf7xzA2NtZKlixpq1evNjPPKyk8+eSTVqZMGa+v3evEvOzIJI+8nJ55pbxy5cp55MXFxWXoMojkXd952ZFJ3vWdd62ZBw4csH79+mXoakDkXd952ZV5ORQBmSQ5OdkOHjxoERERNmHCBPf033//3apVq2bvv/++1apVyx555BGPn/P2Grg3el52ZJLn+8cwRYMGDeyOO+5wf3/27Fn3/+vXr29du3bNcIaT8rIjkzzycnrm1eb56kzh5F3fedmRSd71nXctmWZZv/1EXs7Ly67MS6EI8LGLX1ymTJliLpfLevbsacOHD7d8+fK5z7w+f/58K1u2rB05csTrywPe6HnZkUmeb/NOnTpl8fHxHtfG/vnnny0sLMzuu+8+97SU+cfExNjdd9/tVZYT8rIjkzzycnomeeTl9Ezyru+87Mgk7/rOy67Ma+En+Mwvv/yiSZMm6cCBA+5pffv21YwZM7R582b99NNPeu655/T2229LkuLi4lSwYEEVKlRIuXLlIi8HZJLn27xt27apffv2atKkiapWrarZs2dLkqpWrarJkydr2bJl6tSpk86fPy8/vwsvR4cOHVLevHmVmJgoMyPPYetI3vWd54R1JO/6znPCOpLHc4a87M3LrsxrllWNw41u165dVqhQIXO5XDZs2LA0Z1M/c+aMx64fZmb9+/e3jh072pkzZ675epA3el52ZJLn27ytW7da4cKFbdCgQTZ79myLiYmx3Llzu0/Mc/r0afvvf/9rJUuWtCpVqli7du2sc+fOljdvXq8uS3ij5zlhHcm7vvOcsI7kXd95TlhH8njOkJe9edmV6Q2KAB84deqU9ezZ0x5++GGbOnWquVwuGzx4sMcbrdRvorZv324DBw60/Pnz26ZNm8jLAZnk+Tbv6NGj1qpVK3vyySc9pjdt2tSeeOIJj2nx8fE2ZMgQe+SRR6x///5eXcbnRs/LjkzyyMvpmeSRl9Mzybu+87Ijk7zrOy+7Mr3l3f7a8ODn56fIyEgVLlxYXbp0UZEiRdS1a1dJ0pAhQ1SkSBG5XC5J0smTJ7Vs2TJt2LBBq1evVs2aNcnLAZnk+Tbv/PnzOn78uDp27ChJSk5Olp+fn8qVK6e//vpLkmQXikjlz59fL7/8ssc48rI/kzzycnomeeTl9Ezyru88J6wjedf/cyZDfNsrONepU6c8vv/www/N5XLZU089ZUeOHDGzCydpO3jwoJ0/f97++usv8nJYJnm+zfvll1/c/09ISDAzs+HDh1u3bt08xqU+gYo3h5A4JS87MskjL6dnkkdeTs8k7/rOy45M8q7vvOzK9AZ7BPhI3rx5JUlJSUny8/NTly5dZGa6//775XK5NHDgQL3yyivas2eP5syZo4IFC5KXwzLJ821exYoVJV1oOHPnzi3pQgN66NAh95hx48YpMDBQTz75pHLlyuXeK4G8nJFJHnk5PZM88nJ6JnnXd152ZJJ3fedlV6Y3KAJ8zN/fX2am5ORkde3aVS6XS926ddN///tf7d69Wz/88IOCg4PJy8GZ5Pk2z8/PT2bmfoFL2e1pxIgRGjt2rDZs2OD1VSWcmJcdmeSRl9MzySMvp2eSd33nZUcmedd3XnZlXtPyZVvyDczlcsnlcsnM1KVLF9122206fPiwfv75Z9WtW5e86yCTPN+y/38JlFy5cqlUqVJ65ZVXNH78eP3000+qXbs2eddBJnnk5fRM8sjL6ZnkXd952ZFJ3vWdl12Z17JwyCSJiYk2aNAgc7lctnHjRvKuw0zyfGvs2LHmcrksNDTUfvzxR/Kuw0zyyMvpmeSRl9Mzybu+87Ijk7zrOy+7Mq+EIiATJSYm2vTp023Dhg3kXaeZ5PnWjz/+aC6XK8suj3Kj52VHJnnk5fRM8sjL6ZnkXd952ZFJ3vWdl12ZV+Iy+//7KyBTWKrjQsi7PjPJ863Tp0+7T1xI3vWZSR55OT2TPPJyeiZ513dedmSSd33nZVfm5VAEAAAAAADgIJwsEAAAAAAAB6EIAAAAAADAQSgCAAAAAABwEIoAAAAAAAAchCIAAAAAAAAHoQgAAAAAAMBBKAIAAAAAAHAQigAAAAAAAByEIgAAAFy3kpKSlJycnN2LAQDAdYUiAAAA+MSsWbNUuHBhnTt3zmN6u3bt1K1bN0nS559/rnr16ikoKEg33XSTRo8ercTERPfYiRMnqmbNmsqbN69KlSqlxx9/XKdOnXLfPnPmTBUoUED//e9/Va1aNQUGBmrfvn1Zs4IAANwgKAIAAIBPdOrUSUlJSfrvf//rnnbo0CEtXLhQPXv21DfffKOHHnpIAwYM0LZt2/Svf/1LM2fO1AsvvOAe7+fnp9dff11bt27V+++/r5UrV2rIkCEeOX///bdefvllTZ8+XVu3blVYWFiWrSMAADcCl5lZdi8EAAC4MTz++OPau3evFi1aJOnCJ/xTp07Vr7/+qpYtW6p58+YaNmyYe/x//vMfDRkyRPv37093fh999JH69OmjI0eOSLqwR0CPHj0UGxur2rVrZ/4KAQBwA6IIAAAAPrNhwwY1aNBAv/32m0qUKKFatWqpU6dOeu6551S0aFGdOnVK/v7+7vFJSUk6e/asTp8+rTx58mj58uUaN26cduzYofj4eCUmJnrcPnPmTD322GM6e/asXC5XNq4pAADXr1zZvQAAAODGUbduXdWuXVuzZs1Sq1attHXrVi1cuFCSdOrUKY0ePVrt27dP83NBQUHau3ev7rrrLvXt21cvvPCCChUqpDVr1qhXr15KSEhQnjx5JEnBwcGUAAAAZABFAAAA8KlHHnlEkyZN0p9//qkWLVqoVKlSkqR69epp586dqlChQro/t379eiUnJ+vVV1+Vn9+F0xjNmzcvy5YbAACnoAgAAAA+df/99+upp57SO++8o1mzZrmnjxgxQnfddZdKly6tjh07ys/PTxs3btSWLVs0duxYVahQQefPn9cbb7yhu+++W2vXrtW0adOycU0AALgxcdUAAADgU6GhoerQoYPy5cundu3auadHR0drwYIFWrp0qRo0aKBGjRrptddeU5kyZSRJtWvX1sSJE/Xyyy+rRo0amj17tsaNG5dNawEAwI2LkwUCAACfa968uapXr67XX389uxcFAABchCIAAAD4zLFjx7Rq1Sp17NhR27ZtU+XKlbN7kQAAwEU4RwAAAPCZunXr6tixY3r55ZcpAQAAyKHYIwAAAAAAAAfhZIEAAAAAADgIRQAAAAAAAA5CEQAAAAAAgINQBAAAAAAA4CAUAQAAAAAAOAhFAAAAAAAADkIRAAAAAACAg1AEAAAAAADgIP8PgBRr3sQxErcAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABB0AAAKCCAYAAACd5aEyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA8ddJREFUeJzs3Xd8Tuf/x/H3bSSxEjNCE2KWGLEJpUYqiFU6tGq0VKvUrKJVurVaRUurE211oNXWrlG66KCxipqliFEjBCHJ5/eHX843twS5yW319Xw88uA+57qvc51zr3Pe5zrXcZmZCQAAAAAAIJNludoNAAAAAAAANyZCBwAAAAAA4BWEDgAAAAAAwCsIHQAAAAAAgFcQOgAAAAAAAK8gdAAAAAAAAF5B6AAAAAAAALyC0AEAAAAAAHgFoQMAAAAAAPAKQgcAAAAAAOAVhA4AgEzlcrky9Ld06dKr2s6pU6fK5XIpd+7c6c7fsGGDmjVrpty5cyt//vzq1KmTDhw4cIVbCQAAcH1zmZld7UYAAG4cH3/8sdvjDz/8UAsXLtRHH33kNv22225T4cKFr2TTHMePH9fNN9+so0ePOo9T++eff1S1alUFBASoT58+On78uF599VUVK1ZMv/76q3x8fK5GswEAAK472a52AwAAN5b77rvP7fGKFSu0cOHCNNOvpueff1558uRRo0aN9NVXX6WZ/+KLLyo+Pl4rV65UsWLFJEm1atXSbbfdpsmTJ6tHjx5XuMUAAADXJy6vAABcVfv371e3bt1UuHBh+fn5KTw8XFOmTHErs2PHjgteqtGwYcMML2/z5s0aM2aMXnvtNWXLln72/sUXX6hly5ZO4CBJkZGRKlu2rKZNm3bRZSQnJ2vcuHGqVKmS/Pz8VKhQITVr1ky///67U2bSpElq3LixAgMD5evrq7CwML311ltp6goNDZXL5VK/fv3SzIuKipLL5VLLli2daUuXLpXL5dKMGTPO276uXbsqNDTUeTxixAhlyZJFixcvdivXo0cP+fj4aPXq1Rdc3wu9NqmXI0nx8fEaOHCgQkJC5Ovrq5tvvlmvvvqqzu14mZE6zUyhoaFq06ZNmjadOnVKAQEBeuihh9Kse3p1Pv30027lZsyYoRo1aihPnjxu5V599VW3unLnzq1t27YpKipKuXLlUtGiRfXss8+6rU/K+zf1c1NUrFjR7f17pV+/i10GlbptCQkJGjFihEqXLi1fX1+FhITo8ccfV0JCQobqfP75550yl/K5z549u0JDQzVo0CCdPn36vOsEALi20NMBAHDVnDx5Ug0bNtSWLVvUu3dvlShRQtOnT1fXrl115MgR9e3b1638PffcoxYtWrhNGzp0qEfL7Nevnxo1aqQWLVqkGyDs3r1b+/fvV40aNdLMq1WrlubOnXvRZXTr1k2TJ09W8+bN1b17dyUmJuqHH37QihUrnHrfeustVahQQa1bt1a2bNk0a9YsPfLII0pOTlavXr3c6vPz89PUqVP1yiuvKHv27JLOXgKyePFi+fn5ebT+6Rk2bJhmzZqlbt26ae3atcqTJ48WLFigd999V88995zCw8MvWsdtt92mzp07u00bPXq0Dh8+7Dw2M7Vu3VrfffedunXrpipVqmjBggUaNGiQdu/erTFjxnhUp8vl0n333adRo0bp0KFDyp8/v1Nu1qxZiouLS7eHTcGCBd2W1alTJ7f5y5cv11133aXw8HC99NJLCggI0MGDB9W/f/80dSUlJalZs2aqU6eORo0apfnz52vEiBFKTEzUs88+e7HNliku5/VLfdnTDz/8oHfeeUdjxoxRwYIFJcm5BCo5OVmtW7fWjz/+qB49eqh8+fJau3atxowZo7/++itNj6H0XrsqVapI8vxz36NHD9WvX18JCQlasGCBXn31Vfn5+em555671E0GALiSDAAAL+rVq5ed7+dm7NixJsk+/vhjZ9rp06ctIiLCcufObXFxcWZmtn37dpNkr7zySpo6KlSoYLfeemuG2jJ79mzLli2brV+/3szMunTpYrly5XIr89tvv5kk+/DDD9M8f9CgQSbJTp06dd5lLFmyxCRZnz590sxLTk52/n/ixIk086OioqxkyZJu04oXL2633XabFSxY0GbMmOFMf+6556xu3bpWvHhxi46OdqZ/9913JsmmT59+3jZ26dLFihcv7jZt7dq15uPjY927d7fDhw/bTTfdZDVq1LAzZ86ct54UkqxXr15ppkdHR7st56uvvjJJ9vzzz7uVu+OOO8zlctmWLVs8rnPTpk0myd566y23cq1bt7bQ0FC3bW5m1rFjRytRokSa9o8YMcJ5PHToUJNke/fudaal9x7s0qWLSbJHH33UmZacnGzR0dHm4+NjBw4cOO9zU5z7/r0ar1+KSZMmmSTbvn17mnkfffSRZcmSxX744Qe36RMnTjRJ9tNPPznTzvfapfD0cz9p0iS35xctWtRatGiR4fUCAFxdXF4BALhq5s6dq6CgIN1zzz3OtOzZszuDNy5btizTlnX69Gn1799fDz/8sMLCws5b7uTJk5IkX1/fNPNSehWklEnPF198IZfLpREjRqSZ53K5nP/nyJHD+f/Ro0d18OBB3Xrrrdq2bZszwGUKHx8fdezYUZMmTXKmTZ48Wffff/9523Hs2DEdPHhQR44cOW+Z1CpWrKhnnnlG7733nqKionTw4EFNmTLlvJegXIq5c+cqa9as6tOnj9v0gQMHysw0b948j+ssW7asateuralTpzrTDh06pHnz5qljx45u21w6+z5I77VN7dixY8qSJYvy5s2boTb07t3b+b/L5VLv3r11+vRpLVq0yK3ciRMndPDgQbe/pKSk87bhWnr9pk+frvLly6tcuXJu7W/cuLEk6bvvvstwXZ5+7o8fP66DBw9q9+7deueddxQbG6smTZpkynoBALyP0AEAcNX8/fffKlOmjLJkcf85Kl++vDPfU7GxsW5/KQHBmDFjdPDgQT3zzDMXfH5KGHDuderS2XECUpdJz9atW1W0aFG3rv7p+emnnxQZGalcuXIpb968KlSokJ544glJShM6SNL999+v+fPna+/evVq2bJn27t2ru+6667z1P/DAAypUqJDy5cunPHny6N5779W+ffsu2KZBgwYpPDxcv/76q0aMGHHBcOZS/P333ypatKjy5MnjNv1yXm9J6ty5s3766Sfn+dOnT9eZM2fSXDYhSUeOHDnvbVJTREREKDk5WX379tXWrVt18OBBt8tEUsuSJYtKlizpNq1s2bKSzo5JkNqIESNUqFAht7+NGzemW++19vpt3rxZ69evT9P+lHXdv39/huvy9HP/6KOPqlChQgoODtZDDz2kLl26pHupCwDg2sSYDgCAG0qRIkXcHk+aNEm33367nn/+eT3yyCOKi4tTXFycpLNnUM1MO3bsUM6cORUYGOg8f+/evWnq3rt3r/Lnz3/RM+UXs3XrVjVp0kTlypXTa6+9ppCQEPn4+Gju3LkaM2aMkpOT0zwnPDxc4eHh+vDDD7Vhwwa1b99e/v7+513G8OHDVb9+fZ05c0YrV67Us88+qyNHjlxwTIpt27Zp8+bNkqS1a9de1jpeSR06dFD//v01depUPfHEE/r4449Vo0YN3XzzzWnKxsbGqnjx4hetb9WqVXrjjTf0zjvvZFo7e/TooTvvvNNt2oMPPphu2Wvt9UtOTlalSpX02muvpTs/JCQkU5eX2qBBg9S0aVMlJSVp/fr1zkCdqXv+AACuXYQOAICrpnjx4lqzZo2Sk5PdznqmnP292MFhehYuXOj2uEKFCjp8+LCOHz+uUaNGadSoUWmeU6JECbVp00ZfffWVbrrpJhUqVMjtThMpfv31V2cwvPMpVaqUFixYkGZgw9RmzZqlhIQEffPNN253yLhYF/UHHnhAY8aMUWxsrGbNmnXBspUqVVJkZKQkqXnz5tq5c6emTJmixMTEdMsnJyera9eu8vf3V79+/fTiiy/qjjvuULt27S64HE8UL15cixYt0rFjx9x6O1zO6y1J+fPnV3R0tKZOnaqOHTvqp59+0tixY9OUO3PmjLZs2aJmzZpdsL4sWbLo1Vdf1dq1a7V9+3a9+eab2rdvX7qDUiYnJ2vbtm3OGX9J+uuvvyQpzZ07ypQp47wmKXLlypVuG661169UqVJavXq1mjRpkuaSFU95+rkPCwtztkVUVJQSEhL0xBNP6IUXXlDRokUvqy0AAO/j8goAwFXTokULxcbG6vPPP3emJSYm6o033lDu3Ll16623elxnZGSk21+RIkUUGBiomTNnpvlr1KiR/Pz8NHPmTLe7YLRv316zZ8/Wrl27nGmLFy/WX3/9leZM9bnat28vM0v3Mg77/9soZs2a1e2xdPaSioudub333nu1e/duBQYGenSbUEnOAd75Dhhfe+01/fzzz3rnnXf03HPPqW7duurZs6cOHjzo0XIupEWLFkpKStL48ePdpo8ZM0Yul0vNmze/5Lo7deqkP//8U4MGDVLWrFnVoUOHNGW+/vprnTx50hmH4ELeeOMNLVmyRFOnTlVkZKTq1at33rKp18fMNH78eGXPnj1Txx242q/fXXfdpd27d+vdd99NM+/kyZOKj4/PcF2X+7lPuWSK22YCwPWBng4AgKumR48eevvtt9W1a1etXLlSoaGhmjFjhnOm+txr/y9Vzpw51bZt2zTTv/rqK/36669p5j3xxBOaPn26GjVqpL59++r48eN65ZVXVKlSpQsO3ihJjRo1UqdOnfT6669r8+bNatasmZKTk/XDDz+oUaNG6t27t5o2bSofHx+1atVKDz30kI4fP653331XgYGB6V7WkSJfvnzau3evsmbNetGzzTExMcqdO7cSExO1cuVKffjhh2rTpo0TeKS2YcMGPfXUU+ratatatWol6exAlVWqVNEjjzyS7q1FL0WrVq3UqFEjPfnkk9qxY4fCw8P17bff6uuvv1a/fv1UqlSpS647OjpaBQoU0PTp09W8eXMFBgY6806cOKERI0bozTffVN26ddW0adML1rV+/Xo9/vjjevrpp1WzZs0LlvXz89P8+fPVpUsX1a5dW/PmzdOcOXP0xBNPqFChQpe8Ptfa69epUydNmzZNDz/8sL777jvVq1dPSUlJ2rhxo6ZNm6YFCxake5vZ9Hj6uV++fLmyZcvmXF7xxhtvqGrVqml6kgAArlFX8c4ZAID/gAvdMtPMbN++fXb//fdbwYIFzcfHxypVqpTmFnmZdcvMc6V3y8wU69ats6ZNm1rOnDktb9681rFjR4uNjc1QvYmJifbKK69YuXLlzMfHxwoVKmTNmze3lStXOmW++eYbq1y5svn5+VloaKi9/PLL9sEHH6S5ZeG5t8Q81/lumZnyly1bNitevLj16dPHDh8+7Kx3yi0XExMTrWbNmhYcHGxHjhxxq3vcuHEmyT7//PMLrq8yeHtLM7Njx45Z//79rWjRopY9e3YrU6aMvfLKK2lubelJnSkeeeQRk2SffPKJ2/R//vnHQkJCrF+/fnb06NF0259yy8xTp05Z5cqV7ZZbbrHExESnzPlumZkrVy7bunWr814pXLiwjRgxwpKSki743BTnu2XmlXz9UlzolplmZ29r+fLLL1uFChXM19fX8uXLZ9WrV7dnnnnGbbue77VLzZPPfcpflixZLDg42Lp06WL//PNPhtYJAHD1ucxS9e0EAAC4TvXv31/vv/++YmNjlTNnTq8vr2vXrpoxY4aOHz/u9WUBAHC9YkwHAABw3Tt16pQ+/vhjtW/f/ooEDgAAIGMY0wEAAFy39u/fr0WLFmnGjBn6999/1bdv36vdJAAAkAqhAwAAuG79+eef6tixowIDA/X6669f9JamAADgymJMBwAAAAAA4BWM6QAAAAAAALyCyysySXJysvbs2aM8efJc9N7pAAAAAABcLjPTsWPHVLRoUWXJcm32KSB0yCR79uxRSEjI1W4GAAAAAOA/ZteuXQoODr7azUgXoUMmyZMnj6SzL7a/v/9Vbg0AAAAA4EYXFxenkJAQ53j0WkTokElSLqnw9/cndAAAAAAAXDHX8iX+1+ZFHwAAAAAA4LpH6AAAAAAAALyC0AEAAAAAAHgFoQMAAAAAAPAKQgcAAAAAAOAVhA4AAAAAAMArCB0AAAAAAIBXEDoAAAAAAACvIHQAAAAAAABeQegAAAAAAAC8gtABAAAAAAB4BaEDAAAAAADwCkIHAAAAAADgFYQOAAAAAADAKwgdAAAAAACAVxA6AAAAAAAAryB0AAAAAAAAXkHoAAAAAAAAvILQAQAAAAAAeEW2q92A/4LQIXM8Kr/jpWgvtQQAAAAAgCuHng4AAAAAAMArCB0AAAAAAIBXEDoAAAAAAACvIHQAAAAAAABeQegAAAAAAAC8gtABAAAAAAB4BaEDAAAAAADwCkIHAAAAAADgFYQOAAAAAADAKwgdAAAAAACAVxA6AAAAAAAAryB0AAAAAAAAXkHoAAAAAAAAvILQAQAAAAAAeAWhAwAAAAAA8ApCBwAAAAAA4BWEDgAAAAAAwCsIHQAAAAAAgFcQOgAAAAAAAK+4qqHDW2+9pcqVK8vf31/+/v6KiIjQvHnznPkNGzaUy+Vy+3v44Yfd6ti5c6eio6OVM2dOBQYGatCgQUpMTHQrs3TpUlWrVk2+vr4qXbq0Jk+enKYtEyZMUGhoqPz8/FS7dm39+uuvXllnAAAAAAD+K65q6BAcHKyXXnpJK1eu1O+//67GjRurTZs2Wr9+vVPmwQcf1N69e52/UaNGOfOSkpIUHR2t06dP6+eff9aUKVM0efJkDR8+3Cmzfft2RUdHq1GjRoqJiVG/fv3UvXt3LViwwCnz+eefa8CAARoxYoRWrVql8PBwRUVFaf/+/VdmQwAAAAAAcANymZld7Uaklj9/fr3yyivq1q2bGjZsqCpVqmjs2LHplp03b55atmypPXv2qHDhwpKkiRMnavDgwTpw4IB8fHw0ePBgzZkzR+vWrXOe16FDBx05ckTz58+XJNWuXVs1a9bU+PHjJUnJyckKCQnRo48+qiFDhqS77ISEBCUkJDiP4+LiFBISoqNHj8rf39+tbOiQOR5tgx0vRXtUHgAAAADw3xMXF6eAgIB0j0OvFdfMmA5JSUn67LPPFB8fr4iICGf61KlTVbBgQVWsWFFDhw7ViRMnnHnLly9XpUqVnMBBkqKiohQXF+f0lli+fLkiIyPdlhUVFaXly5dLkk6fPq2VK1e6lcmSJYsiIyOdMukZOXKkAgICnL+QkJDL2wAAAAAAANxgsl3tBqxdu1YRERE6deqUcufOrZkzZyosLEySdO+996p48eIqWrSo1qxZo8GDB2vTpk368ssvJUmxsbFugYMk53FsbOwFy8TFxenkyZM6fPiwkpKS0i2zcePG87Z76NChGjBggPM4pacDAAAAAAA466qHDjfffLNiYmJ09OhRzZgxQ126dNGyZcsUFhamHj16OOUqVaqkIkWKqEmTJtq6datKlSp1FVst+fr6ytfX96q2AQAAAACAa9lVv7zCx8dHpUuXVvXq1TVy5EiFh4dr3Lhx6ZatXbu2JGnLli2SpKCgIO3bt8+tTMrjoKCgC5bx9/dXjhw5VLBgQWXNmjXdMil1AAAAAAAAz1310OFcycnJbgM0phYTEyNJKlKkiCQpIiJCa9eudbvLxMKFC+Xv7+9cohEREaHFixe71bNw4UJn3AgfHx9Vr17drUxycrIWL17sNrYEAAAAAADwzFW9vGLo0KFq3ry5ihUrpmPHjumTTz7R0qVLtWDBAm3dulWffPKJWrRooQIFCmjNmjXq37+/GjRooMqVK0uSmjZtqrCwMHXq1EmjRo1SbGyshg0bpl69ejmXPjz88MMaP368Hn/8cT3wwANasmSJpk2bpjlz/ndHiQEDBqhLly6qUaOGatWqpbFjxyo+Pl7333//VdkuAAAAAADcCK5q6LB//3517txZe/fuVUBAgCpXrqwFCxbotttu065du7Ro0SInAAgJCVH79u01bNgw5/lZs2bV7Nmz1bNnT0VERChXrlzq0qWLnn32WadMiRIlNGfOHPXv31/jxo1TcHCw3nvvPUVFRTll7r77bh04cEDDhw9XbGysqlSpovnz56cZXBIAAAAAAGScy8zsajfiRnCh+6OGDplznmelb8dL0ZnZNAAAAADADehCx6HXimtuTAcAAAAAAHBjIHQAAAAAAABeQegAAAAAAAC8gtABAAAAAAB4BaEDAAAAAADwCkIHAAAAAADgFYQOAAAAAADAKwgdAAAAAACAVxA6AAAAAAAAryB0AAAAAAAAXkHoAAAAAAAAvILQAQAAAAAAeAWhAwAAAAAA8ApCBwAAAAAA4BWEDgAAAAAAwCsIHQAAAAAAgFcQOgAAAAAAAK8gdAAAAAAAAF5B6AAAAAAAALyC0AEAAAAAAHgFoQMAAAAAAPAKQgcAAAAAAOAVhA4AAAAAAMArCB0AAAAAAIBXEDoAAAAAAACvIHQAAAAAAABeQegAAAAAAAC8gtABAAAAAAB4BaEDAAAAAADwCkIHAAAAAADgFYQOAAAAAADAKwgdAAAAAACAVxA6AAAAAAAAryB0AAAAAAAAXkHoAAAAAAAAvILQAQAAAAAAeAWhAwAAAAAA8ApCBwAAAAAA4BWEDgAAAAAAwCsIHQAAAAAAgFcQOgAAAAAAAK8gdAAAAAAAAF5B6AAAAAAAALyC0AEAAAAAAHgFoQMAAAAAAPAKQgcAAAAAAOAVhA4AAAAAAMArCB0AAAAAAIBXXNXQ4a233lLlypXl7+8vf39/RUREaN68ec78U6dOqVevXipQoIBy586t9u3ba9++fW517Ny5U9HR0cqZM6cCAwM1aNAgJSYmupVZunSpqlWrJl9fX5UuXVqTJ09O05YJEyYoNDRUfn5+ql27tn799VevrDMAAAAAAP8VVzV0CA4O1ksvvaSVK1fq999/V+PGjdWmTRutX79ektS/f3/NmjVL06dP17Jly7Rnzx61a9fOeX5SUpKio6N1+vRp/fzzz5oyZYomT56s4cOHO2W2b9+u6OhoNWrUSDExMerXr5+6d++uBQsWOGU+//xzDRgwQCNGjNCqVasUHh6uqKgo7d+//8ptDAAAAAAAbjAuM7Or3YjU8ufPr1deeUV33HGHChUqpE8++UR33HGHJGnjxo0qX768li9frjp16mjevHlq2bKl9uzZo8KFC0uSJk6cqMGDB+vAgQPy8fHR4MGDNWfOHK1bt85ZRocOHXTkyBHNnz9fklS7dm3VrFlT48ePlyQlJycrJCREjz76qIYMGZKhdsfFxSkgIEBHjx6Vv7+/27zQIXM82gY7Xor2qDwAAAAA4L/nQseh14prZkyHpKQkffbZZ4qPj1dERIRWrlypM2fOKDIy0ilTrlw5FStWTMuXL5ckLV++XJUqVXICB0mKiopSXFyc01ti+fLlbnWklEmp4/Tp01q5cqVbmSxZsigyMtIpk56EhATFxcW5/QEAAAAAgP+56qHD2rVrlTt3bvn6+urhhx/WzJkzFRYWptjYWPn4+Chv3rxu5QsXLqzY2FhJUmxsrFvgkDI/Zd6FysTFxenkyZM6ePCgkpKS0i2TUkd6Ro4cqYCAAOcvJCTkktYfAAAAAIAb1VUPHW6++WbFxMTol19+Uc+ePdWlSxf9+eefV7tZFzV06FAdPXrU+du1a9fVbhIAAAAAANeUbFe7AT4+PipdurQkqXr16vrtt980btw43X333Tp9+rSOHDni1tth3759CgoKkiQFBQWluctEyt0tUpc5944X+/btk7+/v3LkyKGsWbMqa9as6ZZJqSM9vr6+8vX1vbSVBgAAAADgP+Cq93Q4V3JyshISElS9enVlz55dixcvduZt2rRJO3fuVEREhCQpIiJCa9eudbvLxMKFC+Xv76+wsDCnTOo6Usqk1OHj46Pq1au7lUlOTtbixYudMgAAAAAAwHNXtafD0KFD1bx5cxUrVkzHjh3TJ598oqVLl2rBggUKCAhQt27dNGDAAOXPn1/+/v569NFHFRERoTp16kiSmjZtqrCwMHXq1EmjRo1SbGyshg0bpl69ejm9EB5++GGNHz9ejz/+uB544AEtWbJE06ZN05w5/7ujxIABA9SlSxfVqFFDtWrV0tixYxUfH6/777//qmwXAAAAAABuBFc1dNi/f786d+6svXv3KiAgQJUrV9aCBQt02223SZLGjBmjLFmyqH379kpISFBUVJTefPNN5/lZs2bV7Nmz1bNnT0VERChXrlzq0qWLnn32WadMiRIlNGfOHPXv31/jxo1TcHCw3nvvPUVFRTll7r77bh04cEDDhw9XbGysqlSpovnz56cZXBIAAAAAAGScy8zsajfiRnCh+6OGDplznmelb8dL0Rku6826AQAAAADXrgsdh14rrrkxHQAAAAAAwI2B0AEAAAAAAHgFoQMAAAAAAPAKQgcAAAAAAOAVhA4AAAAAAMArCB0AAAAAAIBXEDoAAAAAAACvIHQAAAAAAABeQegAAAAAAAC8gtABAAAAAAB4BaEDAAAAAADwCkIHAAAAAADgFYQOAAAAAADAKwgdAAAAAACAVxA6AAAAAAAAryB0AAAAAAAAXkHoAAAAAAAAvILQAQAAAAAAeAWhAwAAAAAA8ApCBwAAAAAA4BWEDgAAAAAAwCsIHQAAAAAAgFcQOgAAAAAAAK8gdAAAAAAAAF5B6AAAAAAAALyC0AEAAAAAAHgFoQMAAAAAAPAKQgcAAAAAAOAVhA4AAAAAAMArCB0AAAAAAIBXEDoAAAAAAACvIHQAAAAAAABeQegAAAAAAAC8gtABAAAAAAB4BaEDAAAAAADwCkIHAAAAAADgFYQOAAAAAADAKwgdAAAAAACAVxA6AAAAAAAAryB0AAAAAAAAXkHoAAAAAAAAvILQAQAAAAAAeAWhAwAAAAAA8ApCBwAAAAAA4BWEDgAAAAAAwCsIHQAAAAAAgFcQOgAAAAAAAK8gdAAAAAAAAF5B6AAAAAAAALziqoYOI0eOVM2aNZUnTx4FBgaqbdu22rRpk1uZhg0byuVyuf09/PDDbmV27typ6Oho5cyZU4GBgRo0aJASExPdyixdulTVqlWTr6+vSpcurcmTJ6dpz4QJExQaGio/Pz/Vrl1bv/76a6avMwAAAAAA/xVXNXRYtmyZevXqpRUrVmjhwoU6c+aMmjZtqvj4eLdyDz74oPbu3ev8jRo1ypmXlJSk6OhonT59Wj///LOmTJmiyZMna/jw4U6Z7du3Kzo6Wo0aNVJMTIz69eun7t27a8GCBU6Zzz//XAMGDNCIESO0atUqhYeHKyoqSvv37/f+hgAAAAAA4AbkMjO72o1IceDAAQUGBmrZsmVq0KCBpLM9HapUqaKxY8em+5x58+apZcuW2rNnjwoXLixJmjhxogYPHqwDBw7Ix8dHgwcP1pw5c7Ru3TrneR06dNCRI0c0f/58SVLt2rVVs2ZNjR8/XpKUnJyskJAQPfrooxoyZMhF2x4XF6eAgAAdPXpU/v7+bvNCh8zxaDvseCk6w2W9WTcAAAAA4Np1oePQa0U2T5/wzTffXHB+69atL7kxR48elSTlz5/fbfrUqVP18ccfKygoSK1atdJTTz2lnDlzSpKWL1+uSpUqOYGDJEVFRalnz55av369qlatquXLlysyMtKtzqioKPXr10+SdPr0aa1cuVJDhw515mfJkkWRkZFavnx5um1NSEhQQkKC8zguLu6S1xsAAAAAgBtRhkKH+Ph45cqVS5LUtm1buVwuSdK5nSRcLpeSkpIuqSHJycnq16+f6tWrp4oVKzrT7733XhUvXlxFixbVmjVrNHjwYG3atElffvmlJCk2NtYtcJDkPI6Njb1gmbi4OJ08eVKHDx9WUlJSumU2btyYbntHjhypZ5555pLWFQAAAACA/4IMjelQtWpVDRgwQJLUsWNH5cmTR88995xOnjyp5ORk5+9SAwdJ6tWrl9atW6fPPvvMbXqPHj0UFRWlSpUqqWPHjvrwww81c+ZMbd269ZKXlRmGDh2qo0ePOn+7du26qu0BAAAAAOBak6HQ4bffftMbb7yhI0eO6KOPPtLixYv17bffqmzZspo6deplN6J3796aPXu2vvvuOwUHB1+wbO3atSVJW7ZskSQFBQVp3759bmVSHgcFBV2wjL+/v3LkyKGCBQsqa9as6ZZJqeNcvr6+8vf3d/sDAAAAAAD/k6HQ4cyZM3K5XMqW7ezVGNWrV9fSpUs1btw4Pfvss6pRo4a+//57jxduZurdu7dmzpypJUuWqESJEhd9TkxMjCSpSJEikqSIiAitXbvW7S4TCxculL+/v8LCwpwyixcvdqtn4cKFioiIkCT5+PioevXqbmWSk5O1ePFipwwAAAAAAPBMhkKHhg0b6sUXX1Tu3LkVFxfn/DVu3Fg//fST2rRpo5YtW6pt27YeLbxXr176+OOP9cknnyhPnjyKjY1VbGysTp48KUnaunWrnnvuOa1cuVI7duzQN998o86dO6tBgwaqXLmyJKlp06YKCwtTp06dtHr1ai1YsEDDhg1Tr1695OvrK0l6+OGHtW3bNj3++OPauHGj3nzzTU2bNk39+/d32jJgwAC9++67mjJlijZs2KCePXsqPj5e999/v0frBAAAAAAAzsrQQJKpbzWZN29eZyDJ1MxMs2bN8mjhb731lqSzoUZqkyZNUteuXeXj46NFixZp7Nixio+PV0hIiNq3b69hw4Y5ZbNmzarZs2erZ8+eioiIUK5cudSlSxc9++yzTpkSJUpozpw56t+/v8aNG6fg4GC99957ioqKcsrcfffdOnDggIYPH67Y2FhVqVJF8+fPTzO4JAAAAAAAyBiXnXsLiotYtmzZBeffeuutl9Wg69WF7o8aOmSOR3XteCk6w2W9WTcAAAAA4Np1oePQa0WGejqk9l8NFQAAAAAAgGcyNKbDuX744Qfdd999qlu3rnbv3i1J+uijj/Tjjz9mauMAAAAAAMD1y+PQ4YsvvlBUVJRy5MihVatWKSEhQZJ09OhRvfjii5neQAAAAAAAcH3yOHR4/vnnNXHiRL377rvKnj27M71evXpatWpVpjYOAAAAAABcvzwOHTZt2qQGDRqkmR4QEKAjR45kRpsAAAAAAMANwOPQISgoSFu2bEkz/ccff1TJkiUzpVEAAAAAAOD653Ho8OCDD6pv37765Zdf5HK5tGfPHk2dOlWPPfaYevbs6Y02AgAAAACA65DHt8wcMmSIkpOT1aRJE504cUINGjSQr6+vHnvsMT366KPeaCMAAAAAALgOeRw6uFwuPfnkkxo0aJC2bNmi48ePKywsTLlz5/ZG+wAAAAAAwHXK48srHnjgAR07dkw+Pj4KCwtTrVq1CBwAAAAAAEAaHocOU6ZM0cmTJ73RFgAAAAAAcAPxOHQwM7lcLm+0BQAAAAAA3EA8HtNBkvr06aMcOXKkO++DDz64rAYBAAAAAIAbwyWFDmYmM8vstgAAAAAAgBvIJd294vXXX1dgYKA32gMAAAAAAG4QlzSmAwAAAAAAwMV4HDp06dLlvOM5AAAAAAAApPD48opJkyZ5ox0AAAAAAOAGc0kDSf7++++aNm2adu7cqdOnT7vN+/LLLzOlYQAAAAAA4Prmcejw2WefqXPnzoqKitK3336rpk2b6q+//tK+fft0++23e6ONuEpCh8zxqPyOl6K91BIAAAAAwPXI4zEdXnzxRY0ZM0azZs2Sj4+Pxo0bp40bN+quu+5SsWLFvNFGAAAAAABwHfI4dNi6dauio8+e0fbx8VF8fLxcLpf69++vd955J9MbCAAAAAAArk8ehw758uXTsWPHJEk33XST1q1bJ0k6cuSITpw4kbmtAwAAAAAA1y2Px3Ro0KCBFi5cqEqVKunOO+9U3759tWTJEi1cuFBNmjTxRhsBAAAAAMB1yOPQYfz48Tp16pQk6cknn1T27Nn1888/q3379ho2bFimNxAAAAAAAFyfPA4d8ufP7/w/S5YsGjJkSKY2CAAAAAAA3Bg8HtMha9as2r9/vzfaAgAAAAAAbiAehw5m5o12AAAAAACAG4zHoYMkuVyuzG4HAAAAAAC4wXg8poMkBQUFnXdeUlLSJTcGAAAAAADcOC4pdJgxY4bbgJIAAAAAAADn8jh0cLlcqlevngIDA73RHgAAAAAAcINgIEkAAAAAAOAVHocO3333HZdWAAAAAACAi/I4dIiPj9fixYvTTF+wYIHmzZuXKY0CAAAAAADXP49DhyFDhqR7hwoz05AhQzKlUQAAAAAA4PrnceiwefNmhYWFpZlerlw5bdmyJVMaBQAAAAAArn8ehw4BAQHatm1bmulbtmxRrly5MqVRAAAAAADg+udx6NCmTRv169dPW7dudaZt2bJFAwcOVOvWrTO1cQAAAAAA4PrlcegwatQo5cqVS+XKlVOJEiVUokQJlS9fXgUKFNCrr77qjTYCAAAAAIDrUDZPnxAQEKCff/5ZCxcu1OrVq5UjRw5VrlxZDRo08Eb7AAAAAADAdcrj0EGSXC6XmjZtqqZNm2Z2ewAAAAAAwA3C48srAAAAAAAAMoLQAQAAAAAAeAWhAwAAAAAA8ApCBwAAAAAA4BWXNJBkUlKSvvrqK23YsEGSVKFCBbVu3VpZs2bN1MYBAAAAAIDrl8ehw5YtWxQdHa1//vlHN998syRp5MiRCgkJ0Zw5c1SqVKlMbyQAAAAAALj+eHx5RZ8+fVSyZEnt2rVLq1at0qpVq7Rz506VKFFCffr08UYbAQAAAADAdcjj0GHZsmUaNWqU8ufP70wrUKCAXnrpJS1btsyjukaOHKmaNWsqT548CgwMVNu2bbVp0ya3MqdOnVKvXr1UoEAB5c6dW+3bt9e+ffvcyuzcuVPR0dHKmTOnAgMDNWjQICUmJrqVWbp0qapVqyZfX1+VLl1akydPTtOeCRMmKDQ0VH5+fqpdu7Z+/fVXj9YHAAAAAAD8j8ehg6+vr44dO5Zm+vHjx+Xj4+NRXcuWLVOvXr20YsUKLVy4UGfOnFHTpk0VHx/vlOnfv79mzZql6dOna9myZdqzZ4/atWvnzE9KSlJ0dLROnz6tn3/+WVOmTNHkyZM1fPhwp8z27dsVHR2tRo0aKSYmRv369VP37t21YMECp8znn3+uAQMGaMSIEVq1apXCw8MVFRWl/fv3e7ROAAAAAADgLJeZmSdP6Ny5s1atWqX3339ftWrVkiT98ssvevDBB1W9evV0exBk1IEDBxQYGKhly5apQYMGOnr0qAoVKqRPPvlEd9xxhyRp48aNKl++vJYvX646depo3rx5atmypfbs2aPChQtLkiZOnKjBgwfrwIED8vHx0eDBgzVnzhytW7fOWVaHDh105MgRzZ8/X5JUu3Zt1axZU+PHj5ckJScnKyQkRI8++qiGDBmSpq0JCQlKSEhwHsfFxSkkJERHjx6Vv7+/W9nQIXM82g47XorOcNnrtW4AAAAAwOWJi4tTQEBAuseh1wqPezq8/vrrKlWqlCIiIuTn5yc/Pz/Vq1dPpUuX1rhx4y6rMUePHpUk59KNlStX6syZM4qMjHTKlCtXTsWKFdPy5cslScuXL1elSpWcwEGSoqKiFBcXp/Xr1ztlUteRUialjtOnT2vlypVuZbJkyaLIyEinzLlGjhypgIAA5y8kJOSy1h0AAAAAgBuNx3evyJs3r77++mtt3rxZGzdulCSVL19epUuXvqyGJCcnq1+/fqpXr54qVqwoSYqNjZWPj4/y5s3rVrZw4cKKjY11yqQOHFLmp8y7UJm4uDidPHlShw8fVlJSUrplUtbxXEOHDtWAAQOcxyk9HQAAAAAAwFkehw4pypQpozJlykg6O67C5erVq5fWrVunH3/88bLruhJ8fX3l6+t7tZsBAAAAAMA1y+PLK7Zv36577rlHPXv21OHDh9W6dWv5+vrq5ptv1po1ay6pEb1799bs2bP13XffKTg42JkeFBSk06dP68iRI27l9+3bp6CgIKfMuXezSHl8sTL+/v7KkSOHChYsqKxZs6ZbJqUOAAAAAADgGY9Dh4ceekgbNmzQunXr1LhxY50+fVpff/21wsLC1K9fP4/qMjP17t1bM2fO1JIlS1SiRAm3+dWrV1f27Nm1ePFiZ9qmTZu0c+dORURESJIiIiK0du1at7tMLFy4UP7+/goLC3PKpK4jpUxKHT4+PqpevbpbmeTkZC1evNgpAwAAAAAAPOPx5RW//PKLfvjhBxUvXlz58+fXb7/9pmrVqql06dKqXbu2R3X16tVLn3zyib7++mvlyZPHGYMhICBAOXLkUEBAgLp166YBAwYof/788vf316OPPqqIiAjVqVNHktS0aVOFhYWpU6dOGjVqlGJjYzVs2DD16tXLufzh4Ycf1vjx4/X444/rgQce0JIlSzRt2jTNmfO/uzMMGDBAXbp0UY0aNVSrVi2NHTtW8fHxuv/++z3dRAAAAAAAQJcQOhw7dkxFihRRQECAcubM6QzymDdvXh07dsyjut566y1JUsOGDd2mT5o0SV27dpUkjRkzRlmyZFH79u2VkJCgqKgovfnmm07ZrFmzavbs2erZs6ciIiKUK1cudenSRc8++6xTpkSJEpozZ4769++vcePGKTg4WO+9956ioqKcMnfffbcOHDig4cOHKzY2VlWqVNH8+fPTDC4JAAAAAAAy5pIGkpw/f74CAgKcSxDWrVuXZtyFjDCzi5bx8/PThAkTNGHChPOWKV68uObOnXvBeho2bKg//vjjgmV69+6t3r17X7RNAAAAAADg4i4pdOjSpYvz/4ceesj5v8vluvwWAQAAAACAG4LHoUNycrI32gEAAAAAAG4wHt+94sMPP1RCQoI32gIAAAAAAG4gHocO999/v44ePeqNtgAAAAAAgBuIx6FDRgZ/BAAAAAAAuKSBJKdNmyZ/f/9053Xu3PmyGgQAAAAAAG4MlxQ6jBo1SlmzZk0z3eVyEToAAAAAAABJlxg6/P777woMDMzstgAAAAAAgBuIx2M6AAAAAAAAZITHoUPx4sXTvbQCAAAAAAAgNY8vr9i+fbs32gEAAAAAAG4wHvd06NOnj15//fU008ePH69+/fplRpsAAAAAAMANwOPQ4YsvvlC9evXSTK9bt65mzJiRKY0CAAAAAADXP49Dh3///VcBAQFppvv7++vgwYOZ0igAAAAAAHD98zh0KF26tObPn59m+rx581SyZMlMaRQAAAAAALj+eTyQ5IABA9S7d28dOHBAjRs3liQtXrxYo0eP1tixYzO7fQAAAAAA4DrlcejwwAMPKCEhQS+88IKee+45SVJoaKjeeustde7cOdMbCAAAAAAArk8ehw6S1LNnT/Xs2VMHDhxQjhw5lDt37sxuFwAAAAAAuM55PKaDJCUmJmrRokX68ssvZWaSpD179uj48eOZ2jgAAAAAAHD98rinw99//61mzZpp586dSkhI0G233aY8efLo5ZdfVkJCgiZOnOiNdgIAAAAAgOuMxz0d+vbtqxo1aujw4cPKkSOHM/3222/X4sWLM7VxAAAAAADg+uVxT4cffvhBP//8s3x8fNymh4aGavfu3ZnWMAAAAAAAcH3zuKdDcnKykpKS0kz/559/lCdPnkxpFAAAAAAAuP55HDo0bdpUY8eOdR67XC4dP35cI0aMUIsWLTKzbQAAAAAA4Drm8eUVo0ePVlRUlMLCwnTq1Cnde++92rx5swoWLKhPP/3UG20EAAAAAADXIY9Dh+DgYK1evVqfffaZ1qxZo+PHj6tbt27q2LGj28CSAAAAAADgv83j0EGSsmXLpvvuuy+z2wIAAAAAAG4gHocO33zzzQXnt27d+pIbAwAAAAAAbhwehw5t27Z1e+xyuWRmzv/Tu7MFAAAAAAD477mkW2am/suZM6e2bNly3ltpAgAAAACA/yaPQ4dzuVyuzGgHAAAAAAC4wVxW6LBjxw7Fx8crT548mdUeAAAAAABwg/B4TId27dpJkk6ePKkVK1aoSZMmKlSoUKY3DDe+0CFzMlx2x0vRXmwJAAAAAMAbPA4dAgICJElBQUFq1aqVHnjggUxvFAAAAAAAuP55HDpMmjTJG+0AAAAAAAA3GI9Dh7i4uAvO9/f3v+TGAAAAAACAG4fHoUPevHnTvWOFmcnlcnHbTAAAAAAAIOkSQoeSJUtq//79GjJkiOrVq+eNNgEAAAAAgBuAx6HDhg0b9MYbb+iFF17QH3/8oVGjRqlEiRLeaBsAAAAAALiOZfH0CdmzZ9eAAQO0efNm3XTTTapcubIGDhyoI0eOeKF5AAAAAADgeuVx6JAif/78Gjt2rP744w/t2LFDpUuX1tixYzOxaQAAAAAA4Hrm8eUVVatWTTOQpJkpISFBAwcOVL9+/TKrbQAAAAAA4DrmcejQtm1bLzQDAAAAAADcaDwOHUaMGOGNdgAAAAAAgBuMx6FDXFzcBef7+/tfcmMAAAAAAMCNw+PQIW/evGnGdJDOjuvgcrmUlJSUKQ0DAAAAAADXN49DB0maMWOG8ufPn9ltAQAAAAAAN5BLCh3q1aunwMDAzG4LAAAAAAC4gWS5lCf9+eef2rBhg3bu3KnTp09f8sK///57tWrVSkWLFpXL5dJXX33lNr9r165yuVxuf82aNXMrc+jQIXXs2FH+/v7KmzevunXrpuPHj7uVWbNmjerXry8/Pz+FhIRo1KhRadoyffp0lStXTn5+fqpUqZLmzp17yesFAAAAAAAuMXRo0qSJKlSooBIlSihXrlyqVKmSxowZ43E98fHxCg8P14QJE85bplmzZtq7d6/z9+mnn7rN79ixo9avX6+FCxdq9uzZ+v7779WjRw9nflxcnJo2barixYtr5cqVeuWVV/T000/rnXfeccr8/PPPuueee9StWzf98ccfatu2rdq2bat169Z5vE4AAAAAAOAsjy+v2L59u8xMZ86cUVxcnPbs2aNff/1VTz31lBITEzVo0KAM19W8eXM1b978gmV8fX0VFBSU7rwNGzZo/vz5+u2331SjRg1J0htvvKEWLVro1VdfVdGiRTV16lSdPn1aH3zwgXx8fFShQgXFxMTotddec8KJcePGqVmzZk7bn3vuOS1cuFDjx4/XxIkTM7w+AAAAAADgfzwOHYoXL+72uHr16mrVqpXKli2rZ5991qPQISOWLl2qwMBA5cuXT40bN9bzzz+vAgUKSJKWL1+uvHnzOoGDJEVGRipLliz65ZdfdPvtt2v58uVq0KCBfHx8nDJRUVF6+eWXdfjwYeXLl0/Lly/XgAED3JYbFRWV5nKP1BISEpSQkOA8vtitRHFlhQ6Z41H5HS9Fe6klAAAAAPDfdUmXV6SnQ4cO+vzzzzOrOklnL6348MMPtXjxYr388statmyZmjdv7tyWMzY2Ns2AltmyZVP+/PkVGxvrlClcuLBbmZTHFyuTMj89I0eOVEBAgPMXEhJyeSsLAAAAAMAN5pLuXiFJK1eu1IYNGyRJYWFhqlatmqpVq5ZpDZPOBhkpKlWqpMqVK6tUqVJaunSpmjRpkqnL8tTQoUPdekfExcURPAAAAAAAkIrHocP+/fvVoUMHLV26VHnz5pUkHTlyRI0aNdJnn32mQoUKZXYbHSVLllTBggW1ZcsWNWnSREFBQdq/f79bmcTERB06dMgZByIoKEj79u1zK5Py+GJlzjeWhHR2rAlfX9/LXicAAAAAAG5UHl9e8eijj+rYsWNav369Dh06pEOHDmndunWKi4tTnz59vNFGxz///KN///1XRYoUkSRFREToyJEjWrlypVNmyZIlSk5OVu3atZ0y33//vc6cOeOUWbhwoW6++Wbly5fPKbN48WK3ZS1cuFARERFeXR8AAAAAAG5kHocO8+fP15tvvqny5cs708LCwjRhwgTNmzfPo7qOHz+umJgYxcTESDp7Z4yYmBjt3LlTx48f16BBg7RixQrt2LFDixcvVps2bVS6dGlFRUVJksqXL69mzZrpwQcf1K+//qqffvpJvXv3VocOHVS0aFFJ0r333isfHx9169ZN69ev1+eff65x48a5XRrRt29fzZ8/X6NHj9bGjRv19NNP6/fff1fv3r093TwAAAAAAOD/eRw6JCcnK3v27GmmZ8+eXcnJyR7V9fvvv6tq1aqqWrWqJGnAgAGqWrWqhg8frqxZs2rNmjVq3bq1ypYtq27duql69er64Ycf3C5rmDp1qsqVK6cmTZqoRYsWuuWWW/TOO+848wMCAvTtt99q+/btql69ugYOHKjhw4c7t8uUpLp16+qTTz7RO++8o/DwcM2YMUNfffWVKlas6OnmAQAAAAAA/8/jMR0aN26svn376tNPP3V6E+zevVv9+/f3eHDHhg0byszOO3/BggUXrSN//vz65JNPLlimcuXK+uGHHy5Y5s4779Sdd9550eUBAAAAAICM8binw/jx4xUXF6fQ0FCVKlVKpUqVUokSJRQXF6c33njDG20EAAAAAADXIY97OoSEhGjVqlVatGiRNm7cKOns2AqRkZGZ3jgAAAAAAHD9ynDocOzYMeXJk0eS5HK5dNttt+m2225zK/Pbb7+pZs2amdtCAAAAAABwXcrw5RVNmzbV8ePH052XmJioYcOGqV69epnWMAAAAAAAcH3LcOhw7NgxRUZGKi4uzm36unXrVLNmTU2ePFlfffVVZrcPAAAAAABcpzIcOnz33XeKj4/Xbbfdpri4OJmZXn75ZdWoUUPly5fX2rVr1aJFC2+2FQAAAAAAXEcyPKZDoUKFtGTJEkVGRqpx48by9fXV5s2b9fHHH+uOO+7wZhsBAAAAAMB1yKO7VxQqVEiLFy9WZGSk1q1bp5iYGJUrV85bbQMAAAAAANexDF9ekaJgwYJasmSJwsLCdO+99+rw4cPeaBcAAAAAALjOZbinQ7t27dwe+/v76/vvv1etWrVUqVIlZ/qXX36Zea0DAAAAAADXrQyHDgEBAWkelyhRItMbBAAAAAAAbgwZDh0mTZrkzXYAAAAAAIAbjMdjOgAAAAAAAGQEoQMAAAAAAPAKQgcAAAAAAOAVhA4AAAAAAMArCB0AAAAAAIBXEDoAAAAAAACvIHQAAAAAAABeQegAAAAAAAC8gtABAAAAAAB4BaEDAAAAAADwCkIHAAAAAADgFYQOAAAAAADAKwgdAAAAAACAVxA6AAAAAAAAryB0AAAAAAAAXkHoAAAAAAAAvILQAQAAAAAAeAWhAwAAAAAA8ApCBwAAAAAA4BWEDgAAAAAAwCsIHQAAAAAAgFcQOgAAAAAAAK8gdAAAAAAAAF5B6AAAAAAAALyC0AEAAAAAAHgFoQMAAAAAAPAKQgcAAAAAAOAVhA4AAAAAAMArCB0AAAAAAIBXEDoAAAAAAACvIHQAAAAAAABeQegAAAAAAAC8gtABAAAAAAB4BaEDAAAAAADwCkIHAAAAAADgFYQOAAAAAADAKwgdAAAAAACAV1zV0OH7779Xq1atVLRoUblcLn311Vdu881Mw4cPV5EiRZQjRw5FRkZq8+bNbmUOHTqkjh07yt/fX3nz5lW3bt10/PhxtzJr1qxR/fr15efnp5CQEI0aNSpNW6ZPn65y5crJz89PlSpV0ty5czN9fQEAAAAA+C+5qqFDfHy8wsPDNWHChHTnjxo1Sq+//romTpyoX375Rbly5VJUVJROnTrllOnYsaPWr1+vhQsXavbs2fr+++/Vo0cPZ35cXJyaNm2q4sWLa+XKlXrllVf09NNP65133nHK/Pzzz7rnnnvUrVs3/fHHH2rbtq3atm2rdevWeW/lAQAAAAC4wWW7mgtv3ry5mjdvnu48M9PYsWM1bNgwtWnTRpL04YcfqnDhwvrqq6/UoUMHbdiwQfPnz9dvv/2mGjVqSJLeeOMNtWjRQq+++qqKFi2qqVOn6vTp0/rggw/k4+OjChUqKCYmRq+99poTTowbN07NmjXToEGDJEnPPfecFi5cqPHjx2vixInpti8hIUEJCQnO47i4uEzbLgAAAAAA3Aiu2TEdtm/frtjYWEVGRjrTAgICVLt2bS1fvlyStHz5cuXNm9cJHCQpMjJSWbJk0S+//OKUadCggXx8fJwyUVFR2rRpkw4fPuyUSb2clDIpy0nPyJEjFRAQ4PyFhIRc/koDAAAAAHADuWZDh9jYWElS4cKF3aYXLlzYmRcbG6vAwEC3+dmyZVP+/PndyqRXR+plnK9Myvz0DB06VEePHnX+du3a5ekqAgAAAABwQ7uql1dcz3x9feXr63u1mwEAAAAAwDXrmu3pEBQUJEnat2+f2/R9+/Y584KCgrR//363+YmJiTp06JBbmfTqSL2M85VJmQ8AAAAAADx3zYYOJUqUUFBQkBYvXuxMi4uL0y+//KKIiAhJUkREhI4cOaKVK1c6ZZYsWaLk5GTVrl3bKfP999/rzJkzTpmFCxfq5ptvVr58+ZwyqZeTUiZlOQAAAAAAwHNXNXQ4fvy4YmJiFBMTI+ns4JExMTHauXOnXC6X+vXrp+eff17ffPON1q5dq86dO6to0aJq27atJKl8+fJq1qyZHnzwQf3666/66aef1Lt3b3Xo0EFFixaVJN17773y8fFRt27dtH79en3++ecaN26cBgwY4LSjb9++mj9/vkaPHq2NGzfq6aef1u+//67evXtf6U0CAAAAAMAN46qO6fD777+rUaNGzuOUIKBLly6aPHmyHn/8ccXHx6tHjx46cuSIbrnlFs2fP19+fn7Oc6ZOnarevXurSZMmypIli9q3b6/XX3/dmR8QEKBvv/1WvXr1UvXq1VWwYEENHz7cuV2mJNWtW1effPKJhg0bpieeeEJlypTRV199pYoVK16BrQAAAAAAwI3pqoYODRs2lJmdd77L5dKzzz6rZ5999rxl8ufPr08++eSCy6lcubJ++OGHC5a58847deedd164wQAAAAAAIMOu2TEdAAAAAADA9Y3QAQAAAAAAeAWhAwAAAAAA8ApCBwAAAAAA4BWEDgAAAAAAwCsIHQAAAAAAgFcQOgAAAAAAAK8gdAAAAAAAAF5B6AAAAAAAALyC0AEAAAAAAHhFtqvdAOB6Ezpkjkfld7wU7aWWAAAAAMC1jZ4OAAAAAADAKwgdAAAAAACAV3B5BXAN4dINAAAAADcSejoAAAAAAACvIHQAAAAAAABeQegAAAAAAAC8gtABAAAAAAB4BaEDAAAAAADwCkIHAAAAAADgFYQOAAAAAADAKwgdAAAAAACAVxA6AAAAAAAAryB0AAAAAAAAXkHoAAAAAAAAvILQAQAAAAAAeAWhAwAAAAAA8ApCBwAAAAAA4BXZrnYDAFw5oUPmZLjsjpeivdgSAAAAAP8F9HQAAAAAAABeQegAAAAAAAC8gssrAGQKTy7dkLh8AwAAAPgvoKcDAAAAAADwCno6ALjm0YsCAAAAuD7R0wEAAAAAAHgFoQMAAAAAAPAKQgcAAAAAAOAVhA4AAAAAAMArCB0AAAAAAIBXEDoAAAAAAACvIHQAAAAAAABeQegAAAAAAAC8gtABAAAAAAB4BaEDAAAAAADwCkIHAAAAAADgFYQOAAAAAADAKwgdAAAAAACAVxA6AAAAAAAAr7imQ4enn35aLpfL7a9cuXLO/FOnTqlXr14qUKCAcufOrfbt22vfvn1udezcuVPR0dHKmTOnAgMDNWjQICUmJrqVWbp0qapVqyZfX1+VLl1akydPvhKrBwAAAADADS3b1W7AxVSoUEGLFi1yHmfL9r8m9+/fX3PmzNH06dMVEBCg3r17q127dvrpp58kSUlJSYqOjlZQUJB+/vln7d27V507d1b27Nn14osvSpK2b9+u6OhoPfzww5o6daoWL16s7t27q0iRIoqKirqyKwvgigsdMsej8jteivZSSwAAAIAbzzUfOmTLlk1BQUFpph89elTvv/++PvnkEzVu3FiSNGnSJJUvX14rVqxQnTp19O233+rPP//UokWLVLhwYVWpUkXPPfecBg8erKefflo+Pj6aOHGiSpQoodGjR0uSypcvrx9//FFjxowhdABw2TwJNQg0AAAAcKO55kOHzZs3q2jRovLz81NERIRGjhypYsWKaeXKlTpz5owiIyOdsuXKlVOxYsW0fPly1alTR8uXL1elSpVUuHBhp0xUVJR69uyp9evXq2rVqlq+fLlbHSll+vXrd8F2JSQkKCEhwXkcFxeXOSsMABlELw0AAABc667pMR1q166tyZMna/78+Xrrrbe0fft21a9fX8eOHVNsbKx8fHyUN29et+cULlxYsbGxkqTY2Fi3wCFlfsq8C5WJi4vTyZMnz9u2kSNHKiAgwPkLCQm53NUFAAAAAOCGck33dGjevLnz/8qVK6t27doqXry4pk2bphw5clzFlklDhw7VgAEDnMdxcXEEDwBuGPSiAAAAQGa4pns6nCtv3rwqW7astmzZoqCgIJ0+fVpHjhxxK7Nv3z5nDIigoKA0d7NIeXyxMv7+/hcMNnx9feXv7+/2BwAAAAAA/ue6Ch2OHz+urVu3qkiRIqpevbqyZ8+uxYsXO/M3bdqknTt3KiIiQpIUERGhtWvXav/+/U6ZhQsXyt/fX2FhYU6Z1HWklEmpAwAAAAAAXJpr+vKKxx57TK1atVLx4sW1Z88ejRgxQlmzZtU999yjgIAAdevWTQMGDFD+/Pnl7++vRx99VBEREapTp44kqWnTpgoLC1OnTp00atQoxcbGatiwYerVq5d8fX0lSQ8//LDGjx+vxx9/XA888ICWLFmiadOmac4cz7oWAwAyxtuXbnjzjiFcdgIAAOCZazp0+Oeff3TPPffo33//VaFChXTLLbdoxYoVKlSokCRpzJgxypIli9q3b6+EhARFRUXpzTffdJ6fNWtWzZ49Wz179lRERIRy5cqlLl266Nlnn3XKlChRQnPmzFH//v01btw4BQcH67333uN2mQCAK4pAAwAA3Iiu6dDhs88+u+B8Pz8/TZgwQRMmTDhvmeLFi2vu3LkXrKdhw4b6448/LqmNAAAAAAAgfdfVmA4AAAAAAOD6QegAAAAAAAC84pq+vAIAAFw+xosAAABXCz0dAAAAAACAV9DTAQAAXJbr9Tal9AABAMD76OkAAAAAAAC8gp4OAAAAmczbvSi82bsEAIDMRE8HAAAAAADgFYQOAAAAAADAKwgdAAAAAACAVzCmAwAAABzc1QMAkJkIHQAAAHBFXM+3QGXwTgC4NIQOAAAAwFV0PYcxAHAxjOkAAAAAAAC8gp4OAAAAADxGLwoAGUHoAAAAAOCa481xNAhMgCuH0AEAAAAAMsn1PEYHA6bCGwgdAAAAAABeRe+S/y5CBwAAAADAdYveJdc27l4BAAAAAAC8gtABAAAAAAB4BaEDAAAAAADwCkIHAAAAAADgFYQOAAAAAADAKwgdAAAAAACAVxA6AAAAAAAAryB0AAAAAAAAXkHoAAAAAAAAvILQAQAAAAAAeAWhAwAAAAAA8ApCBwAAAAAA4BWEDgAAAAAAwCsIHQAAAAAAgFcQOgAAAAAAAK8gdAAAAAAAAF5B6AAAAAAAALyC0AEAAAAAAHgFoQMAAAAAAPAKQgcAAAAAAOAVhA4AAAAAAMArCB0AAAAAAIBXEDoAAAAAAACvIHQAAAAAAABeQegAAAAAAAC8gtABAAAAAAB4BaEDAAAAAADwCkIHAAAAAADgFYQOAAAAAADAKwgdAAAAAACAVxA6nGPChAkKDQ2Vn5+fateurV9//fVqNwkAAAAAgOsSoUMqn3/+uQYMGKARI0Zo1apVCg8PV1RUlPbv33+1mwYAAAAAwHUn29VuwLXktdde04MPPqj7779fkjRx4kTNmTNHH3zwgYYMGeJWNiEhQQkJCc7jo0ePSpLi4uLS1JuccMKjdqRXx/lcr3V7Wr836/a0/uu1bk/rZ5tfft2e1s82v/y6Pa2fbX75dXtaP9v88uv2tH62+eXX7Wn9bPPLr9vT+tnml1+3p/WzzS+/bk/rT6/ulGlm5tFyrySXXcutu4JOnz6tnDlzasaMGWrbtq0zvUuXLjpy5Ii+/vprt/JPP/20nnnmmSvcSgAAAAAA3O3atUvBwcFXuxnpoqfD/zt48KCSkpJUuHBht+mFCxfWxo0b05QfOnSoBgwY4DxOTk7WoUOHVKBAAblcrosuLy4uTiEhIdq1a5f8/f0vfwVugLq9XT91X/n6qfvK10/dV75+6r7y9VP3la+fuq98/dR95eun7itfP3Vffv1mpmPHjqlo0aKZ3o7MQuhwiXx9feXr6+s2LW/evB7X4+/v75U36vVct7frp+4rXz91X/n6qfvK10/dV75+6r7y9VP3la+fuq98/dR95eun7surPyAgwGttyAwMJPn/ChYsqKxZs2rfvn1u0/ft26egoKCr1CoAAAAAAK5fhA7/z8fHR9WrV9fixYudacnJyVq8eLEiIiKuYssAAAAAALg+cXlFKgMGDFCXLl1Uo0YN1apVS2PHjlV8fLxzN4vM5OvrqxEjRqS5ROO/XLe366fuK18/dV/5+qn7ytdP3Ve+fuq+8vVT95Wvn7qvfP3UfeXrp+6rU/+Vxt0rzjF+/Hi98sorio2NVZUqVfT666+rdu3aV7tZAAAAAABcdwgdAAAAAACAVzCmAwAAAAAA8ApCBwAAAAAA4BWEDgAAAAAAwCsIHQAAAPCfxhBnAOA9hA7/UUlJSZL4kQUA4FqWnJwsSUpISLjk3+wdO3Zo9erVmdksj6Ssw7Voy5Yt2rJli1wu19VuCq5jR44c0alTp652M65bKccluDZs3rxZUuYeJxI6XIMSExN15swZr9W/Y8cONWzYUPHx8Zn2IxsXF8eXLf4z9uzZowMHDlztZmSq9H5YrnQouW/fvgvO91Z7Utd7LQWxV7tdx44dU1xcXJrpH330kdasWXPF25MZrqXXNyOSk5OVJUsWrVy5Unfeeaf279/vcR0xMTGqXr261q9f74UWXlzKOmzdulULFy68pDq89bqdOnVKDz74oKZPn+7V5VxJHLyltXXrVn3zzTfO4/nz52vdunWZVv/u3bsVGRl50d+wS5Hee/JyQrxr7f0xb948xcbGKmvWrNdc27zh5MmTV7sJF7Vo0SLdfPPNmjlzplwuV6Z9LxI6XGO2bNmiYcOG6b777tOKFSu8sow9e/bor7/+0uzZsyVd/o/sgQMHVK5cOX3wwQfXxYfpv+JG2Hm6FsXExCg4OFi//vrr1W5KpklOTpbL5VJsbKwWL16szz77TAkJCVf0zN/bb7+t/v376/Dhw2nmnTp1SomJiUpISHCmZeb7O/V6XktnO0+ePOkE0C6XS4mJiVds2Zs2bdJ9992nd955R7GxsZLObvMtW7bo5ZdfVkBAwBVrS0ZkZCc85X1+4sQJ7d+/X6dOnXLeR9fi92XKwXpMTIzq16+vkiVLqnDhwh7VsXr1atWrV0/dunXTvffe66WWnl/qdahSpYr+/vvvDD835b2flJQkl8vllQMSPz8/+fj4aMuWLZKuzOf/fO/VzHgPbt68WQ8//LCaNWumhx56SP/+++9l13m9O336tEaMGKFx48bp1KlT+vPPP9WuXTu9/vrr2rhxY6YsI3fu3Pr777+1a9euTKkvRcp31oEDBxQTE6Nly5ZJkrJkyeLx+2X79u164YUX1LVr16va6ym1hQsXKjo6WtWqVdPevXuvaPBwNb7zY2JiFBERod27d1/xZXuiRo0a6t27t+699159/fXXmRY8EDpcQ9auXavmzZsrKSlJt9xyi+rUqSNJOn78eKYup3LlyipTpoymTZsm6fJ/ZAsVKqTWrVvr8ccf16effnrFgodrcSfRU2bmlR2QlB+qgwcPatWqVZoxY4a+/fZbJSUlXdJOdnptvFrb/+OPP1a3bt20efNmZ4fqQuuUmQdqq1evVv369fX4448rOjr6osu+VB988IFmzZqlY8eOZVqd55NyULBu3Tq1bdtW48eP19q1a73a2+pc7777rnr27Km77rpL+fLlc5u3YcMGde3aVXXr1lXPnj21ZMkSSZl3cLBjxw6NGTNGXbp0UceOHTV16lRt27ZN0tX9jvnyyy/VoUMHNW7cWPfff78kKVu2bFekm/qaNWvUoEEDFS5cWCVLllRQUJCks9u8dOnS+uWXX1S8eHGtXr1af/zxh9fbc67Vq1dr7ty5GjlypGbOnKl//vlHWbJceHcm5X3+559/qn379mrQoIEaNmyo999/P9MCtsx8v6S0d8OGDapfv76GDRumsWPHerSMTZs2qXHjxurbt69GjRp1xS9xSFmHNWvWqF69eurZs6e6d++eoedu2rRJDz74oFq2bKkuXbro6NGjypo1a6auQ8pvQ8uWLZ0z1N7eRinbZOfOnXr77bc1duxY/fjjj5Iu/ztt9erVioiI0IEDB5QlSxZ98cUXuv322y97nyz1ey4+Pv6y6roafHx81KBBAy1fvlw7duxQWFiYPvjgAy1cuFDjxo277OAhOTlZWbNmVUBAgEehWkbqTfltbtasmVq2bKmmTZsqOjpaZubRgeDatWvVtGlT7dq1S+Hh4SpVqlSmtfNyZM+eXaGhofLx8VGVKlW0a9euKxI8pOwjS7piwdzq1atVt25dNW/eXDfddFOa9kj/64Wyfft2/f777zpx4sQVadu58ubNq+eff14PP/yw2rdvn3nBg+GasGnTJitQoIANGTLEzpw540x/9913bfDgwbZt27ZMWU5SUpKZmS1atMhy5cplc+bMyZT6zMwGDhxoPj4+9v7779uJEycuq94L+fvvv+3PP/9Ms3xPxcbG2oYNGzKrWZdt5syZNnXqVFuwYIEz7VLWL+U5a9assSpVqli1atXMz8/PXC6XValSxd577z07deqUmZklJydftL6EhATn/3/++adt2rTJo+dnluTkZDt69KgFBgaaj4+PtWzZ0tq2bWszZ850e7+ltGnPnj1uz//000/tmWeesRkzZtiBAwc8Xv7q1astR44c9sQTT7hNX7ly5SWszfkNGjTIgoKCbMyYMXbw4MFMrftcKdtq/fr1li9fPnvyySdt165dXl3muSZOnGhZs2a1mTNnuk0/fvy4xcTEWN68ea1bt27Wq1cvK1WqlNWoUcP++uuvTFn26tWrrWjRotayZUtr3Lix1alTx3LlymW1a9e2H374wcyu7Hs8xcSJEy137tz2xBNPWOfOnS1v3rzWpk2bK7LsHTt2WMmSJdO8z83+ty3OnDlj+/fvt5CQELv99tvtjz/+uCJtMzP74IMPrHTp0la5cmXLnz+/+fn5WcGCBW3mzJl2+vTpdJ+T8p0YExNj/v7+1rlzZ3vllVesWrVqVrhwYZs+ffpltyv19+S5v3+evodSf4fny5fP8uXLZz///LNH9cXExFiuXLnM5XJZ8+bNnTov5zfTEynL2bBhgxUoUMB69+6d4eXHxMRYvnz5rGvXrnb33XdbsWLFrFq1ahYfH58pbTv3ffLNN99YwYIFLTY2NlPqP5+UdV+9erUVL17catWqZcHBwZYnTx77+uuvL6vuNWvWWK5cueypp54yM7OTJ0/a0qVLLUuWLPbCCy9cdtvNzEaPHm1jx441syv3PrpcqT8rZcqUcXsfff755xYcHGwPP/zwJe8Lpq6/a9eu9thjj5mZWWJi4mW0+n/b948//rAcOXLYY489ZgsXLrTXX3/d8uXLZ3feeWeG69q8ebMFBgba4MGD3d77V+O37Vx///23Va1a1YYMGWL33nuvFSxY0NkHudxteD6p37svvvii9e3b1+u/YSmv47m/q0eOHLH33nvPpkyZYidPnjQzs2nTptlNN91khQsXtvLly9tHH31kcXFxXm3f+Rw+fNj69u1rWbNmta+++srMLu99Q+hwDUhISLBOnTrZfffd5/aF8PTTT1uWLFksf/78NmTIENuxY8dlLSflA5ycnGx79uyx+vXr24ABA8zs8n5AUock3g4e4uPjrUOHDlamTBlbu3atmV1a248ePWqNGze2u+66y9atW5fZzbyovn37Wrdu3ZzH/fr1s0KFCllwcLCFhYVZ9+7dnXmXsn5//vmnBQQE2KBBg2zDhg22fft2+/777y08PNwKFixor7zyittOcnoeffRR279/v/N4yJAhVrhwYStevLiFh4fbzp07PW5XZnj11VftlVdesR9++MFGjhxp+fPnt86dO9uzzz5rZ86csTNnzlj37t3tvvvus82bN5uZ2ZNPPmm5c+e2W265xbJkyWJdu3a1X375JcPL3Lx5s7lcLhsyZIjb9Oeee86yZMmSaQfq77//vhUuXNj++OOPK7ZTd/ToUWvSpInb+9HsyuxUTpkyxbJkyWKzZ892m96uXTt75plnLEeOHPb8888701955RVzuVz23Xffmdn/fvwu5Udw69atVqRIEXvyySedEM3M7K233rIKFSpY2bJl7ddff72Etbo8H3zwgWXLls3mzZtnZmcPkFq3bm3BwcFunzlv7ZB98MEH1rBhQzt06JAzbdu2bTZv3jx76qmnbPLkyc53/rx586xMmTLWsWNHW7VqlVfak9rUqVPNz8/PPv/8cydUnDVrlkVHR1vOnDnt448/NrP037vr16+3PHnypPkMBwcH21133XXJbUodEpud/X6Kioqy+++/3z7//HNnekbfo6kDkpw5c9odd9xh7du3t8jISFu4cGGG6vvjjz8sZ86c9sQTT9iaNWusePHi1rhx4ysWPKReh1y5clnu3LmtXLlyzmt2oeWvW7fO/Pz87LnnnjOzs/sXAwYMsBw5cjhB4MXquJCNGzfa3Xffbf3797dPP/3Utm7davPnz7f69es7ny9vbJ/UgUPOnDltyJAhFh8fbz/++KMVL17c6tSpY4cPH76kZcfHx1vt2rWtUKFCzrTk5GSLi4uzSpUqZVro0LBhQ7d9k+tByufk5MmTVrZsWcuRI4eNHDnSzpw5Y0lJSZccPGzatMnmzJljK1eutKSkJEtKSrKnn37abrnllkxr+/bt2y1Llixuv4EJCQn26KOPWrFixdz2z84nKSnJ+vTpY7fffrvb79zVDhxSv8/feecdq1Chgn377bfWtGlTK1y4sNeDBzOzxx9/3AoVKmRTp05NEzhm5vb5888/zcfHx1566SW36a+99pr16tXL6tWrZxUqVLBp06bZmjVrrFKlSjZ27Fj7448/7O6773YeHz16NNPadD7prfepU6esd+/emRI8EDpcA06dOmUVK1a01157zczOvphr1641f39/++WXX+zdd9+1kJAQGzx4sG3dutWjurdt22YTJ060Y8eOpZk3evRoy5Url8e9KLZs2WKzZs1Ksw4pvB08fPXVV9a6dWurVatWhoKH8304JkyYYLVq1bJu3bo59VwJx44ds2HDhlnFihVt4MCB9vfff1vjxo1tzZo19vfff9vbb79tFSpUsLvvvtt5jic7IidOnLB27dpZz54908w7fvy4RUREWNGiRZ0zZ+ltn927d1uxYsUsLCzMDh8+bEuXLrWQkBCbO3euzZgxw5o0aWJFihSx1atXX8IWuDwzZsywEiVK2Pbt2522vvrqq+ZyuSwyMtKefPJJe+mllywkJMR69+5tCxcutOjoaFu+fLmZne3lU6FCBbv33nttxYoVGVrmkiVLzOVy2eOPP+4EgyNHjrTAwEDn4DAzDBgwwLp06WJm/wvzvL1zsH37dgsLC0tz4J/i3OVnRnuSkpJs3759li9fPqtbt67b99qdd95pJUqUsPDwcCtVqpQTHJmZDR061Fwul7355pv2559/2u7du9PUm1Evv/yytWrVyk6dOpXmeR9//LGFhIRY165d7fjx45e4lp7btGmTBQcH26233uo2vX79+ubr62tfffWVxcTEePU9MXToUKtZs6bz+NNPP7WWLVtacHCwBQcHW6FChax8+fJ2+PBhMzP77rvvLDQ01OvBw969e61evXr21ltvmZl7iL5t2zZr37695ciRI82BQ3JysiUlJVnbtm0tZ86ctnTpUktOTnY+x127drXbb7/9kn6r3njjDStdurS9/fbbZmY2duxYy5cvnw0aNMjq1KljtWvXtmeeecatLRmxZcsWc7lc9uSTT5rZ2e+s6Ohoa9KkiS1atOiC9R07dswKFChgjz/+uDNt+fLlTvCQ8hxvBw+rVq1ygo+U165EiRIXDB6OHDliDRo0sKCgILfpffr0MZfLZe+++679/fffl9XjYc6cOfbII49YnTp1LDw83AoXLmw333yzuVwuGzZsmFPOG9tn9+7dlj9//jQhV0REhJUtW9aOHz/udhLHLGPvmVOnTtnXX39tBQsWtI4dOzrTt23bZr6+vvbpp5963Nb01v+xxx6z9u3be1zXlXb48GHn+8nsf+uyfft28/Pzs6JFi9qECROcbe1p8JCQkGBdunSxfPnyWWBgoIWFhVmdOnXsgQcesNDQ0AyFAReTnJxsn332meXOndt69erlNu/NN9+0MmXK2L59+zJUT+3atW3w4MHO43Pnm3n34D61uXPnWkxMjNsB9ObNm61Nmza2cOFC27lzpzVo0MDrwcP06dOtaNGitmbNGmfakSNH7M8//3TeL5nxO5tyotTPz89tX2bkyJGWK1cuW7JkiSUmJlrbtm2tVq1aNnr0aKdXWIqHHnrIKleu7PXgIWV9f/jhB3vttddswIABNnfuXKcHRp8+fS47eCB0uAbs2bPHcufObVOmTDGz/72Q//zzj1Nm4sSJli1bNps6dapHdXfs2NEKFChgRYsWtbFjx9rvv//uzDt27JjVrFnTBg0alOEP9aFDh8zX19dcLpc9/PDD9uKLL7oFDin69+9vPj4+NmnSpEzpErl161a37odz5861Fi1aWK1atZwvjdTrcPr0aXvjjTds/fr1bvUcO3bMLWSZPHmyVatW7bzBw+nTp2369Om2adOmy16H1A4ePGijRo2y8PBwa9mypXXo0MHZCY6Pj7cpU6ZYWFiYdejQwXlORj/ghw8ftvLly9ukSZPcnpfyA3vo0CErUKBAmjPb59q4caPVqlXLKlSoYB988IHTrTKl/dHR0RYUFOT2pe1NqV/f++67z23bhIWFWbNmzezxxx+3yMhIc7lc9tBDD1lISIh16tTJ2rRp43ZQ8e2331rFihUvGjyk3uZff/21+fj42LBhw+yFF16w/Pnz27fffpvmOXv37r2k9UtKSrLGjRtb69at3aaZnX0f/vHHH14J8b777jvz9fW1mJiY85Y5c+aMTZo06aK9YzIqZbt+8803VrJkSevRo4dt377d7rzzTqtYsaJt377d3n77batdu7Z1797d9u3bZ2PGjLEcOXJYZGSk9e3b14oWLWoVKlSwnj172oQJEzzeMWndurXdfvvtbtNS72j379/fChQokKEdu8xy8OBBGzlypFWtWtX69u1rZmZ33XWXFS5c2Hr27GmtW7e26tWrW9myZe3555/PlMsCzv1eWbZsmWXNmtXuueceu/322y0gIMAGDhxoP/74o33xxRfm6+trefPmtc8++8x5TurgwVvdVHfs2GFFihSxpUuXptv2X3/91YKCgpzee6lDCbOzl9PVq1fP6tevb998842ZmR04cMD8/PzsjTfeuKQ2/fnnn/bAAw9YRESEjR071h577DHnOyE2NtYGDx5sVatWtaefftp5zvkOZlOmHz9+3H755RdnfyDFokWLrGXLlhYZGXne4GHHjh22a9cu5/Kx1PNWrFjh9eAhpb6EhAS7+eabna7mZmcPLOrVq2clS5Y8b/AQHx9vY8eOtdq1a9s999xjZmZjxowxPz8/a9eunbVr187q1q1roaGhNnr0aPvkk08y3Lbdu3fb7NmznR48Ke+P33//3ZYtW2ZdunSxW2+91a1XQGZvnx9//NGaNGlitWvXdkLwF1980Vwul1WtWtXatWtnrVq1sjfeeMPWrVt30eUfOnTICUUTExNt7ty5ljdvXuvRo4ft3bvXQkJC0hywemrBggW2du1aO3nypE2ZMsUqVqyY5vLEK3XAmhEHDx60ggULWrNmzeyNN95wQseUbfnkk09a/vz5rVq1apcUPBw+fNg5CPv3339t9+7dNn36dHviiSfsrrvusmzZstmjjz6aKfu9R48etQ8//NCCgoLs/vvvNzOzffv2Wd68ee3ZZ5/NUB2nTp2ysmXLpunhda7u3bt7/eTbokWLzOVyWVBQkPXs2dM50Wp2trdvnTp1zOzs/n7jxo2taNGil93DO8W5v3Pvv/++NWzY0BITE23jxo02cuRICw0NtQoVKtgdd9yRqe/p1CdK9+3bZ+PHj7f8+fPbggULnPdfYmKiNWvWzHx8fKx27dpp9rUeeughq1atmo0cOdKrl1p88cUXlidPHrv//vvttttusxo1athdd91lZ86csaNHj1q/fv0sR44cbr34PEHocJUlJyfbwYMHnbNq516bnvJFuXv3bmvQoEGarpznExcXZ0ePHrX4+Hjbtm2bPfroo1a+fHkLCgqyxx57zOmmOHToUKtatarzBs/Ige2AAQPsiSeesNGjR9ttt91mJUqUsFdffTXNwVv//v3N5XLZRx99lKE2n8+ePXssICDAChUq5FZXesFDUlKSJSQk2COPPGL+/v5uyeKff/5pLVu2tGrVqrmd0Zg0aZITPKQ+gD516pT16NHD7RqzzJCyjQ8ePGgvvfSS3XzzzValShW3MvHx8fbhhx9apUqV7LbbbvOo/g0bNlhgYKDNmDHDzNyvX035/yOPPGJ169ZN9yxu6h2dTZs2WUREhLlcLhs6dGia9rds2dJuuummTB/XIMXBgwdt165dacaQ+Oyzz6x169a2a9cuCw8Pt3r16jnrcuzYMfvwww/tzJkzNnXqVMufP78VLVo0zUH1woULLTw83Jo1a5YmnDI7e5YoKirKbVyFmTNnOtdJz507N81zhgwZYp06dfIoHEh9tn7ChAlWtmzZNGOtbNu2zdq2bevRJSEZ9dtvv5nL5bJp06aZWfo7kJ999pl17dr1vNfMe2LRokX2xRdfOHV98803VqxYMQsJCbFSpUo53yOJiYk2efJkq169ugUFBVnOnDltxYoVbuNQzJkzx2rWrGlVqlTxaOckOTnZ7r77bmvatKmdPn3abZ1TdgJWrVplefLkcevS7S3bt2933meHDh2y0aNHW6VKlSw4ONgqVarkzEtKSrL9+/fbkCFD7NZbb7W6det6pdfDp59+arfddpu1bNnSvvvuOzty5Iht2LDBihYtaj169LBSpUrZ33//7bTJ7GzwUKZMGWvVqpVXekD98ssv5nK5nEte0lvvxo0bW4sWLZw2bdu2zT777DPnIGnfvn1Wp04da9KkiU2aNMluuukmt7NKnmzLlLJ//fWX3X///XbLLbdYmTJlnPGGzM7+dg0ZMsSqVauWoYOEnTt3WnR0tPPdbeb+/X2h4OHEiRN27733WokSJZxtlJiYeNHgIbPfPzt27LBVq1Y5+xSpf0+2bNmSbvCwY8cO++2338zsbOgyceJEq169uoWFhVm+fPlsxYoVzmd0165dNnz4cGvUqJEVKlQoQ6HgunXrLDw83Dp16mTz5893W+eU/+/fv9969+5ttWvXtpdffjlTtkV6ocHPP/9sbdq0sZo1a1qPHj0sMDDQuVxo3rx59uqrr1qxYsWsSJEi1qJFi/Me/GzYsMEiIyOtW7duTk/W5ORkmzt3rhUoUMBcLpf16dPngm25mFmzZllISIjlzJnTihcvbuXKlbMCBQrYCy+8YDNnznT2r44cOeJx3d6Qsh2mTJli3bp1sxw5clhERIQ9+eSTdujQIacXca5cuSwiIsLq1q1r48ePdwseSpQoYR07dkz3RNOGDRuscePG1r17d4uLi0v3s7N06VLLkSOH9ejRwwknPJWcnOzUfezYMZsyZYoVLlzY7rjjDitevPgFv7NSP05MTLSEhASLiIiwW265xW1fJnW5TZs2WZs2bTL95Nq56/P9999bpUqVLFeuXPb6669byZIlrUWLFvbyyy/b5s2brVGjRs4lZBs3brTKlStby5YtL3v5qd/7sbGxlpycbJ988okFBwfb3XffbaGhoXbffffZq6++am+//baVKlXqsnvtne9EaXBwsOXMmdN+++03Z7uk/D49/fTTTtgyZcqUNPuRHTt2tHr16tm///57WW07n7/++stKlSplEydONLOzv5+5cuVy6zV38uRJe+CBB6xgwYLp9qC/GEKHa8Tzzz9v2bJlsw8//NDM/veFkPJhGTx4sNWuXTtDAx2lHFxXrlzZbUcnJibGJk6caMWKFbNSpUpZ+/bt7euvvzaXy2Xjxo3LcFtfeOEFa9u2rfN4/Pjx9sgjj1iuXLnsueeec/ugPf300247YZfip59+skKFClmDBg3slltusffee8+Zlzp4SElpH3nkEcuZM6fbgfCaNWusUKFCNnToUPv111/THDyl1+Ohd+/elitXLmdn6HKl96O/b98+e/nll61AgQJuOwhmZ4OHt956yzp27HjRs2OpnThxwkqXLu12Fvfccr169bK6deummZ5yyYKZ2SeffGLHjx+3P//80xo3bmwlS5Z03n8p789///3X6tSpY61atbrAml+amTNn2t1332233367ffHFF27LPX36tJUrV865pOLff/9Nd1ucOXPGpk2b5iTr5/6ozpo1yzp16pTuczdv3myFChWy+vXru13fPm/ePMuRI4cNHDjQbadixIgRljVrVo/GAfjqq68sZ86cTpgQExNjjRo1sjZt2jgHHlu3brVWrVpZRETEZaXvF9rpbNKkid10001OL6BzQ8iBAwfaI488km6vpoxKTk62M2fOWK1atSw8PNy++eYbZ2dv/vz5FhgYaEWKFLGwsDAnFExKSrKKFSta9uzZrVmzZm6vX8r6HDt2zK0rbUY9/fTT5ufn5xwgn9ulcu7cuVamTBmvj10ybdo0u+2222zQoEHOGYzDhw/b6NGjrUyZMnbfffc5ZVN3vT5y5MhlHzj+888/9v7779vdd99trVu3tpdfftn5DoiPj3c72zJ//nyrWrWq9erVy5o0aWJHjhxJs83mzZtn4eHhaS57uVSnTp2yxMRE53KcYsWK2UMPPZTm9U75XNx5553ONee7d+82Hx8fu+mmm+zDDz90dtRiY2OdIDU6OtrtTJOnUtZ748aN1rVrV8uZM2ea63b37t1rTzzxhAUHB9v7779/wfoOHz5sFSpUsAYNGtjs2bOd7Zu6bSnBQ1RUVJrgc8GCBXbHHXdYtWrVnO+hpKSkNMFDqVKlrHr16pkeOJw8edK6detmpUuXdrsEM3X7UwcPe/futRMnTth9991noaGhTuB4/Phxe/vtt61y5crWoEED57mp2/vvv/+6fS+fz7p16yxv3rw2cODAdMPl1O2LjY21fv36WdmyZd3Owl6KlNfu77//tvfff99eeOEF+/333y05Odl+//13a9u2rWXPnt1Gjx6d5rl79+61RYsWnXfA3DVr1ljBggWtb9++aXo7JSYm2vz58y04ONjtUouMhA7pvR9Onz5tMTEx9v3339uIESPM5XJZixYtzN/f30JCQtJcynO17N2714oXL+70Bj5z5oxt3rzZOnfubJUqVbJ8+fLZsGHDbN26dfbUU09Z5cqVrW3btla3bl23Hg8ffvihVahQIU2PxdTbPHUoaGZpPqfz5883f39/u/feezMUPKT+LUs5kEv9eh0/ftymTJlipUqVstDQUGd6Rk8CzJw507JkyWKDBg1yu5ww5d+nnnrKGjdu7LWBq1O+rxMSEuznn3+20qVLW9u2be3gwYP25ptvWvPmzS1//vzmcrncBlr8+++/L7u3UernP/fcc9atWzfn0uIxY8ZYz549bcqUKc6JxU2bNll4ePhlBecXOlEaHR1tN998s23cuNHMzu6DNmnSxLp06WIul8t+//13a926tYWHh9unn36aZp/rUnvSZsSPP/5oFSpUMLOzgUOxYsXswQcfdOavWLHCkpKSLD4+/pIH3SV0uArSS9ljY2PtjjvuMF9fX5swYYKz47dx40YbOHCg5c6d+4Ldn1Nc7OA6ZVnTp0+3iIgIK1GihLlcLmvVqlWGU9mkpCQrV66cDR8+3JnWqlUrK1CggN16661WsWJFq1ixotto25erXbt2VrFiRevTp4/VrFnTuXTA7H/BQ0REhLVr185y5szpllLu2bPHKlSokOagPnWXO7P/BQ/du3e3O+64I01wcTlSL2fdunW2YcMG57q/o0eP2ssvv2xhYWHWv39/t+edOnXqvF1hU5/Ne/HFF+2RRx6xH3/80czOBkO5c+e2F198Md3n3HfffTZw4EC3Or///nurW7euff3119avXz9zuVzOAdeGDRusRo0aVq5cOeeHKaVdR48ezfRuqO+//74VKlTIJk6caD/99JMzPfVB0IwZM6xy5cq2bNkyt+X/8MMP9u2339rKlSudNk6ePNk5q3m+Hbn01mHjxo128803W506ddx2cGfOnGk+Pj5OF/jhw4ebr6+vR++XDz/80MaPH28ul8vCwsKcHe7vv//e7rjjDgsMDLSgoCArX7681ahRw/ksX8rBUcq67d271+bMmWOvvvqqTZo0yenZs2DBAgsODrYyZco4P4ZmZ0OxoUOHWuHChTPtTi+HDx+2hg0bWp06dezrr7+2M2fO2Jo1aywgIMDy5MljLVu2dNrVokULK1eunH3wwQdWrVo1e+CBB9y6gGZ0Wxw7dsyOHz/udlZ0x44dFh4ebqGhoW5hW4oBAwZY48aNvXoW7/3337e8efPaa6+95oSbKe/ZQ4cO2auvvmoVK1Z06yJ9brfLS/3srV271qpUqWJRUVHWtGlTq1+/vhUqVMhKlSrlXCKROuR47733nEsrzr2k6ttvv3U+H5l1h4G5c+dav379rHfv3k7Y1L17d8uVK5e99957abqYxsfHW7169ezVV181s7Nnrm+66Sbz8fGxsmXL2uTJk52d3wMHDlj9+vXtlltusXnz5nkU3pxve//111/WtWtXq1GjhnOmKMU///xjb7311gXfrynzDh06ZLfccovVrVv3vMHD4sWLrX79+ta2bVuLj493a/d3331nbdu2tapVqzphZuozp2Zndy4rV66caV2XU/v+++/tvvvus1q1ajmXsZil7fFw6623Wt68eS02NtYtLEm57CB1j4d77rnHeS96colXynfNoEGD0sw7fvy4229Zyvbds2ePDR48ON3vhIxKPZDmTTfdZFWqVLEsWbJYYGCgjRkzxszO/k61a9fOqlWr5uwrJSYmXvQ7befOnVaqVKl07y6T2pw5c8zf398ZIyijbTY7e/Jh1apVaUKdxMREu/nmm23y5MkWGxtrf/31l02ZMuWaubyiTZs2li9fPpsxY4adOHHCkpOTLSEhwWbMmGE1a9a0fPnyma+vr4WEhJivr699+eWX1qFDB6tbt6699dZbznvs3O+WjG5zs/99h8yaNcuKFCmS4YPEzZs3W1hYmLVt29aWLFmS5iz3kSNHbPLkyRYUFOR2aWzqbZ86RG7Tpo299NJLzvt4yJAh5nK5rGfPns77beXKlfbYY49ZQECA1y6T/fnnn83Hx8f5fTtz5oz99NNPFhQUZLfffrvzvps8ebL16NEj3R4GmfH+GjJkiBUsWNCmTZvmdul6ymuelJRkx44ds+joaGvUqNFl7dNe7ERpdHS01apVy8aOHWs5c+a0W2+91Xx8fJz9x6SkJGvVqpWFh4fbtGnTLrnHjKdSLv/atGmThYSE2IMPPuhs+19++cX69evn8biC5yJ0uIJSuh2apb9zs3HjRnvggQfM5XJZ0aJFrUSJEla5cmULCwvL0HWyFzq4Tu//ZmcPngYNGpTh3ggpb8Dx48fbAw88YGZmnTt3tqCgIKeL8A8//GBRUVGZ0lUrZQdjxYoV1r59e/v444/t/vvvt6pVq9rkyZOdcvPnz7dbbrnF8uTJk+ZL6+uvv7bw8PDztif1jvXkyZOtaNGiFhAQ4JVB0QYPHmxFihSxokWLWoECBWzcuHEWFxdnx44ds5dfftkqVKjgdh1sinPfL6lvqVaqVCnr3r27jR071knJN2/ebM2aNbOgoCAbOnSoc5b56NGjNnz4cMufP3+ag8i///7boqOjrVixYhYQEOAc3KU+m1ejRg0LCwtzzhqmbldmBQ8zZ840f3//NNeM3XPPPVa5cmVnIJ21a9damTJlnF46SUlJ1r9/fytSpIjlzZvXypcvb40bN3beQ5MnT7bg4GDr27fved/v6Z3J37Bhg5UpUybd4CFXrlxWsmRJy507t9t4KReTciA/YcIEGzJkiNWqVcsKFy7sBA979uyx1atX2zvvvGPz5s1zPnfnDjKWEanfK+XLl7eaNWtasWLFzNfX10JDQ53LZqZPn26lS5e2bNmy2Z133mktWrSwpk2bWnBwcKZ9FlLaf/r0aWvcuLHVr1/fPvjgA+d7a9asWVa8eHHr3r271alTx8qUKeOELe+//75Vq1bNevTokaEANsX69eutefPmVqVKFatSpYpzBjYxMdFmzJhhJUuWtODgYHvvvffsjz/+sBUrVtigQYMsd+7cXh0o9dtvv7UCBQo4l7WklvKaHTlyxEaPHm0VK1a0Rx99NNOW/ccff1iePHls0KBBbpeOTZ061apWrWqFChVybo978OBBe+GFF6xu3bqWLVs2GzBgQJqeBvfee68NGTIkzcHtpXr//fetSJEi9vTTT7t9zycnJ1vjxo0tT5489swzz9iOHTssMTHRtm3bZi1atLDw8HA7c+aM83l58803beDAgdahQwcrVKiQW/CQcqlFo0aN7KuvvspQu1OX+fDDD+3FF1+0kSNHOjtiW7duta5du1qdOnWcwSXPlVnBw9KlS9164XgaPGTGjuz5vvN/+ukn69ChwwWDh02bNllUVJTTRT91m1MOilJ6PFSvXt3uu+8+j8eU+eeff6xixYpug/3+8MMP9vzzz1vZsmWtcuXKbmMfpWzfzOhRtnbtWsuRI4c988wztn//fouPj7emTZtaSEiI06Psu+++s3bt2lnVqlWdsOVi78OZM2da48aN7d9//3XauWHDBvviiy+sU6dONmnSJNuyZYuZne155HK5rEePHhesM/Uyn3zySatRo4blyZPHoqOjrXfv3m6DDUZGRjrBXmpXM3g4d7wnf39/J3j48ssvLVeuXPbII49Y27ZtrVy5cpY/f34LDAy0bdu22cGDB61jx44WFhbmHBye+xpcaJt37tzZJk+enO7+pSeDEE+ZMsXKlCljzz//vBUtWtQeeOAB5zKflN/Nw4cPOydQzh2M9EIhcsr+zqhRo5y7yaTcUaZq1aoe/Z56as+ePRYdHW0FCxZ0DqoTExPtp59+sptuusmaNGnilE35TsrsHlg//fSTlSxZ0u1SydTLOHHihI0cOdKaNWtmVatWdfY5Lmef9mInSps0aWI5c+a0mjVrWo4cOZz9x9TLbtu2rRUrVsy+/PLLS26HJ/79918LDAw0l8uVZjDLfv36WcOGDS+7NwyhwxVy4sQJ69Spk5UoUSLNGa1zzZ4920aOHGn9+/e3mTNnuqVyF3Kxg+vUUh+8XMoHa9WqVVagQAELCwuzYsWKeXTAdTE7duxwutOnnla7dm177733bN++fda1a1erVq2a2w5pysi35xo6dKiVLVv2gstMScXNzp5BTz0WxOVI/RovXLjQudvB8uXL7fnnnzd/f38bMmSInTlzxv79918bNWqUFSpUyF5//fWL1n2+ey+nvJ7r1q2zDh06mI+Pj4WGhlpYWJhFRkZaSEhImjPyKc8ZOXKk5ciRw2rUqJHmNTA7GzzUrl3b8ufPn+mj6CYnJ9uxY8fszjvvdLtLhJlZ27ZtLSQkxCpXrmzVqlVzzj6/8MILlj17dtu+fbt9++23VqFCBfvpp59s48aN9uWXX1qlSpWsYsWKzvv9448/tqxZszpnm1LbtGmTtWrVyp588kn7/fff3UagTunxULNmTbfg4YsvvrDQ0FCPDsr//vtvCw0NdRuIb//+/dasWTMrUqTIecdtuJyduo0bN1q+fPls8ODBtmvXLjt27Jht2LDB2rVrZ/ny5XPudLJ582Z76qmnrFWrVtaiRQt75ZVXnB3YS5VykJeUlOS2Di1btrSsWbNauXLlLDQ01On6PHv2bMuaNauFh4fb6dOnndugmp0NjkqUKGF9+vTJ0AFIysF1nz597IUXXrDIyEjz8fFxtnFiYqItXLjQWrZsaVmyZDGXy2UVK1a02rVre21HLOU74amnnkozmOsvv/xio0ePtvbt29vUqVPt9OnTFhcXZ6+99poFBgam2xXbUxs2bLDs2bOnuQwgxaxZs6x8+fJWvXp1CwkJsXHjxtkXX3xhL774onXv3t0CAgLs5ZdftjVr1tj27dud245lVk+YL7/80nLnzp0mjEl575w4ccLat29vuXPnNj8/PytevLhVqVLFbrnlljS9gebMmWPly5e3Xbt2Oe2cMmWKW/BQrlw5a968+UUPEFJ/lw8YMMDy5s3rDLSbI0cO53adqcd4uJQu+hcLHi4UPF4seDj3UovLkdKeHTt22IoVK5wxPlL8+OOPdtddd1nNmjXdLrlMvb9x+vTp87Y5dfDw7rvvWqlSpS46+PG51qxZY6GhoTZ16lQ7efKkvfnmm1ajRg277bbbrFevXvbwww+by+XK1DsQmZ0NO3Lnzu12GarZ/25lmnp5S5cutTvvvNNCQ0MzdGne6NGjrWDBgs7jjz76yJo3b26hoaFWsWJFK1iwoD300EN27NgxS0pKsoULF7r1XruQF1980QoWLGiLFi2ygwcP2j333GMBAQFuv0l9+vSxli1bXjO9G1KkFzyMGjXKSpQo4YQJhw4dsoCAAAsNDbXo6Gjndun79++3bt26nbd3y8W2eaFCheyhhx66rF5xO3futKJFi9qyZctsx44dzp1xmjdvbs8995zTY+LMmTP29ttvW5kyZZxxUS4UIlepUsUKFSrkvAc2bdpkn332mY0dO9Z++umnS+4m74nY2Fhr3769BQQEpAkegoODLTIy0il7uSevhg8fnuak0rx586xEiRLpHh+kfJ++//77NnDgQOfxpZzgMcv4idKJEyear6+v5cqVy+mVe26v5sTERLv77rsvu3dBaud+/6cO6c3OBjSBgYF2//33W0xMjP3yyy82cOBAtxORl4PQ4QpK3YUw9dmH1P9ejowcXCckJFz2rfhSnvfss89a4cKF3Qa0ulz//POPc21Xly5dbMKECf/X3n1HRZF0fwO/DYIYyIoBMAKKiAQRIwoYEQVRMUdM+KisiyiYRVdFjGtaMSfMYFhdE6AihjXrmhVdw5oTZkX4vn/wdv9myKEHUO/nnD3HHYaZoqenu+rWrVvS4C8iIgLVqlXDw4cPcfXqVfTt2xd169ZNk8qa2u+//w5dXd1Mtwbt379/uimYcgkLC8O0adPSLHdYunQpNDU1pQ72kydPsH79+ixv6ElJSRg2bBi8vLyUZqxSn0/Pnj3DsWPHEBAQgOHDh2PVqlWZptQeOnQIsbGxaNeuHZo0aSJ1pBVduXIFffv2VUmn49WrVzAyMsKiRYuU2iReeOPi4tCoUSNYWVkhISEBZ8+ehY+PDyIjI9GnTx/873//k34vOTkZ586dg5WVlZSVA6TMMKdu+6dPn9C1a1cIggBBEODq6opSpUphxIgRWL16NRISEnDr1i3Url0bjRs3Virkk9N08ps3b0JfX1/qVCtu52VqagorKytZC0YmJiaiT58+6abZPnv2DL6+vjAwMFBaby7XLhViamXqoKSXlxfs7Oxw8eJFVKhQAVpaWtJSCyClorxidodiUDA8PDxb2/xeu3Ytzd7Y4eHhUFdXV7r5i06dOoWYmBjcvHkzW2vF82rAgAFo3Lix9DePGzcOTZs2hampKVxcXCAIAmbOnAkgZTnAxo0b8/yd+/jxI3r16oWiRYtKHW5xIKp4P+jUqROICFOmTJEGk+J7T548GZaWlihWrBisra1RpUoVWTJhxKBjx44dERQUlG7nU7GN0dHRCAsLw9y5c7F//37cvHkTmzdvTrNuv2fPnujVqxeAlOt82bJllQIPz549y1Eq/c2bN+Hp6Ynz58/jy5cv+Pr1K/z9/VG0aFEpi+batWto164dBg4cmKv7bHqBhz179mTYIU9vySbwf4N4R0dHaemdnB4+fChdM8uUKQNfX1/MnDlTuj7Gx8eja9euqF+/PrZv3y79Xuq/I6vAw7t377B69eocb+8NpGyJWrJkSVSuXBlaWlqYNWuWdO6/fPkSVlZWSruLyOHt27ews7ODi4sL/vzzT+keHR0djZIlS0pZDaKDBw+iZ8+e2fr7xKKYderUQfv27VGiRAmMHDkSsbGxAID58+dDR0cnR0HA5ORkvHr1Ci1atJC219y/fz9KlCiBZcuWAYCU7j969Og0u/4UFqkDDyVKlECzZs3w5csX3L17V9opadmyZTAwMIC3t7d07cpssKuKY65IfO+5c+fCy8tL6f5jaGgIQ0ND6OnpYfr06VLASgxwZBVE3r17N6pXr47WrVurrABhdjx+/DjdwMPx48dRsWJF2Nvb5/k9Lly4ADc3tzQBg/Xr16N48eLSLL3ihNbBgwfTFIvO6X02NxOlN27cgKGhoVJGnHge7N27V9ZxVXr+/PNPpV1o/v33X0yYMEHa5ad8+fIwNTWVJtvk2pWKgw75IDuzD6LPnz9j7ty5ucocyO7gOqutc1LLqNMkziyLW5jJMQg9evQomjdvDgsLCzRt2hSDBg1CuXLlsGTJEkRGRqJ///7SHrEXL16Et7c3nJ2dlYqqpbZr1y6pyKV4oVY85omJiRg0aFCWwYvcevjwIRwdHSEIgpQirZjG36dPH9SvXz/NQC+z45mYmIg6depk+FnmNU3033//Rdu2bdGkSROlPb7nzZuntNZQ7sDDjRs3oKenp9RBBaBUJXffvn3SdqxAyky6k5MTihcvnu5OH+PHj0f9+vXTVNpN3Xax42dnZ4c1a9Zg3bp16NSpE0qWLAlbW1u4uLhg7NixEAQBTZs2zdPA1MHBQalAIJASvHB1dYWxsTGMjIwy3cozJz59+oTatWtLKbGpi0i9ePEClpaW6VaJzmswVDG1UpxpEdMOxQyKkJAQqKuro3bt2ti0aZPS5yL+O6dBQcXBteISiUmTJknb/cbFxclWJDY3li1bhtq1a6N58+aws7NDpUqVMGvWLCnLauzYsTA0NEyz53tev3OKwW/xHFPcVvfdu3do1KgR1NTUcPDgQXz+/BlPnjzBokWLcPToUSQnJ+PRo0eIiYlBXFycrIWtXr16hTJlymDx4sXp/lw8Z1PXkREHv0WLFoWZmRlmzpwpfbZHjx5FixYtpCBDnz59YGpqirCwsBzPTK5btw5WVlaoW7cuXrx4odSGgQMHwsTEROrYP3jwIE/7vSsGHpydnVGjRg1p9yrFWlDpnQ+K7Tp06BBcXV3RpEkTfPr0SdbU5bdv36J+/frSln7t2rVDrVq1UL58edSrVw9r1qxBcHAwfHx8UK9evTSFL7MTLDly5Eian2eH4jGIiIjAhg0b0gSXXr58iYYNG2LlypU5eu3MpA4Y1atXD8eOHUN8fDzKlSsnbemauo3Z3fHo8+fP2L59O/r06YP27dsjLi5OKUvn2LFjsLS0zPEA+NOnT6hbty7Onz+PXbt2oWTJkvjjjz8ApAShly1bhlOnTiEhISHNdrSFieL3oWvXrihZsiS2bdsGDw8P9O7dWzrmderUQZkyZdCjRw+l2lnpye4xz25GSUZiY2NhZWUlBU779++PcuXK4erVq5g1axYaNGgAU1NTqe+R3SDy2LFjoaenlyYbKb9lFHgQv+95yXJIPeEWEREhBfc+fPgAW1tbNG/eXGmSTlzylHoyMCeyM1H64MGDNBOlL1++RJ06deDp6Zkms3rIkCHw8vJSmmyR0/HjxyEIghRQvHv3LoyMjKSMVyClX33mzBlcv35d1mAVBx3ySUaBB8VO3+fPn/G///0P2trauaqHINfgOqsOjeLfIlZZldOBAwfQrVs31K5dG8ePH8emTZvQoUMH2NraQhAENGzYUHrulStXpBSzzHTp0gXFixfHggULlDrxX79+xbhx42BhYSFrClNqR48eRatWrVCmTBmpsrt4bMeNG6eUXpYdb9++RbVq1TBx4kQAGUfpf/31V6WUzcwuYIprUT98+IB79+7Bw8MDTk5OGDVqFNq0aQNDQ0OVplV+/fpV2spKPIdTp5ydP38eLi4uSgUm79+/j44dO6JcuXJp1lKvX78elpaWGW6tlnoJTMeOHWFnZyd12h4+fIitW7eiZ8+eaNiwoTSzl9NtVMXlBUlJSVi2bBns7OykegpASsdGnHnx9PSEiYmJLNs1vnnzBlWrVkVwcLDUDpEY8V+wYAGMjY3x5MkT2YuCPnnyRFrG4ezsDHt7e+m7lpiYKF23SpcujT59+qRpY26DgoqD67t372LhwoUoWbIkfH19ERAQgBYtWqB48eLo0aMHhg4dmu/bviUnJ2POnDn43//+Bx8fH9y7d09pa9j58+ejSZMmshVmTH0PErNNUge/X79+DVNTUxgZGeHChQsYNWoUnJ2doa2tDUtLS8ydO1f2c0R069YtGBgYSGtY0yuE/PLlS/j7+ystO3z79i3q1asHMzMz+Pr6om7dumjTpg06d+6Mf/75BxUrVkRgYKD0/M6dO6NatWo5+syTkpKwaNEi1K5dG6VKlZKKzYmd2NOnT8PY2DhNllJ6x0oxfTa9zMPUQeMXL17Azc0Nd+/elZ63a9cuuLu7Y+PGjVnW1jly5Iis2z4rtu3Nmzdo2LAh3N3dsX37diQmJmLnzp0IDAyEtbU1qlatCk1NTQiCgHr16kmVz/MjWJLZvSo5ORnjxo2DmZmZ7AU1FQMPDRs2hL29vZSCL8pNQCr1c9P7+0aOHImGDRvmOCj+/v17NGjQAK1bt4aBgYFS4O/27dto0aKF0pJAVV0DsiO9DOGMdjPq06cPBEFAhQoVpN3hEhIS0K1bN0yfPj3LnXZUeczT06dPH3h4eKB79+4oW7as0gTknTt30vRjsgoiAyl9mCJFiqh89jw7xMCDvr5+ulkmuTmvkpOTle4VT548gY6ODry9vaXgxtatW2Fvbw8HBwfs378f69atQ6tWrVCrVq1cL6UAsp4o7devH3bs2IHo6Gj0798f5cuXR40aNfDgwQNcvHgRenp6aN++PVavXo2YmBgMGzYMenp6sixlSM/Vq1exdOlSaRLq/fv3qF69Ovr27ZtmQkoVOOiQj7LKeBgyZEied0zI6+A6ux0a8bHdu3ejVq1asqwLU3yf/fv3o23btqhTp440O3Hy5El4eHikm/KfEfEG8eXLF7Rp0waamprSFoyzZs1C3759oaenJ1vqUGqKx+v06dNwcHBAxYoVcfv2bbx79w5fvnyBs7MzvL29c/S6iYmJcHBwQOPGjTNconPp0iV06NAh0zX5qX9327ZtMDQ0lG5e9+7dw+DBg9GsWTO0bdtWlgI7WQkJCUGpUqXg5+eX5ib+/v17tG3bFm3atJEi+uJn/PDhQ3h4eKBRo0aYPXs2Pn78iHv37sHV1RWtWrXKtHOX+rvp4eEBOzu7NCnJz549w9mzZ3NU50AMionvIWYiBQcHo2bNmqhfv760Ja61tTWAlPPW2dkZFhYWeS74lpiYKC0LyehcmTJlCmxtbVU2c/X48WOpSO7u3bsB/N85lJiYKF23fv/99zwHBdO7zpYvXx5aWlpK3/NPnz4hNjYWvr6+qFmzpkqDjqll9f358uUL3N3dc7yGPSuKxyYmJiZN8Fvc0cfW1hbq6urQ0dFB+/btpRmRdu3aoVu3brK2SVFiYiIaNGigFHRMfaxiYmLg5uYmfa/E7//r16/RoEEDtGvXDitXrsSJEyfg6ekJd3d3lC5dGtWqVVPKyshOsDq1L1++YN26dahYsSJatGihNNt55coVGBsbZ7hrU+qipHv27EH37t3Rtm1bpZoHim7duiVlwCkeh8jISGmpQEa78SxevDjdIqVyEo+9mDHg6OiIAwcOSG3977//EB8fj8mTJ6N37964fPlyvgRLsrqOnThxAr/88gsMDQ1VUjAaUA48NG/eHKVKlcLOnTtlWVKb3o5W9+/fR2BgYLq7y2RFfJ0jR45AV1cXrVq1kv6GhIQEtG7dGs7OzoWijoP4t0dFRaF///5K6/R37NiB+vXrw97eHr/88ouU3dirVy9pu98zZ85gwoQJsLW1VUovz+77ynXMUxNf9/jx4yhXrhyqV68u1RVK71zJbhAZSFlWaGFhkSZrTk7pndcZneOPHz9G586dIQhCnrNDACj9XVu2bMHHjx9x9OhRmJubo3PnzlLmSFxcHFq2bIkyZcrAxsYG7dq1y9OuYKKsJkqrV68OHR0d+Pj4oFu3bjAyMpKWKJ06dQrNmzeHqakpqlatKutSBpH4Ody9exfW1tbQ09PDvHnzAKQE4I4dO5ZvWUscdMgHmaUQenl5wcHBAW3atJEKiuSGnIPr7HZodu/ejcTERFkL0Sgen6ioKLi7u8PBwUGK9mZ3rXlGxzwwMBC2trbQ1NREtWrV0KNHjwz37s6p9Napiu8tDmhOnz6NevXqQVtbG7Vq1UL//v1Rs2ZN6cKXkwrq27dvl6rJp9eOCRMmoHnz5krVZjMb7OzYsQNqamrSDIf43M+fPytty5aXqHBmFG/qXbt2haGhIdq1a4d//vkHt2/fxt69e+Hs7AwrK6s0NwoxO+P+/fvw8PCAlpYWzMzM4OXlhdatW0sD98z+/qyykbL6/fQEBQWhR48eUnpaREQEBEHAtWvXkJCQgAMHDsDb2xseHh7o1auXUrT+y5cveZ6dFP+myMjIdM8V8bMcNGgQevfunWWaaV48ePAAnTp1gp6entTRF//eT58+Sdetdu3a5TkomN511szMTGmAobiTRn5tSZUR8bz69OkTLl++DDc3N1hbW+e5/k56Ul9jFc9zMchjZGSE1atXY8eOHUqFPAcOHIhBgwalKQAop8yCjp8+fUKHDh3Qu3fvdDMDXr58iQYNGsDJyQkxMTEAUq6506ZNk2Y5c9u5VMw+CA8Ph42NDRo2bIi4uDgcPHgQrVu3Ru3atdN9/djYWAiCIBW0O3jwIEqUKIGuXbvC3d0dampqmDp1qlJWS1hYGDQ0NNIsL4iPj4eFhQWWLl0qtefLly84evSoNMi6ceMGatasCQ8PjzTLyuSWejlB/fr1sWvXrjTH4du3byoLlmSVnalo7dq1sLW1RdOmTVU2myhSDIgp1ubIzjmYk+DEH3/8ATc3N1hZWeX6WvnPP//g3r17WLFihVTXyNXVFY0bN0atWrVkGZzlleLkiK6uLogIXl5e0jaMenp68Pf3x9ixY6GjowN3d3cpI2r27NmwtrZG2bJlUaFChXT72vl1zDPz5csXuLq6wsPDI027UsuqzyIGkYcOHYquXbuq7FqguFw49dI38XxJ3Xe6f/8+xo4dm+f+5PHjx1GyZElcv34do0aNQrly5aRlJLGxsahcuTI6deqkFBS6c+cOXr9+nec+bXYmSps1a4by5ctL1+ukpCQUK1ZMqW7Rx48fpdpCcmRcpld0WMzm+u2332BiYgJPT0/pZ/n5neaggwrkdL1l06ZNlTriuXmv1P/O7eA6Jx2aNm3aZHsdYlZtz+jxqKgotG3bFg4ODpluN5rVMVd8TBycJiYmprtFYm4ovr54TBQHfJUqVZI6OCdOnEDbtm2hp6enlD6f0wvfs2fPMGLECGmN+uXLl5GUlIRz585J1WYVL7SKx23VqlWYOHEigoODpUq/S5YskWY0M6LqaKjiDcrf3x9mZmbQ1NRE8eLFYW9vD09PTynwJHaCUmdnPHjwAF5eXrCxsVGq9p/RZ51VUDC3Rdiio6NhbW0trS3fs2cPihUrlu4yAcX3VUVQ59mzZ/D394cgCBg0aBD++ecffPv2DQ8fPsT48eOhq6srW/AtM2JqpWIgQfF6KGdQMDszQao+n3My+/P27Vv4+/ujWbNmaN68ueydfPF9FyxYgNatW0uPR0VFwcvLC3Xr1kX37t1RrFgxBAYGKgV4Hz58iLFjx6r0PMko6Hjp0iXEx8fj4MGDcHFxkbbFVPwdIO3gt06dOti7d2+es7IUg8dRUVHYvXs3vn37hjVr1qBixYooWrQoOnfujKCgIOnan95nNm7cOBQtWhTr16/H/PnzsWDBAulny5YtgyAImDx5shR4+PjxI7y9vXHjxg3p/cXvrLm5Of7++28kJSVh5syZaNiwIQwNDVG5cmVp9vbYsWM5KpCZF9kpfKmqYElulpvExcWpdNZXUeraHJaWllJtjowonm9z5sxJs6Za8fwS6w2EhYVle5lIehmOilsanjlzBiNHjsSIESOwaNGiPFf0l9Px48ehq6uL1atX4+DBg9DV1YWvry82bNiAqVOnAkjpcwmCAF1dXbRo0UL6Tly5cgUnT55Md0c4VR/z7BDP1cOHD8PU1DRNDZT0ZBV4EIPIGW0TnheK9b6AlN1PxKVtYhFk4P/Om1evXuHQoUNpXicv59W1a9fQo0cP6OrqQl9fX8pgE19TDDx06dIl3d1h5Lg/iNKbKL169Srs7e3x9etX3LhxA8bGxujfv7/0O2fPns3R1qrZdePGDYwYMQJASvaHlpYWHj58iFevXmHmzJmoWLGi0jbc+RV44KCDzHJzA4yNjc32jKYqBtcF0aFRnNGNj49PM6OV+ovs5eWFqlWrpklRVXxuTo65nIWQoqOjpY7UoEGD0KNHD+k9IyIiULJkyTQDzbi4OLi4uKB69erSMc3Nl/7+/fvS1pvif9bW1rCxsVHa8k/x7xwxYgT09fXRqFEj2NvbQ0NDAytWrJB9C8yMZDUQUzwO8fHxiIiIwNatW3Hp0qU0EdyMsjP+/fdfuLu7w8XFRWkdquJ7qXJd8Zo1azB06FBpr+P379/D398fa9asyfC9Uh8HuYnnira2NnR1dWFgYID69evD3Nw8zynGWX2misf84cOHUmqlWLtGzqBgZkEkVVbyTy2nsz/JyclYvnw51q1bp7RzR26ld54nJiZi1apVKFu2LLp37y4998CBA2jatCl0dHSgp6enVGtErEdjYWGhsmVootRBR3Nzc2lbMXt7e6UlXpnd/xRn3TPb9SG19L5/4u+KW3lu27YNQMo9bPXq1XBycoKHh4fUcUydNaP4mhMnToS6ujqqVq2qtFsM8H+Bh99++01pwC3+/sGDB/Hrr79i27ZtcHNzQ8OGDWFiYgIPDw8EBwdLtSsmTJiQrb9VbukVvty3b5/0M1X2LbKbQbF58+bc/4HpyEttjowoBgL09fUxfPjwDJfzKe6Cltk5np0MR3HHqIyeWxiWVgAp3xOx6PHbt28RHBwMdXV1qKmpoWnTpkhMTMTbt28xbtw4/PXXXyhTpgzc3Nwy7WOr4pinlt1zBUjZytfCwgL+/v4ZHvesJkvq1auH7t2753nJdkY2b94MAwMDqa5YWFgYDA0NMW3aNHTq1Ak1a9bEgAEDpOd//vwZs2bNgiAIOHDggKxtCQ4OhiAIMDAwkMYIiltBxsbGwszMDC1atMhVvTxRTidKz549i7///hsVK1bE+fPnUbVqVQwYMEA6F06fPo2ePXuqJCB04MABCIIANze3NDt2vXr1CqGhoahZsyaGDx8uPZ4fdVo46KACqk4hlHNwXRAdmvv376Ndu3ZITk7Grl27ULFixTTHKfXfsnv3bnTt2jXDnTmye8xTb2uTVx8/foSnpycaNGgANzc36OnpSVWEExMT4enpKVWABpQ/h+PHj8PV1RVGRkYZFjnMjm/fvuH+/ftYsWIF5s6di9jY2Awryt+8eRMdO3bEuXPnpKKGEyZMgIaGhnQ+qvLCk5uBmEjMzpg0aVKm2RmKW1CKUX/xb8vNdyg364q9vLwgCAIaNWok/c2qTnPODvFcCQsLQ0hICPbt25furE9OZPWZip0zxWN+7949KbUyr0HB/Agi5URuZn+io6PTvE5eOvmZnecfPnzAhg0bUKFCBXTu3Fn6nZ07d6JYsWJptnl8//49duzYIduseU6Cjnfu3MGOHTuwbds2XLx4Md200dQy2/UhM6l3ElBc6rB3714IgiAVqRXb++XLF6xYsQKOjo7o1KmTVFwyvXaKyxDFjvf48eOVsigAYOXKlRAEATNmzFB6PCIiAsWKFcPUqVNx+fJlREdHIzQ0FKGhoUq1KVq0aJFltlpu5GZw3apVK9y9e1flfYv8Xm4iZ22OjCjO5iv68uWLUgalIAjYsGFDpq+V2wzH/FrjnZXU7Zg3bx4EQUB4eDhcXV3RunVrNG3aVApOioFR8Vy8efMmihQpgo4dO2Z63ZDzmItyc66I/de1a9cqZZXlNoNaFQEHICX7LTg4GDVq1MCYMWMQEhIibRmckJCAJUuWwMzMTGlW//jx45gyZUqeA1iKWXHJycm4cOEC9u7di169eqFUqVJSXR3FbL2jR4+iY8eOue7fZmeiVHE8pThR2qZNGwiCkGbHsqCgINSvX1/WJepiW4CU7W3FpVKps9JfvnyJ0NBQ2NraKn1GqsZBB5mp+gaoisF1fndodu7cifr168POzg4aGhppOumKFC+6GVVxL+g1rl++fEHNmjUhCEKa/b7Tq76ueBONjY2Fu7t7ulH1rDp64mPZvYiGh4ejWrVqsLe3T7NLwYgRI2BkZCT7xU+U1zS8nGZniH/bnTt30KVLF6UUSFUWYQsPD5fWjg8ZMgSlSpXCkiVLpHNOVR05uc+V7MjJZyoe88GDB6c55mLbchMUzK8gUnYVptmf1Od5cvL/FV29e/cuwsPDYWBgoLQb0Pr16wtV0DE1cY2ynDPLYu0H0eTJk9GsWTPY29tLM+P//fcfwsPD07QFSLn+r1mzBhYWFujVq5f083v37sHPzw/A/22dJlbKnzx5MtTV1dPdqjH1YOPGjRuoXLlyhtuIAimBofHjx6NcuXJptl/LLTkG16rqWxTUchM5a3NkJvVs/vbt2+Hl5QU3NzfMmzdPaTY/s1nSwpThmBti+6OjozF37lzp8V69eqFGjRro16+ftER106ZNEAQBnp6e0vEXf//27dtZznDLdcxFuT1X1NXVpXMl9XFQVQZ1bj1+/BjBwcGoVasWypQpo7RcOCEhAWFhYbCwsEh3UJvbwIPi3/rq1SulZTC3bt1Cp06dUKpUKaVdhBYuXCgFhFO/RnZkZ6JU/HsOHz6M0aNHY+DAgWjTpg3u3LmDY8eOSd+7M2fOYM+ePQgICIC2tna62dt5oXhehISEYPjw4VBTU4Ovr2+aycgXL14gODgYjo6OKuv7p8ZBBxnk1w1QFYPrgurQTJw4EYIgwMrKSroYpL4I/f7776hbt266s1SFZY3r169f8eDBA7Rv3x7NmzeHs7Oz9PkA2UuPVkzHzW1HL6uLaHJyMpYtW4b69etDT09PyqwQBwEXLlyAsbGx0jaUcsnLQOzgwYO5zs5Ib7ZRlQGqy5cvw87ODjY2Nti1axcAoHfv3qhWrRrWrl2bptZHXqnqXMmOnHym8fHxMDc3R8eOHSEIAvbu3VsggVhVV/IHCnb2R1Fm5/maNWvQuXNn/PnnnzA1NYWWlhbat28v/a4q0qhzE3Q8fPgwANXOLIsDlVWrVgFIyUIoU6YMxo8fj169ekEQBEycODHLTMEvX74gPDxcKRNv0aJFsLOzQ4sWLaChoSEFI0XiUov0Ag+KDh48CAsLCylwmjo7Ys+ePfDx8UHZsmVl24lBjsH19evXVdK3KOjlJnmpzZHV3yRKbza/a9eu6Nq1KywtLaVJiuxeyws6wzE3FJc8GBoawtfXV2mw/+jRI+l68fnzZ4wePRpVqlRB8eLF4ePjkybwkNHri+Q+5oC850phus8pevjwISZNmgQdHR0pyCpKSEjA0qVLoaOjg2nTpsn6vhMmTICNjQ2MjY3h5eWF6OhoJCcn4+7du+jcuTN0dHQQFhaGZs2aoVatWnk6v7M7Ubpv3z5oaGjAzc0NxYoVQ/PmzbFjxw4AKcHtli1bQltbGzVq1ECTJk2UlkDLQTynjx07hvDwcOkeuGfPHinwoJhVLZ5nqeuXqBIHHfJI1TdAVQ+u87tDk5iYiOTkZKxatQqBgYFo3rw5XF1dpRRvxQHiwYMH0axZM6kSraigOx0ZXbxev36N9u3bo1GjRli2bFmaFOWsyNHRy6yN3759w7Zt22BmZobGjRsr7Wpx69YtGBsbSx19OeVlILZu3bo8Z2fkR4AqICAAHTp0QIMGDWBgYIAqVapIs/Y9e/aEpaUl1q9fn2G2Tk7Jea7kRlaf6R9//AEzMzP4+PhIx3z58uUIDg7GjBkzCnUgNq8KYvYHyPw8Dw0NRcOGDWFgYAANDQ2EhIQASOkIzZ8/HyYmJujSpYv0WnIWjMtL0HHOnDkqn1meNGkSNDU1ER4ejuDgYKUgd3oDg9Qye31fX18IggBnZ2epA6j4GU+cOBHFihXLdGC+fft2mJqaSvdoxWvgsWPHMHXq1EwHIrmV1wGTKvsWBbHcJK+1ObJ63cxm88UaNA8fPoSlpWWOBisFmeGYV8eOHYO2trYUFBQlJycrZcjp6OhAV1cX586dQ1RUFPT09ODt7Z1hoXNVH3O5z5XCcp/LqO/7+PFjTJo0CVWrVk3T337z5g127tyZ52C24nvPnz8fhoaGWLBgAdasWQMHBwfUq1dPCuzeu3cPw4YNQ/Xq1WXb6j07E6XNmjVDxYoVsX//fty8eRMtW7aEi4sLtm/fLj3n0qVLePnypSy7VChSDNIZGBhgwoQJuHjxovT47t27oa6ujsGDB+PcuXOYPHkydHR00iwTUTUOOshA1SmEqhxcF1SHRrRlyxY4OzvDxcVFaW25WPk1o63sCmqNq+LNZNmyZfDz88Ps2bOlOg6PHj1Chw4d4OzsjEWLFuHDhw9wdnbGkCFDsvX6ckTGFT/Dffv2YePGjdiwYYN0ody2bRscHBxgb2+PgwcPYvfu3XB3d4ednZ3KikXlZiAmZmfUq1cv19kZ+fEdWrVqlbR28tWrV3j8+DFatGgBBwcHKcrdu3dv6OvrS4XV5KCKGbecyOgzTU5ORkJCAoYPHw49PT00bdo0zTGfOHFioQ3EyiG/Z3+yc5737NkT/fr1Q4kSJTBy5Ejpdz98+ICNGzfC1NQ0zZpTOeQ1+0NVM8uKgRWxQ2lgYCC1TfE91NTUMGXKlGxXGf/69SuSkpIwceJE9O3bF40bN4aPj490DVN878DAQBgaGmbYCb1z5w6KFSuGMWPGpPlZQEAApkyZIusgQ64Bk6r6FvmZnSl3bY7UsjObr2j06NGoVatWtmtAFWSGoxzmz5+PDh06IDk5Ga9fv8bKlSvRrl07uLm5ITw8HBcuXICuri7KlSuntFPX3r17YWxsnOb4Aao75nKfK4XtPqfYtrCwMAQEBMDX11daxvDq1StMmjQJ1apVy/CeLkf/8siRI1i4cKFStkFCQgK8vb3h4OCgdN1/9uyZ1O7cBtIzmygV7yPx8fG4f/8+OnfuDDs7O2mi9MaNG2jVqlW6Bc1V4fDhw1KGhyLFjAd9fX3Y2NjAyMhIGmflJw465JGqb4CqHlznR4dG/NKfPn0aCxYswNKlSxEbGyv9fMuWLXBxcUGTJk1w+fJlTJw4EVWqVJEupKkV1JIQxU5TUFAQSpUqJW3hZmdnJ924Hz16hG7duqFGjRqoWLEibGxslArapEcVsyijRo2CiYkJmjZtCmNjYzRp0gT79+9HcnIyNm3aBAsLC2hqasLb2xsTJ07MdLs3OWQ1EFuyZEmagZgc2Rmq/g6NHTsWjRo1ktabi39r3bp1UalSJSnwMGXKlHRrfOSUqmbcciOjz1Q85u3atUOJEiXQr1+/7yYQm1MFOfujSDzmv/32m3Seh4SESMd80aJFEAQBmpqamD59utLvfvz4EZs3b0bx4sXRr18/2dokym3QEUi5Bsh9nivOgF6/fh0AMHv2bAiCgJCQkDQDxRUrVigtw8ipmTNnokGDBvDx8VHaqlFM2c7oXqf4/hoaGhg5ciT++ecfXL16FaNGjYKOjg6uXbuWqzYpUsXgWlV9i/zOzpSrNkdGMprNVxQREYFhw4ZBX18/07+pMGU45pbiZzlz5kwIgoA///wTdnZ20NfXh4ODA1q1agUzMzN4enrC19c33dnazLIK5TzmiuQ6VwrbfU7xvAoICICenh7c3NxQr149FC1aFNOnT8f79+/x/PlzBAcHw8rKSmlXBLlcunQJgiBAEASp/y9esz5+/AhjY+N0rzdyLh1KPVG6ZcsWlCtXDtra2tDU1ERQUJDS82/duoW2bduidu3aiIyMlK0disTzZeTIkejUqROAlPtqTEwM+vfvjzZt2kgFVq9cuYLDhw+rvN5HRjjokEeqvAHm1+BalR0a8VhERETAyMgIjRo1QuPGjWFhYYH169dLz9u+fTtcXFxQqlQpVK5cOd39dEUFscZV0c2bNzF48GCpKrBYFbdq1apS4OHFixfYv38/wsPDM9z+TpWzKMuXL0e5cuWkSOaSJUugrq4u7fuclJSETZs2wcXFBa1atZI6IhllluRUTgdiSUlJ0kBsz549smVnqPI7JB77yZMnw8HBQTp2YmAhJiYGxYsXh5OTE3bv3i39Xm4GmqqecctJG1JL/ZkqHvOMBteFORCbE4Vl9if1ef7o0SNpxmvHjh2IiIjA+/fv4eHhASLCsGHD0nyeHz58QEREhMqy2rKT/aGtrY1p06ap9DyPiopC7969AQBDhw5F7dq1pcGvuP1eeoORP//8M9PZMvF9L168iPDwcPz5559SBpzY/oYNG6Jv3764d+8eJkyYgJo1ayoVOMtIUlIStmzZAn19fZiYmMDMzAzVqlWT9f6misG1KvoW+Z2dKVdtjoyIs/lAyhLNP//8E97e3tJs/osXLzBjxgw0a9YM//zzT4avUxgzHHNCsT6K4ne4R48eMDAwgLq6OoYOHYr79+/j4cOHqF69Og4cOJCrtst1zFOT81wpTPc50ePHj9G7d2+lGfKQkBAYGBhIGWgPHjzAiBEj0K1bN9kLZ3/69Anr169HqVKllLLyxHOgU6dOSkv1ciuridLNmzfDxcUF9evXR/Xq1dG6dWuULVsWbdq0gY2NTZr+5vXr1+Ht7Z1mqbjcQkJCUKNGDWzatAkdO3ZE69at4eLiAjc3t0yz6fITBx3ySJU3wPwaXKu6QxMbG4syZcpIW0cePXoUJUqUgJaWltJ2ko8ePcKxY8eyjMAV5JKQzZs3o2LFinB0dFSasTp16hQ6duwIc3NzabseRRndGFU1ixIQEIBhw4YBSCmWpqurK10I379/L1WOX79+PRo0aAAPDw+lvycv8jIQE7MzXF1dZcnOyI/v0KVLl6Curp5m55J9+/ahQ4cOcHV1RbNmzZQq9+eGqmfcMpOTz7RHjx7pHnPxM/oeArHZUVhmfwDl8/zNmzdo3bo1vL29peyGUaNGScc8MDAQgiAoFXCUW16yP+7cuaOy8zw5ORkzZ85E3bp1YWdnBwMDgzT3CXFgkNEsaHqBB8XgetmyZWFvbw8rKyu4uroqLdf4/fff4ejoCGNjYxgbG+PkyZOZtje1//77D8ePH8eJEydkX4evisG1KvoW+b3cBJCnNoeijGbzW7ZsCTc3N3Tu3Bnu7u4wNzfHkydPkJiYiNevX2frtQtbhmN2iMdDvGc2a9YMHTt2xJ07d/Dff//B2toaCxcuBJASlPDz80OVKlWk7092ZrJVecwVyXGuFKb7nEhcRmptbY3bt2+nybjU0dGRgiEvXryQfp7bwENGn2lSUhJWrVoFDQ0N+Pv7S9tuJyYmwsbGBv7+/rl6P1F2J0qnT5+OcuXKQUtLC5UqVcKpU6dw584d9OvXD/Xq1cOiRYuUXleOLNesHD58GF27doWhoSF69eqF/fv3IykpCYcPH4ajo2O2l2WpEgcd8kiVN8D8HlzL1aFRHNglJiZi4sSJ0oXg/v37qFixInr06IGhQ4eiaNGiabYiy0pBdDpE27ZtQ/PmzaGjo5PmQn/q1Cl07twZ2tra2R7kydHRS31RT0pKQqdOnTBnzhycPXsWJUuWlII7SUlJ+P3336XXS0pKwsaNG1GjRg106tQpz2loeRmIqSI7I7++Q+JNcOTIkThz5gzi4+Ph7u6OqVOn4urVq9JOHHmh6hm3jOT0MzU1NYW2tvZ3HYjNiYKe/QHSnuerVq2CpaWlNDs4depUhIaGSsd8wYIFUqFGueU1+yM/znMPDw8IgoD27dtLwcDUA4OiRYtKA53siImJQenSpaXO5o4dO6CtrQ1zc3Np600gZR39nj17lLbxLSzkHlyL5A6WqHq5iUjO2hxA5rP55cuXR58+faQCqOJsfk4CxgWd4ZgXO3fuRIkSJTBq1Chs27YNlpaWMDc3x+nTp2FlZYX169dj9+7dqFOnDooUKQJ9fX0UK1Ys3UkeRao+5iI5z5XCeJ/bt28fXF1dUbJkSanvKwasnjx5grJly6aphyNHwGHp0qUICAhAly5dsG/fPul4rly5EkWLFkXDhg3Ro0cPeHl5wdLSUpbBfVYTpZ8/f8aYMWNgaGgIc3NzpYnS27dvo1+/fmjUqBFmz56d57akR/F8SN1nf/v2bZp7S0BAAOrVq8eZDj8KVd0AC3JwnVuKNy9x+7AHDx4gNjYWHz58QP369aV1uydPnoSWlhYEQUizTjcr+dHpyOiCuXfvXtSvXx+Ojo5pipXFxcVh3LhxOZo1yEtHT/F58fHx0gV58+bN0rHdsGGD9Jx3796hefPmGDt2rNKe9lu3bpW1AFFuBmKqyM7Iz+/Qtm3bYGRkBBMTExgbG8POzg6fPn3Cv//+C3Nzc1n2Y1bVoCA7svuZ9u/fH+rq6hg9enSa1/jeArFZye/Zn4yI57l4zG/duoXKlSujatWqqFGjBvz9/fHu3Tulc0XMgpg/f75s7ZAr+0NV5/nXr1/x/v17TJs2DYGBgdLAQLyOKHZYAwIC4OTklK3P6vPnz/jf//6HX3/9FUDK96BSpUrw8vJC+/btUaVKFaUlVoWN3INrVcuP5SbpyUttjsxm8wGkCcYEBgbCzs5OqQZDVgoywzEvXr9+jYYNG0q76jx//hyVKlWS6jV06tQJ1tbWKFq0KEqVKoWRI0fi4cOHcHJygq+vb4avmx/HPCN5OVcK230OSLn+Hjp0CNbW1qhevbpSUd1///0XJiYmshbKBlLOZ0NDQ/Tu3RuOjo6oUqUKBgwYIPVV165di9KlS6NWrVrSdrBAzotG5mai9N69exg/fjyKFy+OyZMnK71efHw8OnXqhObNm8uyO0R6y2tTBxbSu0+dPn0aw4YNg56enuzbc+YWBx1koMobYH5F9OVw//599OjRA48fP8aOHTugq6srFekCUjIB7O3tpXbfuHED7du3R0hIiNLzskPVnQ7Fi/z169dx69YtxMfHS4/t3LkTLVu2RIMGDTK88GcVeMhLR2/x4sVSYRggpbCllZUVDA0NMXLkSOzatQsjR45E+fLlER0djY8fP+L27dto1aoVateuLb22KlIqszMQE9OlxYGYKrMz8vM79PDhQ5w4cQKxsbFSu4KCglC9enU8fvw4169b0IOCnA6uly9fDg0NDQQEBPzQgdj8nP3JiuJ5fvToUezZswdubm5QV1dH69atpY624vdlxYoVSpXb5ZLb7A9VnOeZXR8UBwaKgwDxPpKTING1a9dw9OhRJCQkoHbt2lJwfdeuXdDU1ISBgYHKConJLa+FL/OLKpabqLI2R0az+eJxBVKuKUOGDIG+vr7SPT6jdooKMsMxr549e4YaNWrg0aNHePLkCYyMjODu7o64uDi8efMGq1atQnh4OObPn6802PL09MRvv/2W6WvLecxTU9W5Utjuc4r9xBMnTqBmzZowMzPDhg0bsG3bNri7u8PW1lbW/uShQ4dQoUIFnD59Wnps0aJFaNKkCX755Rd8+PABHz9+xPr166GpqYnAwEAAKed2Tu6xeZkoffz4McaMGYNq1aql2Ynq7t276e6eklvXr1+XzoctW7ZAW1tb6RwGlO91V65cwbBhw+Ds7Ky0s0tB46CDjFRxAyyoiH5uREREoFGjRtKsluIMO5CSBSAIglTNf8yYMXB3d8/T4EiVnQ4AmDBhAmxtbVG2bFk4Ozsr1aAQAw9OTk55XjMPZL+jd+fOHZiYmGDAgAG4desWdu7cCWNjY2zfvh3BwcGoX78+OnfujBkzZsDPzw9FihRBhQoVYGNjg0aNGkmzeapaw5nVQKxMmTLSQEzMzkhOTlZZdkZBfYcuX76Mnj17wtDQMEcdmezI70FBTgfXSUlJ2Lx58w8fiC2I2Z/0iIG7uXPnQkdHB2XLlpWO+ejRo+Hk5ITu3btLnapZs2Yp7R0uJzmzP/J6nit2wnbs2IHp06dj9erVSh3ZWbNmScfn0qVLaNasGZo3by79PL12iY9dvXoVsbGx0nEFgP3798PBwUEqGnby5Ek0a9YMo0aNUgpcFzRVDq6/V6qszZHZbL7o+fPnmDp1KlxdXTMtYFhYMxyzK73vVOPGjTFhwgQYGRlBW1sbNWvWhKOjI6pXrw57e3up3wikLNEaO3YsSpcunemElZzHPKO/QVV1XArLfU78O/fs2YOlS5cCSKkd4ODgAEEQ0KdPH4SGhkq7hcjVr9yzZw+MjY2Vrq1Ayj3B2NhYmsT5+vUr1qxZgxIlSmR7a3pRdidKxf799evX4eXlhZCQEBw/fhz//vsvnj9/jrFjx6JatWqYMWNGHv/qjO3cuROCIMDDwwPq6upYs2ZNhs8VswNv3rwpS9aOnDjo8J1QZQGpvFK8gUyePBmCIMDe3l66WIipS69evUL//v2hpaUFOzs7aGtrF5qUn/RMnDgRpUuXxv79+3Hx4kX06NED6urqmDVrlvScP//8E7Vr18agQYOy9ZpydfTOnz+P2rVrY/jw4fD398fy5culn+3cuRPNmjWDt7c3Dhw4gMuXL2PLli04dOhQumlacstoILZ48WLs2bNHGojld3ZGfn6HEhMTce7cOYwYMULp882JwjQoyO3g+kcOxBbE7E9mIiIiUKpUKSng4OfnJx3zP/74Ay4uLnBwcECfPn0gCIIsy33Sk9MAlXh/kPs8V7wvicX1mjRpAicnJzRo0AC7du2Sfr5gwQLUr18f5cuXR4MGDbLc4hhISYEuWbIkzMzMULRoUSxZsgTfvn3Dnj17oKOjg0OHDgEARo8ejT59+hSK9bSi/Cp8+T1SVW0OcTb/8ePHePLkCcqXL4+BAwdKPxeDgO/fv88wJbswZzhml3junThxAkuWLMGkSZMQFRWF0aNHo3z58lBXV5eWhOzYsQNEhDJlyuD+/fsAUpYx9unTB6amplle8+U45plRZR2XgrzPpa4XEBkZiZIlS0oD3aSkJERHR8PFxQW2trbStVhxK+K8+uuvv1CuXDkpECROliUmJkJPT0+pFlxiYiLCwsJgZGSUo2KJ6U2Uin/zly9fpIlSMUMoKCgI7u7uuHTpEqpWrYqwsDAAKcGL8ePHw8jISKV1kkaMGAE1NTW0bNkyw8LkkydPRq1atQptcJiDDizPxC/EuXPnMHr0aPz2229o0aIFPD09pY6t+Jy7d+9i27ZtmDt3br5U3M2tkydPol69elKBoX379kFbWxtt27ZFiRIlMHfuXOm5R48ezVH1ZLk6emfPnoWDgwP09fWV2gOkpPS6urqiXbt2OHHihNLPVNnhyGggNm/ePBgaGsLU1BSWlpbYvn17ocrOUJXcFjUqTIOCwja4FhVkILagZn8yasuLFy9Qp04drFmzBgcPHsSECRNgYGCA4OBg6XlbtmzB0KFD0bZt2xzN6OVUTgJU+XGez58/HxUrVpQKzs2ZMweampqwsLDAli1bpOfdvXsXf//9d5brgpOSkvDy5Us0bNgQYWFhuHXrFqZNmwZBEDB9+nScOHECHTp0gImJCerVq4eSJUuqLMCTFz9C4Uu5yVmbI7PZ/MqVK8PX11e6Pzx69AjOzs5Ks/mpFfYMx5zYtm0bdHV10aVLF9SvXx8uLi5wcXFBjRo1YGhoiKCgIISGhqJEiRLQ1NSUJqfevXuHmzdvYsGCBelmDcl9zDOTX3Vc8uM+l1n/NTY2FpqamtIAWzEgcejQIdSpUwd169ZVSVC1du3aqFu3rtIA+t69e7C0tERUVJTScxMTE7PdhqwmSm/duoVx48bh4cOHcHV1BRGhZs2a0NbWxp49e2BoaIhBgwYpHbd///0XU6ZMSbPkQQ7i+4waNQpDhgyBIAgYPnx4mgBLcnIyYmNjUaNGjUJ7veagA8sT8csbGRmJqlWrYuzYsQCADRs2wNXVFR4eHkodrsKa2ZD6ovv8+XNMnjwZnz59QlRUFMqWLYuwsDA8f/4cjRs3hiAImDhxYqavkR65O3qXLl1ClSpV0Lx58zTrtvbs2YOaNWsiKCgIgOrWkouyGoi1bdsWxsbGGDJkCPz9/aXnAAWfnVEYFYZBQWEaXBe0wjD7k157EhMT8eLFC/Tp0wcJCQkAUmb4ZsyYAV1dXaXAA4BszeLnVm4CVKo8z9++fYtevXpJdSR27doFXV1djB49Gh4eHqhSpUqamhup/w6ReLw/ffqEjx8/YsyYMUqzo/PmzYOamhrmz5+PvXv3YsmSJRgzZkyO6xXlh++98KUqyVGbI7PZ/MqVK8PFxUXp+aNHj0atWrWk2fyMFOYMx+y6evUqKlSogCVLlgBIWXtetGhRzJo1C8OHD4eNjQ0sLS2hoaGBypUrS/3HvXv3YsaMGfj27Vu6fS1VHfPM/Ah1XBSP5ZIlSzB48GB4e3tj8+bN+Pz5M16+fJlhXaKkpCQcOXIEZmZmcHZ2TrPLRm6J199bt27B0tISNWvWxMqVK7F161a4ubmhdu3aeeprZDVRunbtWhQvXhyenp7Q1NTEkCFDpInSHTt2oG/fvun+nfnV/9myZYsUeFBcYihOJhSG3WgywkEHlme7d+9GsWLFsHTpUmkdK5CSuta8eXO0bdsWhw8fxqRJk1C6dOlCt8ZI0bVr16QCPeIXt3fv3hg+fLgUIR8wYADq1auH1q1b5+giq6qO3oULF2BnZ4cBAwakSeU/duyYymdZgewPxGJjYwtddkZhVJCDgsI2uC4ohXX2R/H9/vzzT7Rp0wZdunRJk1L5/PlzzJgxA6VKlUp3JxFVtSknASq5z/P0PrObN28iPj4eV65cQeXKlfH7778DSKk9UaRIEejp6aWZNcvIjh070LJlS9SoUQPVq1dPk8EwZ84caGlpYeLEiQVenC8rP8KAKa9UWZsjo9n81q1bw9HREUFBQVi+fDn69+8PXV3dbE/IFMYMx5zYv38/7OzsAKRkb1SsWBEDBgxAcnIyVqxYgYoVK6JcuXIYOHCgFCBNSkrCoEGDMHDgQOn6kR5VHXPgx6jjkpmRI0eidOnS6N69O9q3bw81NTUMGjQIDx8+zPT3kpKSEBcXl6b2Qlaye3189uwZPDw8YGVlBSsrK7Rp0yZPWTvZnSj95ZdfIAgCGjRoUCA7vIjtPHv2LCIjI7F8+XK8fftW+pu3bt0qBR4uXbqEKVOmwMDAAK9evVL5BGNecNCB5cmnT5/g7e0tVVX98OEDbt68idDQUOzfvx+zZs2Ch4cHypcvj8qVK+PUqVMF3OKMRUREoGTJkti8ebM0gPrw4QNq1aoFPz8/AClr/zp27Kg0A5eTL7iqOnrnzp2Dvb09BgwYkG5RS7k6HHIMxI4dO1ZosjMKs/waFBTmwXVBKYyzP6kdPnwYJUuWRLdu3eDl5YUiRYqkCS68ePECkyZNQsWKFZWKNspFjgCVXOe54me2d+9ebNq0SelauHTpUjg5OUnLPXbs2AEvLy8sXLgwW9fH06dPQ0dHB76+vujTpw80NDTwyy+/pMm8mD59OvT09ArNDg/Ajz9gygtV1ObIbDb/2rVrGDNmDGxsbODg4IAOHTrkeLlTYcpwzKkDBw6gdevWuHv3LsqWLYuOHTtKkyVxcXGoWrUqBEFAXFwc3r59i4SEBAQFBaFMmTKZ7rSj6mMOfN91XDITGxuL8uXL4++//5Ye27lzp7Q9KZB5Qd2cUrxW79q1CzExMZk+B0jZEUksOg7kLWsns4nSZs2aoW3btujSpQscHBygpqaGwYMHZ3gtVMX3S3HZYenSpVG3bl0YGBjAyckJu3fvluo5REREQFdXFzY2NihdurTSblGFFQcdWJ58/PgRDg4OGDZsGF6+fImhQ4eiSZMmKFeuHExMTDBz5kz8+++/OHXqVJYR08LA09MTVatWxdatW6WI+qRJk2BsbIxBgwahYcOGsLe3lzqpmV1w8rujd+7cOdSpU0dpH2o5yTkQO3/+fIFlZxRGBTUo+B4G1wUpv2d/suvOnTtYs2aNVNT2zZs3WLZsGTQ0NDB+/Hil57548UK27LK8BqgcHR3x5s0blZ7nQUFBKFGiBMzNzVGkSBEsWLAAX79+xapVq1CuXDnExsbiy5cvaNu2LUaPHi21M7Nrzu3btzFhwgRMnz5demzx4sUwMTFBUFBQmsCDHHuzy+1HHTDlliprc2Q2mw8AZ86cQWJiIpKSknK93KkgMxzz4u7duyhevDgEQYCWlhaMjY1hY2ODWbNmwc/PD82aNYODgwNMTExQqVIluLi4wNjYOMsCiqo85j9KHRdR6uv4gQMHULlyZTx8+BBJSUnSzzdv3owiRYrIOphNXeC3cuXKWLVqlVI2gfj+7969S/fan5csspxOlI4ePRrGxsbw9/dXul/duHEj123IDnHZ4YoVKwCk3IPEzIvIyEjpHL548SKioqLytEwoP3HQgeXZmjVrUKxYMejo6MDLy0ua5fLz84Orq2uhvPllNjjq0KEDKlasiK1btyIpKQl3797FpEmT4Orqit69e+cotSu/O3p///03+vbtq9LUXrkGYvmVnfG9KMhBQWEdXBek/J79ya4nT55AXV0dmpqamDJlivT458+fsWzZMhQpUgSTJk2S/X3lClBZWVnJep4rbrl59+5dNGrUCMePH8fLly8xa9YsCIKAkJAQxMTEwMvLCwYGBjAzM0ONGjWk2bLMPrOEhAQ4ODigVKlSUkdVtHDhQhgbG2Ps2LFK34HCFHz70QZMeZUftTkUZ/NNTEwwcOBA6X4WFxeHgIAAaZCQl3Ple7yHJicnY+3atVBTU4O7uztWrVoFX19faGlpQUtLS8pA2LhxI+bPn4+IiAil2eiMqOKY/0h1XNIzdOhQHDhwACdPnoS6uroUXBAHtAkJCahcuTI2bdok+3tPnz4dZcqUQVxcXLr91Xfv3qFbt25o166drP2LzCZKy5Qpg549e2LWrFn466+/pP5PWFgYTExM4O/vj1OnTiE4OBhqampISEhQybX+8+fPCA4ORmBgIICUgEOVKlXQu3dvODo6wtzcHNu3b1dpfSZV4aADk8WVK1dw4MABAP/XOR0yZAh69uyZ4dYuhcGiRYuUCi2JvLy8YGRkhG3btqW7zVRWqV0F2dFLnfIsJ7kHYqrOzvgeFPSgoLAOrvNbQc7+5NT27duhr6+PTp06Ke0O8eXLF6xYsQKCIGDatGkqee/cBqgSExPx119/oXbt2rKd54qf2cuXL3Hz5k0EBQUpXasVBwaHDh3C9u3b8ccff+Ro+8Bz587B3NwcDRs2TJOW/ccff0BLSwvBwcGFolCf6EcfMOWFqmtzKM7mi0szRX5+fmjRooVs2TDfyz1UMS3+6dOnaNiwIXR0dGBiYgILCwuUK1cOJUuWzHXAVFXH/Eeq46J4z967dy+KFy8u9du9vb1hZWWltITlxYsXsLCwyPUOHxm14fXr12jSpAkWLlwIIGVHiv3798PHxwfDhw+Xnrtw4UJ4eHjIflzTmyiNiIiAlpYWdHV1oaenB3d3d2zcuFH6neXLl8Pc3BxWVlYwMTFR6VLx5ORkHD9+HNeuXUNCQgLq16+Pfv36AUipUVSsWDHY2tqmWwS5sOOgA5OduH5OV1dXpVuz5UbqgZKtrS1MTExw7NixNBc2W1tb1KpVC2vWrFFag5ydJRUF3dGTa0CYHwOx/MjOKIwK6lz5ngbXBaEgZ39yYvv27dDU1IS/v79SYPfz589Yu3Ztpuufcys3ASpx2Y0qz/MxY8agTp060NXVRa1atdL87ty5c6GpqSkVDRPlZCb44sWLsLW1xcCBA9Oksy9fvhw3b97M9mvllx9pwCSX/KrNsWPHDpQoUQKBgYG4efMm/vnnHwQEBEBPT0/2flFhv4dmVPhWrOdy/vx5XL9+Pc+Fb+U+5t9zHZfMbNiwAUFBQZg3b570WFxcHNq2bQtTU1OsXr0aa9euhZubG+zs7PKcMaN4Xor3g5YtW2LgwIFYv349PD090bhxYzRv3hyVK1dG165dM30NOShOlEZHR6N06dJwcXFBz549ERcXhyJFiqBRo0ZYvXq19DunT5/GkSNHspV5kxPp9dfFAHZ0dDRsbGykTKa4uDi0bNkSbm5uuHv3rqztyA8cdGCyOnPmDLp27QpLS8tCtz2m4hc7PDwcGzZsAAC4urqiUqVKiIuLU6rV0LlzZ+jp6cHb2ztH7/MjdvRUPRBTZXZGYVaQ58r3MrhWtcIw+5NZ2zL7bkREREBDQwP+/v4qSbWUK0Al93mu+JyNGzeiXLlymD9/PoYPH47ixYsjICAgzcDgt99+Q4MGDWRJZ+/fv3+66eyFyY86YMqL/KzN8e3bN6xatUqazbe0tISNjU2WtQlyq7DfQ/Oj8K2cx/xHqOMiUjyOd+7cgb29PYoVK4YZM2YoPe/ChQsYMmQIjIyM4ODggLZt2+ZppwhA+Xzctm0bdu3aBQCYMWMGXF1doaWlhXHjxiEuLg4A4O/vL83qp9d+uYj31q9fv8LX1xeOjo7Q1dXFX3/9hapVq6JTp05o0qQJLC0tER4eLvv7K7YDSKnhEBgYiDlz5iiNnTZt2oSKFSvi5MmTSEpKwsSJEzFs2LBCnUGeGQ46MFl9/PgRsbGxha6oieKF759//oGdnR1sbGywZ88eAICzszMqVaqE2NhYqYBk3759cfXq1RzdxH+Ujl5BDMR+tHT9rOT3uVKYB9eFQX7P/qRHvNYopumnPh9Si4iIQPHixTFo0CCVrfHMS4BKlef54cOH8b///U+qIwSkLJkzMTFBYGBgmvdQrP+QW+fOnYOjoyO6dOmCa9eu5fp1VOlHGjDJpaBqczx48ECazVf1/b6w3kPzu/BtXo/5917HRZHisRSvz5GRkXB0dETlypXT7as/ffoU79+/z/NOEYrHZOTIkTA1NcXixYvx+vVrAMB///2XZra+adOmGDZsWK7eLzPp3Vvj4+Nx5swZtG7dGlWqVMHx48dRr149+Pj4AEgZK2hra8PW1hbr16+XvU2iv/76CyVKlICTkxOsra1hZmaGgwcPAkjZMtTMzAxVqlSBra0t9PX1VRa4zA8cdGA/lYCAAHh5eaFOnTrQ09ND5cqVpUGVmNrVokUL1K9fH5aWltLAIjuBhx+xo1cYBmI/ooI8V/gzTVGQsz+ZuX79utTR3bJlC7S1tXH79m2l56S+HoWHh8PIyAhPnz6VpQ1yBahUeZ4/fvwYVatWRcmSJZXOZSBlYGBiYoIxY8akqX4ux+Dg1KlTaNKkCR49epTn15LbjzRgktv3WJvje1dQhW/z6kc4V/bs2QMrKyvcu3cPw4cPh5aWFp48eQIgZVlcw4YN4eLiggcPHgBAuoV15cicWbJkCcqUKYMTJ06k+3pv377F6dOn0bJlS1hbW6vsmN64cQMjRowAkHJvLVasGC5fvoyYmBjcv38f0dHRqFWrlrRULi4uDk2aNEGXLl1UOpH622+/YenSpQBSzrt+/fpBX18ff/31F4CUe920adMQGhr63dfc4aAD+2msWbMG+vr6OHv2LF68eIH//vsPzZs3R+3ataWUr5CQEAwaNAj/+9//pAtfdi66P0pHr7AOxH4k+X2u8GeaVkHO/mRl586dEAQBHh4eUFdXV5rFT+3Tp0/Sv9++fSt7W/ISoMqP8/zixYuwsLBA8+bNcenSJaWfLV68GOrq6vjjjz9y9JrZpXjsC5sfYcCkKt9jbY7vXUEWvs2L7/1c+fTpEypVqgQTExPo6OikWfIcEREBZ2dnuLq6SoWA8xpkOHnypPRv8XrevXt3/PLLL0rPU3yfvXv3ok2bNirvcxw4cACCIMDNzQ3q6upSvQaxnbt27ULVqlWxf/9+AMCECRMwdOhQvHv3TtZ2iO8XHx+P+Ph4eHt7Y9u2bdLPb968CR8fH+jr62Pv3r1Kv/O946AD+2lMmDABDRs2RFJSkvQFfvjwIRwdHaUtMkXiBS8nnbLvvaNXmAdiP5r8Olf4M02rsMz+pEd8jxEjRkBNTQ0tW7bMcO3m5MmTYWNjI+vWqXIHqPLjPL9w4QLs7OwwYMCANAODiIiIHy5gll3f+4BJlb6n2hw/ioIofCuH7/FcSU5Olq6pgYGBEAQBlpaWuHnzZprrYUREBJo2bYpatWrh2bNneXrfwYMHY9iwYUr3ka9fv6JJkybw9/cHoHx/+Pr1qxSkuHDhQrpLIOQitmn06NEQBAGurq5KBeKBlB1QHBwcUKNGDdSqVQt6eno4f/687G0BUo67vr4+rKysoKOjg8WLFyv9/NatWxgwYAAEQUBMTIxK2lAQOOjAfnjixWb69OlwcHCQLjRiJzkqKgrFihVDkyZNpBQnIHcXvu+1o1eYB2I/KlWfK/yZpq8gZn+yS3yfUaNGYciQIRAEAcOHD0+zbCI5ORmxsbGoUaNGljUfsktVAar8uCaKA4MBAwakOzD4WQMP3+OAKb98D7U5vjcFXfhWVb6nc0XxuH/79g2nTp3C6dOnUb16ddjZ2eHcuXNpZs0jIyPh6+ub5/vcxYsXpX614rK2/v37o0KFCmkC6P/++y/69eunVFhYFfdaxb83JCQEw4cPh5qaGnx9ffH48WOl51y7dg0LFizAb7/9hhs3bqikHQ8ePICFhQXCwsKwZcsW9OvXD0WKFMHu3buVnn/9+nUMHTr0u19SoYiDDuyncfny5XTXD+7Zswft2rVD+/bt4eTkhFWrVuXpfb7Hjl5hHoj9yFR5rvBnqqygZn/yYsuWLVLgQbEgmpg1IFeKv6oDVPlxTTx37hzq1KmDjh07Ki3Z+Nl9TwOm/FaYa3N8Dwpr4VtV+B7OFcVr8Ny5czFy5EipUOO7d+9gYWEBOzs7pUF+6hl2OQK0a9asQePGjaVB9MOHD2FhYYE6derg+fPnSEhIwMuXL+Hm5gYnJyeV9jvEe9SxY8cQHh4unXN79uyRAg+KQX1VZ9wcOHAAs2bNwpAhQ6THXr16haFDh0JDQyNN4EEM4vwoOOjAfiqrVq2ChoYGAgICcOrUKdy+fRvu7u4YP348Hj16hE6dOsHa2jrPlWq/l47e9zgQ+9HIfa7wZ5pWQc7+ZEV837NnzyIyMhLLly/H27dvpc9q69atUuDh0qVLmDJlCgwMDPDq1SvZ1nnmR4AqP66Jf//9N/r27ftDB89y43sYMBWUwlyb43tQGArf5pfv5VwJCAiAkZER1q9frxQEevfuHczNzWFra4uwsDC4ubmhYsWKeb5epv79mJgY1K9fH+3atZMKEJ84cQJ2dnYoVaoUatSoAVtbW9jb20uDalVmOGzbtg0GBgaYMGECLl68KD2+e/duqKurY/DgwTh37hwmT54s7aCkqhoKQUFBEAQBVlZWePnypfS4GHgoXrw4IiMjVfLehQEHHdhPZ9u2bTAyMoKJiQlMTExgZ2cn3UwePHiAXr16yZKyXNg7eoV5IPazketc4c80rcIy+5Me8bOIiIhA6dKlUbduXRgYGMDJyQm7d++W0lEjIiKgq6sLGxsblC5dWtqyUo73z88AVX5cEzNL7/6ZfS8DJvZ9KUyFbxmwbt06GBsb4+zZs9Jj3759kwJB79+/R5MmTeDk5ISmTZvmedCv+HsHDx6Uii6eOHECTk5OcHd3R3R0tPScZcuWYfHixVizZk2uaqfl1OHDh6Gjo4OwsDClxxUzHvT19WFjYwMjIyPZ7q2ZmTFjBgRBwIoVK5Qef/36Nfr06YPSpUsrFVz9kXDQgf2U/vvvP5w6dQqHDh2SLnziDVHOAUZh7egV5oHYzyqv5wp/ppnL79mf7IqJiUHp0qWlDsjt27chCAIaNGiAyMhIqXN08eJFREVFybZ1V0EFqPLjmvijVPpmrDAr6MK3LK2JEyeiVatWAFKyUBYsWICaNWuifPnyCA0NBZAyyH/06FGei0UrXmfHjh0LMzMzLFy4UHq948ePS4EHcReG1FQd0B85ciQ6deoEIGVHpZiYGPTv3x9t2rSRikReuXIFhw8flpYPyt0GkeLfOnLkSGhoaGDdunVKz3nz5o20tPFHxEEHxvBjD7YyU1gHYiz3+DNNK79nf7Lr8+fPCA4ORmBgIICUgEOVKlXQu3dvODo6wtzcHNu3b5d97TMHqBhjeVWQhW9Z+vensLAwWFhYoHv37rC2tkbnzp0xYcIETJ8+HUWKFElTHFGOe9y4ceNQqlQpxMXFKRUkBlIyHho3bgxPT09s3749z++VUyEhIahRowY2bdqEjh07onXr1nBxcYGbmxsMDQ1lD4Jt3rxZKbNDDDyI98vHjx9Lx3z06NHQ0NBAeHi4rG0ozDjowNhPqrAOxFju8Weavvyc/cmJ5ORkHD9+HNeuXUNCQgLq16+Pfv36AUjZq7tYsWKwtbXFn3/+qZL35wAVY0wu+VX4lqVd1rB9+3YcOHAAjx8/xvTp09GqVSssXrxY2h0oLi4ODRo0kH1pm7jN5P79+wEAz549w/nz5xEUFCQNvk+ePAlLS0uMGjVK1vfOjsOHD6Nr164wNDREr169sH//fiQlJeHw4cNwdHSUra5IcnIyXr58iXLlyqFFixY4evSo9DOxn/Xvv/+iSJEimDVrlvSzcePGQRAEbNmyRZZ2FHYcdGDsJ1VYB2Is9/gzLTyzP+lJL+1fPP7R0dGwsbGRdneIi4tDy5Yt4ebmJmUhyIkDVIyxnCoMhW9/dorHMSgoCMbGxrC1tUXRokUxZMgQ3Lx5U1rm8u3bN3z8+BFt2rRBy5Yt83z9Vnzv5ORkPHjwALq6uli/fj3OnTsHHx8fWFtbo1q1aihSpIi0rOLSpUsqzY7LbLvWt2/fpsmwCQgIQL169WTPdLh69Spq1aoFd3d3HD58WHr8wYMHKFeuHAYPHpymfZMnT1b5rhmFRRFijP3wkpOTSU1NTemx8uXL0507d6hHjx506dIlqlGjBrVv356KFStGY8aMIU9PT7KwsKBy5cpJr1GkCF8yCgv+TNNSPCZRUVH0/v17KlGiBHl4eNCrV6/oyJEjNHjwYGrWrBmZm5vTsWPHyNHRkbS1tZVeJ/VxlQMAEgSBDh06RPv376cyZcqQq6sr2djYEBHR8+fP6c2bN/Tu3TtKTk6mgwcPkoWFBc2cOZOKFi0qe3tu375N1tbWZG9vTzdu3KCDBw9SWFgYvXr1ioYPH04jR46kqKgoev78OZUtW5YEQaBv3779UOcLYyz7xGtYZGQk+fr6UpUqVejWrVu0Zs0aCgwMpGbNmlHHjh1p27Zt5OPjQ4cOHaJHjx7RgQMHSF9fv6Cb/8MQBIGIiEJDQ2nNmjW0Y8cOcnR0pIULF5Kfnx89efKEQkNDycjIiPbt20eLFy+m169f06lTp0hNTS3dvkNO3zskJIQMDQ1pwIAB1KdPHxoyZAglJibSgAEDaOrUqdS2bVtq3LgxRUdHU6tWrcja2pqIiJKSkkhdXT3Px0D8G8R7kiAIdO/ePapYsaL0t4nnq7a2tnSPP3PmDK1du5bWrVtHhw8fJl1d3Ty3RXyvb9++kaWlJa1evZq6du1KCxcuJDU1NXJycqKoqCjq168fTZ48WTqGovHjx8vShu8B9x4Y+8EV5oEYyx3+TNMCIP09o0ePpnXr1lHp0qXp2rVr1L9/f/rll1/o119/paJFi1JSUhJ9+vSJQkJCSFtbm8qUKaPy9gmCQHv37iVvb2+yt7enN2/e0OLFi+mPP/6gZs2akaurK2loaFC3bt1IR0eH7t27R9HR0bIEHDhAxRjLKzFo6uvrSyEhIeTj40Px8fFkbm5OSUlJ9PXrV3J3d6f27duTmZkZPX/+nCwsLMjU1LSgm/7DefToEV29epXmzp1Ljo6OFBkZSRMmTKBx48bRggULKCgoiHx9fenatWtkZ2dHM2bMoCJFisgWOL5//z6tWrWKevToQSEhIdS9e3dSV1cne3t7IkoJLhBRms9ejoADUUrf5caNG7R27VqaOnUqbd26lfr160fnz5+nqlWrElHK+ap477t69SqtXbuW/vnnH4qNjZUCIXLR0NCgbdu20d9//02ampoUGRlJz58/pzlz5lCfPn1kfa/vVoHmWTDGVKog0/CYavBnmrkZM2agXLly+PvvvwEACxYsgCAI6NChA+Lj4/Hu3Tts3boVLi4usLW1zddlA7/99huWLl0KADh37hz69esHfX19/PXXXwBSikxNmzYNoaGhuH79uizvWVjW/jLGvm8FVfiWpfXp0ydERkbi9evXOH36NCpVqoTff/8dADB79mwIggBPT0+ltH05ljeI/Y/jx4/D3t5equUg+vDhAy5cuIA2bdrAxsZGpcs3c7Jdq3hO3rx5M02xS7kcPnwYmpqaWL58OY4cOYKDBw+ifPnyaNq0KeLi4qTn/Qz9sIxw0IGxn0BhHoix3OHPNK3//vsPvXv3xqZNmwAAERER0NfXx/jx46Gnpwdvb29ER0dj8uTJ8Pf3lzpEquoYiR20+Ph4xMfHw9vbG9u2bZN+fvPmTfj4+EBfX19a+yrnumcOUDHG5FLQhW+ZMvGePn36dLi7u0v1CRYsWIAePXooXcdze19R/L3UQQtXV1ephhSQch/dvn073Nzc4OzsLLVPFbUccrpda61atfD27VvZ26Fo0qRJaNiwodJjV69eRdmyZeHs7KxUXPJnxUEHxn5whW0gxvKOP9P0FdTsT2bEz8bKygo6Ojpptp68desWBgwYAEEQEBMTo5I2cICKMZZThanwLUtL/Hz69u2LRo0aISEhAZ8+fUKbNm2kvgEgz3V85cqV+PXXX/H48WPpfU+fPg0LCwulINPdu3cRFRUl3VdV1ecoTNu1isdj/PjxqFu3rvSYGATZsWMHihYtiubNmytlPPyMOOjA2A+uMA7EWN7wZ5qx/Jj9yYr4ug8ePICFhQXCwsKwZcsW9OvXD0WKFMHu3buVnn/9+nUMHTpUtiUVijhAxRjLKfEaFhMTg8DAQMyZMwcXLlyQfr5p0yZUrFgRJ0+eRFJSEiZOnIhhw4ZlONvMVOfEiRPQ0NBAzZo1YW5uDmtra9mu38nJyfj27RsGDhyIBg0aQE9PD0FBQdi3bx8SExPRpEkTjB8/Pt3fzc+gdWHYrjUmJgaCICA8PFzp8T///BOOjo6oW7cu7t+/r/J2FGZcFYqxH5yWlha1adOGNDQ0KCoqiqysrKh3795ERKSpqUndu3en58+fU7Vq1YgopSCfXMV+mGrwZ5oxsUjWzZs3KSEhgQRBoM+fP9P+/fupR48e1LlzZyJKv7iiXARBoIMHD9KlS5eoefPmNHDgQCIiatasGRUrVoy8vLxo+/bt5O7uTkRE1apVozlz5pCGhobsbTEwMCBPT09ycXGhM2fO0IgRI2jSpEnk5+dHenp6FBAQQF+/fqXp06eTpaUlEaUUAeOikYz9vAqy8C3LmXr16tHJkycpMjKSdHR0yN/fP09FIxMTE6V7kXgvWLJkCQmCQAsWLKATJ05Qhw4daOjQoaSvr0/z5s2jbt26UfXq1ZVeR+77K/7/bhTnzp2je/fu0atXr6hTp05UvHhx8vb2JkEQqFOnTkRE5OPjQzt37qS5c+fS7du3SU9PT/Z2XLx4keLj46lChQpkYWFBLi4uNGrUKPLx8aGkpCTq2rUrERGdPHmSWrZsSYGBgVSiRAnZ2vFdKtiYB2MsP+RnGh7LH/yZZk6Vsz/ZERQUBEEQYGVlhZcvX0qPv3r1CkOHDkXx4sURGRmZL20pDNkfjLHvS0EUvmXyyM29Lj4+Xun/V6xYgV9//RWzZ89WWprw7t07HDt2DF5eXnBycoIgCJgxYwYA1fU3xPtSREQESpcujbp168LAwABOTk7YvXu3lGETEREBXV1d2NjYoHTp0jhz5oxK2rNt2zYYGhrC2NgYZmZmGDBgAJ49e4avX79izJgxUFNTg7W1NWrVqgVtbW2cP39eJe343nDQgbGfSEEPxJj8+DPN2NmzZzF27FjMmDGjQJYNzJgxA4IgYMWKFUqPv379Gn369EHp0qXx/v17lbeDA1SMsawUdOFbVnB8fX3RokULnD17FgAQHByMEiVKwNPTE5qammjTpo30mYvev3+PR48eoXfv3qhUqZLKl9bExMSgdOnS0v309u3bEAQBDRo0QGRkpLRDxcWLFxEVFSX7UgbxXH/06BHatm2LlStX4unTp5gzZw4aNWqEjh07SjUl4uLiMHfuXPz+++/SzlAMEACgoLMtGGP559y5c7Kl4bHCgT/T7FHVMcH/T7cUJSUlSctZRo0aRfPmzaOVK1dSjx49pOckJCTQ58+fqUyZMrK3JyMnT56kxo0bU7Vq1ejLly+kpaVF586d4/OEMUZERJGRkdS/f38qX748PXjwgEJCQmjw4MHSz2/fvk2hoaG0fPlyio6OJhcXlwJsLZNLTEwMDRw4kBwcHMjHx4fCwsIoICCA6tevT7du3aKePXuSgYEB+fn5UatWrYjo/5Yofvz4kWxtbWnSpEnUrVs3lbTvy5cvNGPGDPr48SOFhIRQfHw8tWjRgpycnOjatWv0+vVrCg0NpdatW5OmpqZK2kBEdPbsWZo3bx59/PiRwsLCqFSpUkREtGrVKlq5ciUZGRnRggULqHz58iprw/eMexqM/WTs7e3J3t5e+n8enH7/+DPNHjmPyZYtW6hUqVLk6upKgiBIgQcx4PDkyRMyMjKi0NBQKlKkCPn4+JCamprUKdPV1SVdXV3Z2pMdcq/9ZYx9/8Rr18OHD2n06NEUEhJC+vr6tH//fvLz86MKFSpI9WfMzMxoxIgRVLRoUR5Y/SCSk5PJ1dWV1q5dSz169KCPHz/Shw8fyMLCgoiIzM3NacWKFdSvXz9asGABCYJALVu2lGo2FC9enLS0tOjr168qa6OmpiY1b96c9PX16e3bt9SzZ09ycXGh5cuX061bt8jGxoaCg4OpSJEi1KZNG5W146+//qJjx45RUlISFS9eXHq8b9++RES0bt066tWrF4WHh+frhML3gnsZjP3keLDx4+HPVHUA0OvXr2n48OFkbW1Nmpqa1KhRIxIEQSrAde/ePTIzM6OQkBAaMWIETZs2jdTV1alHjx6koaFB3t7eBdZ+DlAxxhQVpsK3LH+J2QrJycnUoEEDWrNmDfXt25eePXtGFy9eJFdXVyIisrKyopUrV9LAgQNpwoQJpKenR3Xr1iUiov3799Ply5epXr16srUrdfagIAhUp04dKlKkCMXExNDHjx/J39+fiIiePXtGjRs3JjU1NapZs6ZsbUhPUFAQFS9enBYsWEB+fn40e/ZsafKgb9++9PnzZ9q9ezclJiaqtB3fK9WU7maMMcZ+QIIgkIGBAUVHR9OTJ08oJCSEjhw5QkREGhoa9PDhQ6pfvz4NGDCAfv31V+n3pkyZQsHBwSrvFOUUBxwYYzExMTRy5Eg6fPgwvXr1ioiI9PX1afLkyTRo0CDq1KkTbd++XXo+Bxy+f4o7OMXHx9PDhw/JycmJ9u3bR6VLl6aFCxfS2bNnpefXqFGDFi9eTLa2tlSnTh3p8erVq9OdO3fS7F6RW2LA4dChQxQUFERz586lixcvSveq58+f05s3b+jdu3eUnJxMBw8eJAsLC9q+fTtVqlRJljaI7SAievr0Kb169YoePHhAGhoa5OfnR76+vnTlyhUaO3YsvXv3TvqdwYMH04YNG8jExES2dvxIuKYDY4wxlk0A6Nu3b6ShoUHnz5+nrl27krW1Nfn5+ZGTkxOtXr2a4uPjafLkyUozNYwxVpiFhoZSUFAQLV++nHx8fKTH37x5Q7/++ivt2bOH7t69y9v+/QAUMwmCgoJo586d9Pz5c7K0tKSAgACqVasWNWvWjOzt7SkoKIhq166d5jUUaxfJLfV2rZ8+fZK2a33+/Dk1aNCAkpOTlbZrtbOzk+39xeOzY8cOmjx5Mr17944AUJ8+fWjcuHGUlJREoaGhtGvXLnJ0dKQpU6aQjo6ObO//o+KgA2OMMZZNYmdk27Zt9Pfff9P+/fvpypUr5OTkRHPmzFFausAYY4XN91L4lqmGYobDpk2b6Ndff6UlS5bQmzdv6PLlyzRnzhxatWoVNWrUiFq0aEGOjo7k5+cn6/KJrEydOpWMjIxowIABdP78eVq0aBFFRkZSeHg4ubm50ZMnT2jVqlVUpEgR8vDwoGrVqsnehqioKGrTpg2FhoZSqVKl6Pnz5xQQEEC9evWiFStWUGJiIs2aNYvWrl1Lbdu2pRkzZvBEQxY4r5IxxhjLJkEQ6MiRI9S9e3davHgxtW3blr5+/Uq9e/emUaNGUXBwMDVs2JCIlDt3jDFWUL7HwrdMNcR70uHDhyk6OppGjRpFnp6eRET07t07MjU1pUGDBlF0dDRt3bqVGjVqRObm5ioNOojn4507d4iI6OLFi9S5c2ciIrKzs6PAwEACQN27d6cNGzZQq1atKCgoSCWDfLEtkZGR1KFDB/Lz85N+ZmNjQ02bNqVq1arRqFGjpKKq7du354BDNnBviDHGGMuBw4cPU506dahfv37UuHFjatasGUVFRdGVK1do3LhxFBcXR0TEAQfGWIECQK9evaLhw4fTjBkzpGuTWPhWXV2d7t27R6ampjR37lwiIpo2bRoFBgZSjx49aOvWrQXZfKYiT548of79+9PmzZvp48eP0uPa2trUs2dPatGiBW3YsIHs7Ozo2LFjNGHCBJW2RxzkOzg4kIeHB+3fv5+ePXsm/dzc3JxGjx5NHTt2pNatW9OhQ4dkH+SLif/i8bh79670GAD6+vUrOTs705QpUyg8PJyePn1Kmpqa5O/vL2stiR8Z94gYY4yxbBA7IElJSfTt2zfpsS9fvpClpSUtWbKETpw4QZMnT6Zjx44VZFMZY+yHK3zL5FG2bFmKjIwkIyMjioyMpPPnz0s/09fXp9KlS9Pt27eJiMjW1pbU1dUpKSlJ9naI91TF7VonTpxI3t7e5OfnR3v27JGeK27XOmTIENm3axWzG6KiomjChAl0//598vT0pEOHDtGZM2dIEASpeKq+vj4JgsA1HHKBgw6MMcZYNogzKy4uLnTq1CnasGEDCYJARYsWJSIidXV1srGxobdv31KFChUKsqmMMUYAKDExkSwtLWn16tV0+/ZtWrhwIR09epSIUtat9+vXjxYtWpQmM2v8+PFkaWlZEM1m+aBWrVoUGRlJSUlJNG/ePLpw4QIRpSyxuHbtWpp7mCqKRorbtW7evFnartXb25tmzpxJvr6+5OXlpRR4ELdrlbuGg5hp4eHhQXp6evT8+XNycnKiOnXq0MSJE+ns2bPS/T8+Pp709fWliQeWfVxIkjHGGEuHOPtx8eJFio+PpwoVKpCFhQXp6OhQUFAQzZs3j5YtW0Zdu3YlIqJJkyaRmpoaBQYGcoV3xliB48K3LCvnz5+nHj160KtXr8jBwYE0NTXp7t27dPLkSdLU1ExTeFRuo0ePphkzZlCNGjUoNjaWDAwMiIjo9evXNGHCBFq5ciWtX7+evLy8VNaGmzdvUqtWrWjkyJE0ePBg6fGdO3fSihUr6Pjx41S3bl1KSkqiEydO0JEjR8jW1lZl7flRcdCBMcYYy0BERAQNGjSItLS0qFixYuTi4kJTp04lPT09mjRpEoWEhJCVlRUJgkB3796l2NhY7owwxgqNI0eOUIsWLWjx4sVkbm4uFb61tLTkwreMiIguX75MHh4eZGJiQt26dSNfX18iIkpMTJSWFahSQW/XGhUVRUOGDKEDBw5QxYoVlb4L169fp7Nnz9KBAwfIxMSEevbsSdWrV1dJO350HHRgjDHGFIgzO48fP6ZBgwaRl5cXubu7U3h4OEVGRlLZsmVp0aJFZGRkRMeOHaPTp0+Tmpoaubm5kbm5eUE3nzHGJMHBwXTw4EGpiCQR0bVr18jV1ZWqV69OU6ZMoUaNGhVgC1lhcOHCBfL19aVatWrRqFGjyMzMTPb3KKzbte7YsYP8/Pzo6NGjUtABAKmrq9Phw4epUqVKXCxSBhzSZIwxxhQIgkBnz56lUaNGkYaGBrVt25aMjIzo119/JR8fH3ry5AkNHjyYHj16RA0bNqThw4eTn58fBxwYY4UGF75lOWFra0t//PEHXbx4kcaPH0/Xr1+X5XW3bNlCMTExRETSdq1EpLRda3JyMoWGhlJAQAD5+PjQhg0bpN/X1dVVacCBKGUrzBcvXtDSpUuJKGXnKTEYsmPHDlq1ahV9/fpVpW34GXDQgTHGGEvlr7/+omPHjtGZM2eoePHi0uN9+/YlHx8fev36NfXq1YuePn1agK1kjLH0ceFbllN2dna0cOFCevz4Menq6ubptb6n7VorV65MCxcupJkzZ9KoUaPo8uXLdO3aNQoMDKQ1a9ZQ165dSVNTM9/a86Pi5RWMMcZYKomJiTR//nxasGABNWvWjGbPnq3UCfvjjz9o9+7dFBYWRiYmJgXYUsYY48K3TD6fP38mLS0tWV7r2rVr1KVLFzI1NaWRI0dSkyZNiChlm0xHR0dq164dLVy4UKmeyJQpU6hjx475untKcnKyVMOpRIkSpKWlRerq6rRx40ays7PLt3b8yDjowBhj7KcmdtafPn1KGhoa9OHDBzI1NaXExESaPXs27dy5k2rXrk3Tp08nbW1t6fcSEhLyPBvEGGNy4cK3rLAAQN++fSMNDQ06f/48de3alaytrcnPz4+cnJxo9erVFB8fT5MnT1bp7hg59ejRI7p37x4JgkCVK1dW+dKOnwkHHRhjjP20xIDDjh07aPLkyfTu3TsCQH369KFx48ZRUlIShYaG0q5du8jR0ZGmTJlCOjo6Bd1sxhgjIi58ywon3q6VpcZBB8YYYz+1qKgoatOmDYWGhlKpUqXo+fPnFBAQQL169aIVK1ZQYmIizZo1i9auXUtt27alGTNmFKqZGcbYz+3s2bM0b948+vjxI4WFhVGpUqWIiGjVqlW0cuVKMjIyogULFlD58uULuKXsZ8LbtTJFRQq6AYwxxlhBEGdiIiMjqUOHDuTn5yf9zMbGhpo2bUrVqlWjUaNG0YgRI6ho0aLUvn17DjgwxgoVsfBtUlJSmsK3RETr1q2jXr16UXh4OKeLs3xz+PBhqlOnDvXr1096LCoqilxdXWncuHHSdq0ccPg58KfMGGPspyIm+H38+JGIiO7evSs9BoC+fv1Kzs7ONGXKFAoPD6enT5+SpqYm+fv7817djLFCJygoiIYMGUKCIJCfnx8lJCRIP+vbty95e3tT0aJFKTExsQBbyX4WvF0rSw8HHRhjjP00xOyGqKgomjBhAt2/f588PT3p0KFDdObMGRIEgTQ0NIiISF9fnwRB4BoOjLFCQxzQPX36lF69ekUPHjwgDQ0N8vPzI19fX7py5QqNHTuW3r17J/3O4MGDacOGDbzTDssXvF0rSw8HHRhjjP00xOUUHh4epKenR8+fPycnJyeqU6cOTZw4kc6ePSt1mOLj40lfX1+aqWGMsYKkWPjWzc2N6tatSy4uLvTbb7+RhoYGjRw5kjw8POjs2bM0btw4evv2rfS7vNMOUxUxEHbx4kWKjIykM2fO0Nu3b8nFxYVGjRpFPj4+tG7dOvr27Rt9+/aNTp48SS1btqTo6GgyNTUt4Naz/MI1HRhjjP00bt68SQEBATR79mwaPHiw9Hi/fv1oxYoV1LJlS6pbty4lJSXRiRMn6MiRI0rbZDLGWEERs7S6dOmSpvDt3bt3acWKFRQQEEBERGvXrqWiRYty4VumcoIgZLhd65QpU0hdXZ369OlDM2fOVNqutUSJEgXddJaPePcKxhhjP42oqCgaMmQIHThwgCpWrKhUNfv69et09uxZOnDgAJmYmFDPnj2pevXqBdxixhj7vyyH//3vf5SQkEDh4eHSzw4fPkxNmzal6dOn06hRo+jr16+0cOFCat++PdehYSrD27WynOCgA2OMsZ/Gjh07yM/Pj44ePSoFHQCQuro6HT58mCpVqsSddMZYoSEO7D58+EAlSpQgNzc30tfXpw0bNhAASkxMJE1NTZo2bRpt3ryZDhw4wDtUsHzD27Wy7OKaDowxxn4aNjY29OLFC1q6dCkREampqZG6ujoRpQQkVq1aRV+/fi3IJjLGGBFx4VtW+InbtZ45cybNdq0+Pj70+vVr6tWrFz19+rQAW8kKAw46MMYY+2lUrlyZFi5cSDNnzqRRo0bR5cuX6dq1axQYGEhr1qyhrl27kqamZkE3kzHGuPAtK/R4u1aWXby8gjHG2E8lOTlZKnpVokQJ0tLSInV1ddq4cSPZ2dkVdPMYY4yIUgrftmrVikaOHKlU+Hbnzp20YsUKOn78eJrCt7a2tgXXYPZDEzNvnj59ShoaGvThwwcyNTWlxMREmj17Nu3cuZNq165N06dPVyrAnJCQwLunMA46MMYY+zk9evSI7t27R4IgUOXKlXkdNGOsUOHCt6ywUNyudfLkyfTu3TsCQH369KFx48ZRUlIShYaG0q5du8jR0ZGmTJnCS32YEt4ykzHG2E+pfPnyXNyKMVZovX//nj59+qT0WFJSEqmrq9OTJ0+oYcOG1L179wJqHfuZ8HatLK846MAYY4wxxlgho1j4durUqVKWA1FK4VtdXV0aO3Ys16FhKiVmOURGRlKHDh3Iz89P+pmNjQ01bdqUqlWrRqNGjaIRI0ZQ0aJFqX379hxwYEo46MAYY4wxxlghIxa+9fX1pcTEROrVqxepq6vT6tWrac2aNXTixAkOODCVEYMNHz9+pBIlStDdu3dJX19f+lliYiI5OzvTlClTKDw8nHr37k1lypQhf3//Am45K4w46MAYY4wxxlgh1KdPH9LW1qZBgwbRxo0bpcK3MTExXMOBqYzidq179+6lX375hTw9PSk4OJjOnDlDDg4OvF0ryxHeMpMxxhhjjLFCSE1Njby9veny5cu0ZcsWWrduHR05coR32mEqxdu1Mrnx7hWMMcYYY4wxxoiIt2tl8uPlFYwxxhhjjDHGiIjo/v37pKGhQa1btyYikrZr9fT0pGrVqilt1zpv3jxe6sOyxEEHxhhjjDHGGGNExNu1MvlxTQfGGGOMMcYYY0SkvF0rUUptEXV1dSJK2a511apV9PXr14JsIvvOcKYDY4wxxhhjjDEi4u1amfy4kCRjjDHGGGOMMUlycjJFRETQoEGDqESJEtJ2rRs3buTdU1iOcdCBMcYYY4wxxlgajx49onv37pEgCFS5cmUqU6ZMQTeJfYc46MAYY4wxxhhjjDGV4EKSjDHGGGOMMcYYUwkOOjDGGGOMMcYYY0wlOOjAGGOMMcYYY4wxleCgA2OMMcYYY4wxxlSCgw6MMcYYY4wxxhhTCQ46MMYYY4wxxhhjTCU46MAYY4wxxhhjjDGV4KADY4wxxhhjjDHGVIKDDowxxhhjjDHGGFMJDjowxhhjTHaCIGT636RJkwq6iYwxxhjLB0UKugGMMcYY+/E8fvxY+vfmzZtpwoQJdOPGDemxkiVLFkSzGGOMMZbPONOBMcYYY7IrW7as9J+uri4JgqD0mBh0uHz5Mrm5uVHJkiWpTJky1LNnT3rx4oX0Os7OzmmyJDp27FhQfxZjjDHGcoiDDowxxhgrEG/evCFXV1eys7OjM2fO0L59++jp06fUqVMnpecNGDCAHj9+LP23fPnyAmoxY4wxxnKKl1cwxhhjrEAsXLiQ7OzsaNq0adJjK1euJFNTU7p58yZZWFgQEVHx4sWpbNmyBdVMxhhjjOUBBx0YY4wxViAuXrxIhw4dSre+Q3x8vBR0YIwxxtj3i4MOjDHGGCsQ79+/p7Zt29KMGTPS/KxcuXIF0CLGGGOMyY2DDowxxhgrEPb29hQREUGVKlWiIkW4S8IYY4z9iLiQJGOMMcYKxJAhQ+jVq1fUtWtXOn36NMXHx9P+/fupb9++lJSUVNDNY4wxxpgMOOjAGGOMsQJRvnx5OnbsGCUlJVGLFi3I2tqahg8fTnp6eqSmxl0Uxhhj7EcgAEBBN4IxxhhjjDHGGGM/Hp5GYIwxxhhjjDHGmEpw0IExxhhjjDHGGGMqwUEHxhhjjDHGGGOMqQQHHRhjjDHGGGOMMaYSHHRgjDHGGGOMMcaYSnDQgTHGGGOMMcYYYyrBQQfGGGOMMcYYY4ypBAcdGGOMMcYYY4wxphIcdGCMMcYYY4wxxphKcNCBMcYYY4wxxhhjKsFBB8YYY4wxxhhjjKnE/wOJEQA5mGJKQgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/8AAAIjCAYAAABViau2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYEVJREFUeJzt3Xl4Tnf+//HXHSRCNhFZaEKssSudmtBaagnVRdvRqaUoLTq0tto6ap2WUkpLa8wU0ynV0lJaVRF7hdpSomFoo+kiNLbbElnP74/+cr5uiXAndyROn4/ruq8r55z3+Zz3uXMsr/sst80wDEMAAAAAAMCy3Iq7AQAAAAAAULQI/wAAAAAAWBzhHwAAAAAAiyP8AwAAAABgcYR/AAAAAAAsjvAPAAAAAIDFEf4BAAAAALA4wj8AAAAAABZH+AcAAAAAwOII/wAAALij/Pzzz1qyZIk5feLECS1durT4GgKAOwDhHwBQIEuWLJHNZjNfZcuWVe3atTVkyBCdOnWquNsDYGE2m02DBw/WV199pRMnTmj06NHavn17cbcFACVa6eJuAABwZ5syZYrCw8N19epV7dixQ++++67WrVun+Ph4lStXrrjbA2BBVapU0XPPPadOnTpJkkJCQrRly5bibQoASjibYRhGcTcBALjzLFmyRM8884z27Nmje+65x5w/cuRIzZ49W8uWLVP37t2LsUMAVvf9998rJSVFDRo0UPny5Yu7HQAo0bjsHwDgUg888IAkKTExUZJ09uxZvfTSS2rYsKG8vLzk4+Ojzp0769tvv8217tWrVzVp0iTVrl1bZcuWVUhIiB5//HF9//33kn6/r/faWw2uf7Vp08Yca8uWLbLZbProo4/08ssvKzg4WOXLl9cjjzyin376Kde2d+/erU6dOsnX11flypVT69at9fXXX+e5j23atMlz+5MmTcpV+8EHH6hZs2by9PSUv7+/nnrqqTy3n9++XSs7O1tz5sxR/fr1VbZsWQUFBWngwIE6d+6cQ121atX00EMP5drOkCFDco2ZV+8zZ87M9Z5KUlpamiZOnKiaNWvKw8NDoaGhGj16tNLS0vJ8r/Jyo/3M68xt3759b/pe9+3bV9WqVXNY76effpKnp6dsNptOnDhhznf2fRkyZMgN9yPn1pdrx8/LwYMH1bdvX1WvXl1ly5ZVcHCw+vXrpzNnzjjUTZo0STabTSkpKQ7z9+7dK5vN5nCPe9++feXl5ZVrWytXrszzvVyxYoV5HAYEBKhXr1765ZdfHMbL78/Wtfv52WefqUuXLqpcubI8PDxUo0YNTZ06VVlZWQ7bbNOmjRo0aJCrxzfeeCPX+5bXe5mdna1GjRrlue85v+8aNWqoefPmOnv2bJ6/bwDA/+GyfwCAS+UE9YoVK0qSfvjhB61evVrdunVTeHi4Tp06pX/+859q3bq1vvvuO1WuXFmSlJWVpYceekgxMTF66qmnNHToUF28eFHR0dGKj49XjRo1zG10795dDz74oMN2x40bl2c/r776qmw2m8aMGaPTp09rzpw5at++veLi4uTp6SlJ2rRpkzp37qxmzZpp4sSJcnNz0+LFi/XAAw9o+/btuvfee3ONe9ddd2natGmSpEuXLun555/Pc9uvvPKKnnzyST377LP67bff9Pbbb6tVq1Y6cOCA/Pz8cq0zYMAA3X///ZKkTz/9VKtWrXJYPnDgQPOqixdffFGJiYmaN2+eDhw4oK+//lplypTJ831wxvnz5819u1Z2drYeeeQR7dixQwMGDFDdunV16NAhvfnmm/rf//6n1atX3/I2OnTooN69e0uS9uzZo7feeuuGtQEBAXrzzTfN6aeffvqm40+YMEFXr1695X6KUnR0tH744Qc988wzCg4O1uHDh7Vw4UIdPnxYu3btyvWhg6vlHC9/+tOfNG3aNJ06dUpz587V119/bR6HAwcOVPv27c11nn76aT322GN6/PHHzXmVKlUyx/Py8tKIESPk5eWlTZs2acKECbLb7Zo5c6bL+v7vf/+rQ4cO3VJtSfp9A0CJZQAAUACLFy82JBkbN240fvvtN+Onn34yli9fblSsWNHw9PQ0fv75Z8MwDOPq1atGVlaWw7qJiYmGh4eHMWXKFHPeokWLDEnG7Nmzc20rOzvbXE+SMXPmzFw19evXN1q3bm1Ob9682ZBkVKlSxbDb7eb8jz/+2JBkzJ071xy7Vq1aRlRUlLkdwzCMK1euGOHh4UaHDh1ybatFixZGgwYNzOnffvvNkGRMnDjRnHfixAmjVKlSxquvvuqw7qFDh4zSpUvnmn/s2DFDkvGf//zHnDdx4kTj2n+qt2/fbkgyli5d6rDu+vXrc82vWrWq0aVLl1y9Dx482Lj+n//rex89erQRGBhoNGvWzOE9/e9//2u4ubkZ27dvd1h/wYIFhiTj66+/zrW966WnpxuSjCFDhpjzVqxYYUgyNm/enKu+Z8+eRnh4eL799unTx6hatao5HR8fb7i5uRmdO3c2JBmJiYnmMmffl8GDB99wX3L+DFw7fl6uXLmSa96HH35oSDK2bdtmzsv5ff/2228OtXv27DEkGYsXLzbn9enTxyhfvnyuca9/L9PT043AwECjQYMGRmpqqln3+eefG5KMCRMm5Nnz9e/xzfZn4MCBRrly5YyrV6+a81q3bm3Ur18/V+3MmTNzvW/Xv5dXr141wsLCzN/h9ft+q79vAMD/4bJ/AEChtG/fXpUqVVJoaKieeuopeXl5adWqVapSpYokycPDQ25uv/9zk5WVpTNnzsjLy0t16tTR/v37zXE++eQTBQQE6IUXXsi1jcKcGe3du7e8vb3N6b/85S8KCQnRunXrJElxcXE6duyYevTooTNnziglJUUpKSm6fPmy2rVrp23btik7O9thzKtXr6ps2bL5bvfTTz9Vdna2nnzySXPMlJQUBQcHq1atWtq8ebNDfXp6uqTf368bWbFihXx9fdWhQweHMZs1ayYvL69cY2ZkZDjUpaSk3PTs6C+//KK3335br7zySq7LylesWKG6desqIiLCYcycWz2u335ecrZ/s/cvR3p6er7vSV7GjRunpk2bqlu3bnkud+Z9uXr1qlJSUnTmzJlcx8GtyrnC5Nrx/vznP0uSw5+BHGfPnnXo7cKFCzcc+/r9uHjxosPyvXv36vTp0/rb3/7m8J536dJFERER+uKLLwq1PxcvXlRKSoruv/9+XblyRUeOHHF6vLzMnz9fZ86c0cSJE29ae7PfNwDgd1z2DwAolPnz56t27doqXbq0goKCVKdOHTPsS79fKj537ly98847SkxMdLgvOOfWAOn32wXq1Kmj0qVd+09TrVq1HKZtNptq1qxp3hd87NgxSVKfPn1uOMaFCxdUoUIFczolJSXXuNc7duyYDMO4Yd31l+efP39ekvK8j/vaMS9cuKDAwMA8l58+fdphesOGDeal2rdq4sSJqly5sgYOHKiVK1fm2n5CQsINx7x++3nJuZ/d19f3lvo5f/58vu/J9Xbs2KG1a9cqJiZGSUlJedY487689957eu+99yRJ7u7uat68uWbPnu3wkMubOXv2rCZPnqzly5fneo/yCvZ16tS5pXEvX7580/348ccfbzhmRESEduzYcUvbutbhw4c1fvx4bdq0SXa73WFZfh9U3KoLFy7otdde04gRIxQUFJRv7a38vgEAvyP8AwAK5d577803CL322mt65ZVX1K9fP02dOlX+/v5yc3PTsGHDCnwm1ZVyepg5c6aaNGmSZ8214TM9PV0nT55Uhw4dbjquzWbTl19+qVKlSuU7piQlJydLkoKDg/MdMzAwUEuXLs1z+fVBsHnz5vrHP/7hMG/evHn67LPP8lw/ISFBS5Ys0QcffJDnswOys7PVsGFDzZ49O8/1Q0NDb9h7jpwPXa5/QN+NJCcnq2rVqrdUK0ljxoxRVFSUHnjgAYeHxF3Lmffl0Ucf1ZAhQ2QYhhITEzVlyhQ99NBD5odGt+LJJ5/Uzp07NWrUKDVp0kReXl7Kzs5Wp06d8vwz8Mknn8jHx8ec/t///qfBgwfnqitbtqzWrl3rMG/79u2aMmXKLffmrPPnz6t169by8fHRlClTVKNGDZUtW1b79+/XmDFjXPJn+vXXX5ebm5tGjRqV66GI17uV3zcA4HeEfwBAkVq5cqXatm1rnj3Ncf78eQUEBJjTNWrU0O7du5WRkeGSh9bluD6kGYah48ePq1GjRuZ2JcnHx8fhgWc38u233yojI+OmZ35r1KghwzAUHh6u2rVr33Tc7777TjabLd+zvjVq1NDGjRvVsmVLh0uvbyQgICDXPuX3UL5x48apSZMm+utf/3rD7X/77bdq165dgW/F2Lt3ryTd0pnzjIwMHT9+3Pwu95tZvXq1YmNj87yU/lrOvC933XWXQ62Xl5d69uypAwcO3FJP586dU0xMjCZPnqwJEyaY8/P78KBVq1YOfzbyejCkJJUqVSrXfuRcQZIj54OTo0ePmrdn5Dh69KhTH6xIv3+LxpkzZ/Tpp5+qVatW5vycb/corF9//VVz587VtGnT5O3tnW/4v9XfNwDgd9zzDwAoUqVKlZJhGA7zVqxY4fA1Y5L0xBNPKCUlRfPmzcs1xvXrO+P99993uA965cqVOnnypDp37ixJatasmWrUqKE33nhDly5dyrX+b7/9lqv3UqVK5fl1cdd6/PHHVapUKU2ePDlX/4ZhOISazMxMffLJJ7r33nvzvcT9ySefVFZWlqZOnZprWWZmZq7g54zY2Fh99tlnmj59+g2D/ZNPPqlffvlF//rXv3ItS01N1eXLl2+6nZUrV6pOnTqKiIi4ae1nn32m1NTUXKE1L1lZWXr55ZfVo0ePG17B4Qo5Z7bzupojLzl11x8Dc+bMcWlfN3LPPfcoMDBQCxYscPg6xi+//FIJCQnq0qWLU+PltT/p6el65513XNLv5MmTFRQUpEGDBuVbd7t+3wBgJZz5BwAUqYceekhTpkzRM888oxYtWujQoUNaunSpqlev7lDXu3dvvf/++xoxYoS++eYb3X///bp8+bI2btyov/3tb3r00UcLtH1/f3/dd999euaZZ3Tq1CnNmTNHNWvW1HPPPSdJcnNz07///W917txZ9evX1zPPPKMqVarol19+0ebNm+Xj46O1a9fq8uXLmj9/vt566y3Vrl3b4XvUcz40OHjwoGJjYxUZGakaNWroH//4h8aNG6cTJ06oa9eu8vb2VmJiolatWqUBAwbopZde0saNG/XKK6/o4MGDuS7hvl7r1q01cOBATZs2TXFxcerYsaPKlCmjY8eOacWKFZo7d67+8pe/FOh92rBhgzp06JDv1Q9PP/20Pv74Yw0aNEibN29Wy5YtlZWVpSNHjujjjz/WV199dcMz+j/88INmzJihb775Ro8//rg++OADc9mePXsk/f6VeGFhYQoODtbEiRP1zjvvqEWLFurYseNN+//555/l7u5uPsjRVZKSkrR+/Xrzsv9XX31VVatW1d13331Ll/77+PioVatWmjFjhjIyMlSlShVt2LDBZWfKb6ZMmTJ6/fXX9cwzz6h169bq3r27+VV/1apV0/Dhw50ar0WLFqpQoYL69OmjF198UTabTf/9739v+AHdpUuXtH79eod5R48elSRt3bpVZcqUMR8OKv1+HC5dulTu7u759lFUv28AsDLCPwCgSL388su6fPmyli1bpo8++khNmzbVF198obFjxzrUlSpVSuvWrdOrr76qZcuW6ZNPPlHFihV13333qWHDhoXa/sGDBzVt2jRdvHhR7dq10zvvvKNy5cqZNW3atFFsbKymTp2qefPm6dKlSwoODlbz5s01cOBASb9fATBmzBhJv98bn9d3za9atUo+Pj6KjIyUJI0dO1a1a9fWm2++qcmTJ0v6/b74jh076pFHHpEkrVmzxgwxUVFRN92fBQsWqFmzZvrnP/+pl19+WaVLl1a1atXUq1cvtWzZssDvk81m0/Tp0/OtcXNz0+rVq/Xmm2/q/fff16pVq1SuXDlVr15dQ4cOzff2hm3btumf//ynpN+/CeHTTz/NVfPaa6+pVq1a6tChgz766CMNGDBAkydPdniAZH6ef/75W36WwK1au3at1q5dK5vNpqCgILVo0UKvvvqqw/FzM8uWLdMLL7yg+fPnyzAMdezYUV9++aUqV67s0l5vpG/fvipXrpymT5+uMWPGqHz58nrsscf0+uuv3/CWghupWLGiPv/8c40cOVLjx49XhQoV1KtXL7Vr1y7P4/fHH380r7LJq6/Fixerb9++5rwmTZqoe/fut9RLUfy+AcDKbEZhrqUEAKCE2rJli9q2basVK1YU+Gz4tU6cOKHw8HAlJibeMHBMmjRJJ06c4MFjeViyZIn5/txImzZt1LdvX4cwCOuqVq2aJk2axO8bAG4T7vkHAAAAAMDiuOwfAIBbkPOU9/weyNeoUaPbdin3naZGjRp67LHH8q3p0KGD+e0LsL7WrVs73O8PAChaXPYPALAkV1/2DwAAcCcj/AMAAAAAYHHc8w8AAAAAgMUR/gEAAAAAsDge+Oci2dnZ+vXXX+Xt7S2bzVbc7QAAAAAALM4wDF28eFGVK1eWm1v+5/YJ/y7y66+/KjQ0tLjbAAAAAAD8wfz000+666678q0h/LuIt7e3pN/fdB8fn2LuBgAAAABgdXa7XaGhoWYezQ/h30VyLvX38fEh/AMAAAAAbptbufWcB/4BAAAAAGBxhH8AAAAAACyO8A8AAAAAgMUR/gEAAAAAsDjCPwAAAAAAFkf4BwAAAADA4gj/AAAAAABYHOEfAAAAAACLI/wDAAAAAGBxhH8AAAAAACyO8A8AAAAAgMUR/gEAAAAAsDjCPwAAAAAAFkf4BwAAAADA4gj/AAAAAABYHOEfAAAAAACLI/wDAAAAAGBxhH8AAAAAACyudHE3AAB5SUpKUkpKSoHXDwgIUFhYmAs7AgAAAO5chH8AJU5SUpIiIuoqNfVKgcfw9CynI0cS+AAAAAAAEOEfQAmUkpKi1NQrat5vonxCqjm9vv3kCe1eNFkpKSmEfwAAAECEfwAlmE9INfmH1SnuNgAAAIA7Hg/8AwAAAADA4gj/AAAAAABYHOEfAAAAAACLI/wDAAAAAGBxhH8AAAAAACyO8A8AAAAAgMUR/gEAAAAAsLjSxd0AABSVhISEQq0fEBCgsLAwF3UDAAAAFB/CPwDLSb1wRpJNvXr1KtQ4np7ldORIAh8AAAAA4I5H+AfgcklJSUpJSSnw+oU9Y59x5aIkQ016jFGl8IgCjWE/eUK7F01WSkoK4R8AAAB3PMI/AJdKSkpSRERdpaZeKfRYGWnphVrfKzBM/mF1Ct0HAAAAcKcj/ANwqZSUFKWmXlHzfhPlE1KtQGOcPBSr+DULlZmZ6drmAAAAgD8owj+AIuETUq3AZ93tJ0+4thkAAADgD46v+gMAAAAAwOII/wAAAAAAWBzhHwAAAAAAi+OefwDIR2G/djAgIICvCgQAAECxI/wDQB5SL5yRZFOvXr0KNY6nZzkdOZLABwAAAAAoVoR/AMhDxpWLkgw16TFGlcIjCjSG/eQJ7V40WSkpKYR/AAAAFCvCPwDkwyswrMBfWQgAAACUFDzwDwAAAAAAiyP8AwAAAABgcYR/AAAAAAAsjvAPAAAAAIDFEf4BAAAAALA4wj8AAAAAABZH+AcAAAAAwOII/wAAAAAAWFyxhv9t27bp4YcfVuXKlWWz2bR69WqH5TabLc/XzJkzzZpq1arlWj59+nSHcQ4ePKj7779fZcuWVWhoqGbMmJGrlxUrVigiIkJly5ZVw4YNtW7duiLZZwAAAAAAbrdiDf+XL19W48aNNX/+/DyXnzx50uG1aNEi2Ww2PfHEEw51U6ZMcah74YUXzGV2u10dO3ZU1apVtW/fPs2cOVOTJk3SwoULzZqdO3eqe/fu6t+/vw4cOKCuXbuqa9euio+PL5odBwAAAADgNipdnBvv3LmzOnfufMPlwcHBDtOfffaZ2rZtq+rVqzvM9/b2zlWbY+nSpUpPT9eiRYvk7u6u+vXrKy4uTrNnz9aAAQMkSXPnzlWnTp00atQoSdLUqVMVHR2tefPmacGCBXmOm5aWprS0NHPabrfffIcBAAAAACgGd8w9/6dOndIXX3yh/v3751o2ffp0VaxYUXfffbdmzpypzMxMc1lsbKxatWold3d3c15UVJSOHj2qc+fOmTXt27d3GDMqKkqxsbE37GfatGny9fU1X6GhoYXdRQAAAAAAisQdE/7/85//yNvbW48//rjD/BdffFHLly/X5s2bNXDgQL322msaPXq0uTw5OVlBQUEO6+RMJycn51uTszwv48aN04ULF8zXTz/9VKj9AwAAAACgqBTrZf/OWLRokXr27KmyZcs6zB8xYoT5c6NGjeTu7q6BAwdq2rRp8vDwKLJ+PDw8inR8AAAAAABc5Y448799+3YdPXpUzz777E1rmzdvrszMTJ04cULS788NOHXqlENNznTOcwJuVHOj5wgAAAAAAHAnuSPC/3vvvadmzZqpcePGN62Ni4uTm5ubAgMDJUmRkZHatm2bMjIyzJro6GjVqVNHFSpUMGtiYmIcxomOjlZkZKQL9wIAAAAAgOJRrOH/0qVLiouLU1xcnCQpMTFRcXFxSkpKMmvsdrtWrFiR51n/2NhYzZkzR99++61++OEHLV26VMOHD1evXr3MYN+jRw+5u7urf//+Onz4sD766CPNnTvX4XaBoUOHav369Zo1a5aOHDmiSZMmae/evRoyZEjRvgEAAAAAANwGxXrP/969e9W2bVtzOieQ9+nTR0uWLJEkLV++XIZhqHv37rnW9/Dw0PLlyzVp0iSlpaUpPDxcw4cPdwj2vr6+2rBhgwYPHqxmzZopICBAEyZMML/mT5JatGihZcuWafz48Xr55ZdVq1YtrV69Wg0aNCiiPQcAAAAA4PYp1vDfpk0bGYaRb82AAQMcgvq1mjZtql27dt10O40aNdL27dvzrenWrZu6det207EAAAAAALjT3BH3/AMAAAAAgIIj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALK50cTcAAFaXkJBQqPUDAgIUFhbmom4AAADwR0T4B4AiknrhjCSbevXqVahxPD3L6ciRBD4AAAAAQIER/gGgiGRcuSjJUJMeY1QpPKJAY9hPntDuRZOVkpJC+AcAAECBEf4BoIh5BYbJP6xOcbcBAACAPzAe+AcAAAAAgMUR/gEAAAAAsDjCPwAAAAAAFkf4BwAAAADA4gj/AAAAAABYHOEfAAAAAACLI/wDAAAAAGBxhH8AAAAAACyO8A8AAAAAgMUR/gEAAAAAsDjCPwAAAAAAFkf4BwAAAADA4gj/AAAAAABYHOEfAAAAAACLI/wDAAAAAGBxhH8AAAAAACyudHE3AKBkSUpKUkpKSoHXT0hIcGE3AAAAAFyB8A/AlJSUpIiIukpNvVLosTLS0l3QEQAAAABXIPwDMKWkpCg19Yqa95son5BqBRrj5KFYxa9ZqMzMTNc2BwAAAKDACP8AcvEJqSb/sDoFWtd+8oRrmwEAAABQaDzwDwAAAAAAiyP8AwAAAABgcYR/AAAAAAAsjvAPAAAAAIDFEf4BAAAAALA4wj8AAAAAABZH+AcAAAAAwOII/wAAAAAAWBzhHwAAAAAAiyP8AwAAAABgcYR/AAAAAAAsrljD/7Zt2/Twww+rcuXKstlsWr16tcPyvn37ymazObw6derkUHP27Fn17NlTPj4+8vPzU//+/XXp0iWHmoMHD+r+++9X2bJlFRoaqhkzZuTqZcWKFYqIiFDZsmXVsGFDrVu3zuX7CwAAAABAcSjW8H/58mU1btxY8+fPv2FNp06ddPLkSfP14YcfOizv2bOnDh8+rOjoaH3++efatm2bBgwYYC632+3q2LGjqlatqn379mnmzJmaNGmSFi5caNbs3LlT3bt3V//+/XXgwAF17dpVXbt2VXx8vOt3GgAAAACA26x0cW68c+fO6ty5c741Hh4eCg4OznNZQkKC1q9frz179uiee+6RJL399tt68MEH9cYbb6hy5cpaunSp0tPTtWjRIrm7u6t+/fqKi4vT7NmzzQ8J5s6dq06dOmnUqFGSpKlTpyo6Olrz5s3TggULXLjHAAAAAADcfiX+nv8tW7YoMDBQderU0fPPP68zZ86Yy2JjY+Xn52cGf0lq37693NzctHv3brOmVatWcnd3N2uioqJ09OhRnTt3zqxp3769w3ajoqIUGxt7w77S0tJkt9sdXgAAAAAAlEQlOvx36tRJ77//vmJiYvT6669r69at6ty5s7KysiRJycnJCgwMdFindOnS8vf3V3JyslkTFBTkUJMzfbOanOV5mTZtmnx9fc1XaGho4XYWAAAAAIAiUqyX/d/MU089Zf7csGFDNWrUSDVq1NCWLVvUrl27YuxMGjdunEaMGGFO2+12PgAAAAAAAJRIJfrM//WqV6+ugIAAHT9+XJIUHBys06dPO9RkZmbq7Nmz5nMCgoODderUKYeanOmb1dzoWQPS788i8PHxcXgBAAAAAFAS3VHh/+eff9aZM2cUEhIiSYqMjNT58+e1b98+s2bTpk3Kzs5W8+bNzZpt27YpIyPDrImOjladOnVUoUIFsyYmJsZhW9HR0YqMjCzqXQIAAAAAoMgVa/i/dOmS4uLiFBcXJ0lKTExUXFyckpKSdOnSJY0aNUq7du3SiRMnFBMTo0cffVQ1a9ZUVFSUJKlu3brq1KmTnnvuOX3zzTf6+uuvNWTIED311FOqXLmyJKlHjx5yd3dX//79dfjwYX300UeaO3euwyX7Q4cO1fr16zVr1iwdOXJEkyZN0t69ezVkyJDb/p4AAAAAAOBqxRr+9+7dq7vvvlt33323JGnEiBG6++67NWHCBJUqVUoHDx7UI488otq1a6t///5q1qyZtm/fLg8PD3OMpUuXKiIiQu3atdODDz6o++67TwsXLjSX+/r6asOGDUpMTFSzZs00cuRITZgwwfyaP0lq0aKFli1bpoULF6px48ZauXKlVq9erQYNGty+NwMAAAAAgCJSrA/8a9OmjQzDuOHyr7766qZj+Pv7a9myZfnWNGrUSNu3b8+3plu3burWrdtNtwcAAAAAwJ3mjrrnHwAAAAAAOI/wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFhc6eJuAABwcwkJCYVaPyAgQGFhYS7qBgAAAHcawj8AlGCpF85IsqlXr16FGsfTs5yOHEngAwAAAIA/KMI/AJRgGVcuSjLUpMcYVQqPKNAY9pMntHvRZKWkpBD+AQAA/qAI/wBwB/AKDJN/WJ3ibgMAAAB3KB74BwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsrXdwNAHCdpKQkpaSkFHj9hIQEF3YDAAAAoKQg/AMWkZSUpIiIukpNvVLosTLS0l3QEQAAAICSgvAPWERKSopSU6+oeb+J8gmpVqAxTh6KVfyahcrMzHRtcwAAAACKFeEfsBifkGryD6tToHXtJ0+4thkAAAAAJQIP/AMAAAAAwOII/wAAAAAAWBzhHwAAAAAAiyP8AwAAAABgcYR/AAAAAAAsjvAPAAAAAIDFOf1Vf2vWrMl3+SOPPFLgZgAAAAAAgOvdUvi/fPmyypcvL0nq2rWrbDabJMkwDIc6m82mrKwsF7cIAAAAAAAK45Yu+7/77rs1YsQISVLPnj3l7e2tqVOnKjU1VdnZ2eaL4A8AAAAAQMlzS+F/z549evvtt3X+/Hn997//VUxMjDZs2KDatWtr6dKlRd0jAAAAAAAohFsK/xkZGbLZbCpd+ve7BJo1a6YtW7Zo7ty5mjJliu655x5t27atSBsFAAAAAAAFc0vhv02bNnrttdfk5eUlu91uvh544AF9/fXXevTRR/XQQw+pa9euTm1827Ztevjhh1W5cmXZbDatXr3aXJaRkaExY8aoYcOGKl++vCpXrqzevXvr119/dRijWrVqstlsDq/p06c71Bw8eFD333+/ypYtq9DQUM2YMSNXLytWrFBERITKli2rhg0bat26dU7tCwAAAAAAJdUtPfAvPj7e/NnPz8984N+1DMPQ2rVrndr45cuX1bhxY/Xr10+PP/64w7IrV65o//79euWVV9S4cWOdO3dOQ4cO1SOPPKK9e/c61E6ZMkXPPfecOe3t7W3+bLfb1bFjR7Vv314LFizQoUOH1K9fP/n5+WnAgAGSpJ07d6p79+6aNm2aHnroIS1btkxdu3bV/v371aBBA6f2CQAAAACAksbpr/rbvHmzyzbeuXNnde7cOc9lvr6+io6Odpg3b9483XvvvUpKSlJYWJg539vbW8HBwXmOs3TpUqWnp2vRokVyd3dX/fr1FRcXp9mzZ5vhf+7cuerUqZNGjRolSZo6daqio6M1b948LViwwBW7CgAAAABAsXE6/Ldu3boo+rglFy5ckM1mk5+fn8P86dOna+rUqQoLC1OPHj00fPhw8/kEsbGxatWqldzd3c36qKgovf766zp37pwqVKig2NhY89sMrq259jaE66WlpSktLc2cttvthd9BAAAAAACKwC3d83+97du3q1evXmrRooV++eUXSdJ///tf7dixw6XNXevq1asaM2aMunfvLh8fH3P+iy++qOXLl2vz5s0aOHCgXnvtNY0ePdpcnpycrKCgIIexcqaTk5PzrclZnpdp06bJ19fXfIWGhhZ6HwEAAAAAKApOh/9PPvlEUVFR8vT01P79+82z3xcuXNBrr73m8gal3x/+9+STT8owDL377rsOy0aMGKE2bdqoUaNGGjRokGbNmqW3337b4ax8URg3bpwuXLhgvn766aci3R4AAAAAAAXldPj/xz/+oQULFuhf//qXypQpY85v2bKl9u/f79LmpP8L/j/++KOio6MdzvrnpXnz5srMzNSJEyckScHBwTp16pRDTc50znMCblRzo+cISJKHh4d8fHwcXgAAAAAAlEROh/+jR4+qVatWueb7+vrq/PnzrujJlBP8jx07po0bN6pixYo3XScuLk5ubm4KDAyUJEVGRmrbtm3KyMgwa6Kjo1WnTh1VqFDBrImJiXEYJzo6WpGRkS7cGwAAAAAAiofTD/wLDg7W8ePHVa1aNYf5O3bsUPXq1Z0a69KlSzp+/Lg5nZiYqLi4OPn7+yskJER/+ctftH//fn3++efKysoy78H39/eXu7u7YmNjtXv3brVt21be3t6KjY3V8OHD1atXLzPY9+jRQ5MnT1b//v01ZswYxcfHa+7cuXrzzTfN7Q4dOlStW7fWrFmz1KVLFy1fvlx79+7VwoULnX17AAAAAAAocZwO/88995yGDh2qRYsWyWaz6ddff1VsbKxeeuklvfLKK06NtXfvXrVt29acznnifp8+fTRp0iStWbNGktSkSROH9TZv3qw2bdrIw8NDy5cv16RJk5SWlqbw8HANHz7c4cn9vr6+2rBhgwYPHqxmzZopICBAEyZMML/mT5JatGihZcuWafz48Xr55ZdVq1YtrV69Wg0aNHD27QEAAAAAoMRxOvyPHTtW2dnZateuna5cuaJWrVrJw8NDL730kl544QWnxmrTpo0Mw7jh8vyWSVLTpk21a9eum26nUaNG2r59e7413bp1U7du3W46FgDcqRISEgq1fkBAgMLCwlzUDQAAAG4np8O/zWbT3//+d40aNUrHjx/XpUuXVK9ePXl5eRVFfwCAQkq9cEaSTb169SrUOJ6e5XTkSAIfAAAAANyBnA7//fr109y5c+Xt7a169eoVRU8AABfKuHJRkqEmPcaoUnhEgcawnzyh3YsmKyUlhfAPAABwB3I6/P/nP//R9OnT5e3tXRT9AACKiFdgmPzD6hR3GwAAACgGTn/Vn2EYstlsRdELAAAAAAAoAk6f+ZekF198UZ6ennkuW7RoUaEaAgAAAAAArlWg8G8Yxk2fxA8AAAAAAEqGAj3t/6233lJgYGBR9AMAAAAAAFysQPf8AwAAAACAO4fT4b9Pnz43vN8fAAAAAACUPE5f9r948eKi6AMAAAAAABSRAj3wb+/evfr444+VlJSk9PR0h2WffvqpSxoDAAAAAACu4fRl/8uXL1eLFi2UkJCgVatWKSMjQ4cPH9amTZvk6+tbFD0CAAAAAIBCcDr8v/baa3rzzTe1du1aubu7a+7cuTpy5IiefPJJhYWFFUWPAAAAAACgEJwO/99//726dOkiSXJ3d9fly5dls9k0fPhwLVy40OUNAgAAAACAwnE6/FeoUEEXL16UJFWpUkXx8fGSpPPnz+vKlSuu7Q4AAAAAABSa0w/8a9WqlaKjo9WwYUN169ZNQ4cO1aZNmxQdHa127doVRY8AAAAAAKAQnA7/8+bN09WrVyVJf//731WmTBnt3LlTTzzxhMaPH+/yBgEAAAAAQOE4Hf79/f3Nn93c3DR27FiXNgQAAAAAAFzL6Xv+S5UqpdOnTxdFLwAAAAAAoAg4Hf4NwyiKPgAAAAAAQBFxOvxLks1mc3UfAAAAAACgiDh9z78kBQcH33BZVlZWgZsBAAAAAACuV6Dwv3LlSocH/wEAAAAAgJLL6fBvs9nUsmVLBQYGFkU/AAAAAADAxXjgHwAAAAAAFud0+N+8eTOX/AMAAAAAcAdxOvxfvnxZMTExueZ/9dVX+vLLL13SFAAAAAAAcB2nw//YsWPzfKK/YRgaO3asS5oCAAAAAACu43T4P3bsmOrVq5drfkREhI4fP+6SpgAAAAAAgOs4Hf59fX31ww8/5Jp//PhxlS9f3iVNAQAAAAAA13E6/D/66KMaNmyYvv/+e3Pe8ePHNXLkSD3yyCMubQ4AAAAAABReaWdXmDFjhjp16qSIiAjdddddkqSff/5Z999/v9544w2XNwj8USQlJSklJaXA6yckJLiwGwAAAABW4nT49/X11c6dOxUdHa1vv/1Wnp6eatSokVq1alUU/QF/CElJSYqIqKvU1CuFHisjLd0FHQElV2E/KJOkgIAAhYWFuagjAACAks/p8C9JNptNHTt2VMeOHV3dD/CHlJKSotTUK2reb6J8QqoVaIyTh2IVv2ahMjMzXdscUIK46oMyT89yOnIkgQ8AAADAH0aBwj+AouETUk3+YXUKtK795AnXNgOUQK74oMx+8oR2L5qslJQUwj8AAPjDIPwDAO44hfmgDAAA4I/I6af9AwAAAACAOwvhHwAAAAAAiyvQZf9ZWVlavXq1+dVi9evX1yOPPKJSpUq5tDkAAAAAAFB4Tof/48ePq0uXLvr5559Vp87v91tOmzZNoaGh+uKLL1SjRg2XNwkAAAAAAArO6cv+X3zxRVWvXl0//fST9u/fr/379yspKUnh4eF68cUXi6JHAAAAAABQCE6f+d+6dat27dolf39/c17FihU1ffp0tWzZ0qXNAQAAAACAwnP6zL+Hh4cuXryYa/6lS5fk7u7ukqYAAAAAAIDrOB3+H3roIQ0YMEC7d++WYRgyDEO7du3SoEGD9MgjjxRFjwAAAAAAoBCcDv9vvfWWatSoocjISJUtW1Zly5ZVy5YtVbNmTc2dO7coegQAAAAAAIXg9D3/fn5++uyzz3Ts2DEdOXJEklS3bl3VrFnT5c0BAEqWnK94LaiAgACFhYW5qBsAAADcKqfDf45atWqpVq1akqSsrCyXNQQAKHlSL5yRZFOvXr0KNY6nZzkdOZLABwAAAAC3mdPhPzExUS+//LL8/Pz02muvqU+fPlq3bp1q1KihFStWqFGjRrc81rZt2zRz5kzt27dPJ0+e1KpVq9S1a1dzuWEYmjhxov71r3/p/Pnzatmypd59913zQwdJOnv2rF544QWtXbtWbm5ueuKJJzR37lx5eXmZNQcPHtTgwYO1Z88eVapUSS+88IJGjx7t0MuKFSv0yiuv6MSJE6pVq5Zef/11Pfjgg86+PQBgSRlXLkoy1KTHGFUKjyjQGPaTJ7R70WSlpKQQ/gEAAG4zp+/5HzhwoBISEhQfH68HHnhA6enp+uyzz1SvXj0NGzbMqbEuX76sxo0ba/78+XkunzFjht566y0tWLBAu3fvVvny5RUVFaWrV6+aNT179tThw4cVHR2tzz//XNu2bdOAAQPM5Xa7XR07dlTVqlW1b98+zZw5U5MmTdLChQvNmp07d6p79+7q37+/Dhw4oK5du6pr166Kj4937s0BAIvzCgyTf1idAr18QqoVd/sAAAB/WE6f+d+9e7e2b9+uqlWryt/fX3v27FHTpk1Vs2ZNNW/e3KmxOnfurM6dO+e5zDAMzZkzR+PHj9ejjz4qSXr//fcVFBSk1atX66mnnlJCQoLWr1+vPXv26J577pEkvf3223rwwQf1xhtvqHLlylq6dKnS09O1aNEiubu7q379+oqLi9Ps2bPNDwnmzp2rTp06adSoUZKkqVOnKjo6WvPmzdOCBQucfYsAAAAAAChRnD7zf/HiRYWEhMjX11flypWTn5+fpN8fBHjx4kWXNZaYmKjk5GS1b9/enOfr66vmzZsrNjZWkhQbGys/Pz8z+EtS+/bt5ebmpt27d5s1rVq1kru7u1kTFRWlo0eP6ty5c2bNtdvJqcnZTl7S0tJkt9sdXgAAAAAAlEQFeuDf+vXr5evrq+zsbMXExCg+Pl7nz593aWPJycmSpKCgIIf5QUFB5rLk5GQFBgY6LC9durT8/f0dasLDw3ONkbOsQoUKSk5Oznc7eZk2bZomT55cgD0DAAAAAOD2KlD479Onj/nzwIEDzZ9tNlvhO7pDjBs3TiNGjDCn7Xa7QkNDi7EjAAAAAADy5nT4z87OLoo+cgkODpYknTp1SiEhIeb8U6dOqUmTJmbN6dOnHdbLzMzU2bNnzfWDg4N16tQph5qc6ZvV5CzPi4eHhzw8PAqwZwAAAAAA3F5O3/P//vvvKy0trSh6cRAeHq7g4GDFxMSY8+x2u3bv3q3IyEhJUmRkpM6fP699+/aZNZs2bVJ2drb58MHIyEht27ZNGRkZZk10dLTq1KmjChUqmDXXbienJmc7AAAAAADcyZwO/88884wuXLjgko1funRJcXFxiouLk/T7Q/7i4uKUlJQkm82mYcOG6R//+IfWrFmjQ4cOqXfv3qpcubK6du0qSapbt646deqk5557Tt98842+/vprDRkyRE899ZQqV64sSerRo4fc3d3Vv39/HT58WB999JHmzp3rcMn+0KFDtX79es2aNUtHjhzRpEmTtHfvXg0ZMsQl+wkAAAAAQHFy+rJ/wzBctvG9e/eqbdu25nROIO/Tp4+WLFmi0aNH6/LlyxowYIDOnz+v++67T+vXr1fZsmXNdZYuXaohQ4aoXbt2cnNz0xNPPKG33nrLXO7r66sNGzZo8ODBatasmQICAjRhwgTza/4kqUWLFlq2bJnGjx+vl19+WbVq1dLq1avVoEEDl+0rAAAAAADFpUAP/Pv444/l4+OT57LevXvf8jht2rTJ98MEm82mKVOmaMqUKTes8ff317Jly/LdTqNGjbR9+/Z8a7p166Zu3brl3zAAAAAAAHegAoX/GTNmqFSpUrnm22w2p8I/AAAAAAAoegUK/3v37lVgYKCrewEAAAAAAEXA6Qf+AQAAAACAO4vT4b9q1ap5XvIPAAAAAABKJqcv+09MTCyKPgAAAAAAQBFx+sz/iy++6PBVejnmzZunYcOGuaInAAAAAADgQk6H/08++UQtW7bMNb9FixZauXKlS5oCAAAAAACu43T4P3PmjHx9fXPN9/HxUUpKikuaAgAAAAAAruN0+K9Zs6bWr1+fa/6XX36p6tWru6QpAAAAAADgOk4/8G/EiBEaMmSIfvvtNz3wwAOSpJiYGM2aNUtz5sxxdX8AAAAAAKCQnA7//fr1U1paml599VVNnTpVklStWjW9++676t27t8sbBAAAAAAAheN0+Jek559/Xs8//7x+++03eXp6ysvLy9V9AQAAAAAAF3H6nn9JyszM1MaNG/Xpp5/KMAxJ0q+//qpLly65tDkAAAAAAFB4Tp/5//HHH9WpUyclJSUpLS1NHTp0kLe3t15//XWlpaVpwYIFRdEnAAAAAAAoIKfP/A8dOlT33HOPzp07J09PT3P+Y489ppiYGJc2BwAAAAAACs/pM//bt2/Xzp075e7u7jC/WrVq+uWXX1zWGAAAAAAAcA2nz/xnZ2crKysr1/yff/5Z3t7eLmkKAAAAAAC4jtPhv2PHjpozZ445bbPZdOnSJU2cOFEPPvigK3sDAAAAAAAu4PRl/7NmzVJUVJTq1aunq1evqkePHjp27JgCAgL04YcfFkWPAAAAAACgEJwO/3fddZe+/fZbLV++XAcPHtSlS5fUv39/9ezZ0+EBgAAA5CUhIaFY1gUAAPgjczr8S1Lp0qXVq1cvV/cCALCw1AtnJNlc8u9HRlp64RsCAAD4A3E6/K9Zsybf5Y888kiBmwEAWFfGlYuSDDXpMUaVwiMKNMbJQ7GKX7NQmZmZrm0OAADA4pwO/127dnWYttlsMgzD/DmvbwIAACCHV2CY/MPqFGhd+8kTrm0GAADgD6JAX/V37atcuXI6fvz4Db8CEAAAAAAAFC+nw//1bDabK/oAAAAAAABFpFDh/8SJE7p8+bK8vb1d1Q8AAAAAAHAxp+/5f/zxxyVJqamp2rVrl9q1a6dKlSq5vDEAAAAAAOAaTod/X19fSVJwcLAefvhh9evXz+VNAQAAAAAA13E6/C9evLgo+gAAAAAAAEXE6fBvt9vzXe7j41PgZgAAAAAAgOs5Hf79/PzyfMK/YRiy2Wx83R8AAAAAACWM0+G/evXqOn36tMaOHauWLVsWRU8AAAAAAMCFnA7/CQkJevvtt/Xqq6/qwIEDmjFjhsLDw4uiNwAAAAAA4AJuzq5QpkwZjRgxQseOHVOVKlXUqFEjjRw5UufPny+C9gAAAAAAQGE5feY/h7+/v+bMmaMhQ4ZozJgxqlmzpsaPH69hw4a5sD3gzpCUlKSUlJQCr5+QkODCbgAAAADAkdPh/+677871wD/DMJSWlqaRI0cS/vGHk5SUpIiIukpNvVLosTLS0l3QEQAAAAA4cjr8d+3atQjaAO5cKSkpSk29oub9JsonpFqBxjh5KFbxaxYqMzPTtc0BAAAAgAoQ/idOnFgUfQB3PJ+QavIPq1Ogde0nT7i2GQAAAAC4htPh326357vcx8enwM0AAAAAAADXczr8+/n55brnX/r9vn+bzaasrCyXNAYAAAAAAFyjQE/7X7lypfz9/V3dCwAAAAAAKAIFCv8tW7ZUYGCgq3sBAAAAAABFoEDh/7vvvtOZM2dUvnx5BQcHy93d3dV9AQAAAAAAF3EryErt2rVT/fr1FR4ervLly6thw4Z68803Xd0bAAAAAABwAafP/CcmJsowDGVkZMhut+vXX3/VN998o1deeUWZmZkaNWpUUfQJAAAAAAAKyOnwX7VqVYfpZs2a6eGHH1bt2rU1ZcoUwj8AAAAAACVMge75z8tTTz2l+vXru2o4AAAAAADgIgW651+S9u3bpw8++EAffPCB9u/frzJlyqhp06au7E2SVK1aNdlstlyvwYMHS5LatGmTa9mgQYMcxkhKSlKXLl1Urlw5BQYGatSoUcrMzHSo2bJli5o2bSoPDw/VrFlTS5Yscfm+AAAAAABQHJw+83/69Gk99dRT2rJli/z8/CRJ58+fV9u2bbV8+XJVqlTJpQ3u2bNHWVlZ5nR8fLw6dOigbt26mfOee+45TZkyxZwuV66c+XNWVpa6dOmi4OBg7dy5UydPnlTv3r1VpkwZvfbaa5J+f45Bly5dNGjQIC1dulQxMTF69tlnFRISoqioKJfuDwAAAAAAt5vTZ/5feOEFXbx4UYcPH9bZs2d19uxZxcfHy26368UXX3R5g5UqVVJwcLD5+vzzz1WjRg21bt3arClXrpxDjY+Pj7lsw4YN+u677/TBBx+oSZMm6ty5s6ZOnar58+crPT1dkrRgwQKFh4dr1qxZqlu3roYMGaK//OUvfIMBAAAAAMASnA7/69ev1zvvvKO6deua8+rVq6f58+fryy+/dGlz10tPT9cHH3ygfv36yWazmfOXLl2qgIAANWjQQOPGjdOVK1fMZbGxsWrYsKGCgoLMeVFRUbLb7Tp8+LBZ0759e4dtRUVFKTY29oa9pKWlyW63O7wAAAAAACiJnL7sPzs7W2XKlMk1v0yZMsrOznZJUzeyevVqnT9/Xn379jXn9ejRQ1WrVlXlypV18OBBjRkzRkePHtWnn34qSUpOTnYI/pLM6eTk5Hxr7Ha7UlNT5enpmauXadOmafLkya7cPQAAAAAAioTT4f+BBx7Q0KFD9eGHH6py5cqSpF9++UXDhw9Xu3btXN7gtd577z117tzZ3K4kDRgwwPy5YcOGCgkJUbt27fT999+rRo0aRdbLuHHjNGLECHPabrcrNDS0yLYHAAAAAEBBOX3Z/7x582S321WtWjXVqFFDNWrUUHh4uOx2u95+++2i6FGS9OOPP2rjxo169tln861r3ry5JOn48eOSpODgYJ06dcqhJmc6ODg43xofH588z/pLkoeHh3x8fBxeAAAAAACURE6f+Q8NDdX+/fu1ceNGHTlyRJJUt27dXPfMu9rixYsVGBioLl265FsXFxcnSQoJCZEkRUZG6tVXX9Xp06cVGBgoSYqOjpaPj4/q1atn1qxbt85hnOjoaEVGRrp4LwAAAAAAuP1uOfxfvHhR3t7ekiSbzaYOHTqoQ4cODjV79uzRn/70J9d2qN+fM7B48WL16dNHpUv/X8vff/+9li1bpgcffFAVK1bUwYMHNXz4cLVq1UqNGjWSJHXs2FH16tXT008/rRkzZig5OVnjx4/X4MGD5eHhIUkaNGiQ5s2bp9GjR6tfv37atGmTPv74Y33xxRcu3xcAAAAAAG63W77sv2PHjrp06VKeyzIzMzV+/Hi1bNnSZY1da+PGjUpKSlK/fv0c5ru7u2vjxo3q2LGjIiIiNHLkSD3xxBNau3atWVOqVCl9/vnnKlWqlCIjI9WrVy/17t1bU6ZMMWvCw8P1xRdfKDo6Wo0bN9asWbP073//W1FRUUWyPwAAAAAA3E5Onflv3769NmzY4HB/e3x8vJ5++mn99ttvWr16dVH0qI4dO8owjFzzQ0NDtXXr1puuX7Vq1VyX9V+vTZs2OnDgQIF7BAAAAACgpLrlM/+bN2/W5cuX1aFDB9ntdhmGoddff1333HOP6tatq0OHDunBBx8syl4BAAAAAEAB3PKZ/0qVKmnTpk1q3769HnjgAXl4eOjYsWP64IMP9Je//KUoewQAAAAAAIXg1NP+K1WqpJiYGLVv317x8fGKi4tTREREUfUGAAAAAABc4JYv+88REBCgTZs2qV69eurRo4fOnTtXFH0BAAAAAAAXueUz/48//rjDtI+Pj7Zt26Z7771XDRs2NOd/+umnrusOAAAAAAAU2i2Hf19f31zT4eHhLm8IAAAAAAC41i2H/8WLFxdlHwAAAAAAoIg4fc8/AAAAAAC4sxD+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWV7q4GwCKW1JSklJSUgq8fkJCggu7AQAAAADXI/zjDy0pKUkREXWVmnql0GNlpKW7oCMAAAAAcD3CP/7QUlJSlJp6Rc37TZRPSLUCjXHyUKzi1yxUZmama5sDAAAAABch/AOSfEKqyT+sToHWtZ884dpmAAAAAMDFeOAfAAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWV6LD/6RJk2Sz2RxeERER5vKrV69q8ODBqlixory8vPTEE0/o1KlTDmMkJSWpS5cuKleunAIDAzVq1ChlZmY61GzZskVNmzaVh4eHatasqSVLltyO3QMAAAAA4LYo0eFfkurXr6+TJ0+arx07dpjLhg8frrVr12rFihXaunWrfv31Vz3++OPm8qysLHXp0kXp6enauXOn/vOf/2jJkiWaMGGCWZOYmKguXbqobdu2iouL07Bhw/Tss8/qq6++uq37CQAAAABAUSld3A3cTOnSpRUcHJxr/oULF/Tee+9p2bJleuCBByRJixcvVt26dbVr1y79+c9/1oYNG/Tdd99p48aNCgoKUpMmTTR16lSNGTNGkyZNkru7uxYsWKDw8HDNmjVLklS3bl3t2LFDb775pqKiom7rvgIAAAAAUBRK/Jn/Y8eOqXLlyqpevbp69uyppKQkSdK+ffuUkZGh9u3bm7UREREKCwtTbGysJCk2NlYNGzZUUFCQWRMVFSW73a7Dhw+bNdeOkVOTM8aNpKWlyW63O7wAAAAAACiJSnT4b968uZYsWaL169fr3XffVWJiou6//35dvHhRycnJcnd3l5+fn8M6QUFBSk5OliQlJyc7BP+c5TnL8qux2+1KTU29YW/Tpk2Tr6+v+QoNDS3s7gIAAAAAUCRK9GX/nTt3Nn9u1KiRmjdvrqpVq+rjjz+Wp6dnMXYmjRs3TiNGjDCn7XY7HwAAAAAAAEqkEn3m/3p+fn6qXbu2jh8/ruDgYKWnp+v8+fMONadOnTKfERAcHJzr6f850zer8fHxyfcDBg8PD/n4+Di8AAAAAAAoie6o8H/p0iV9//33CgkJUbNmzVSmTBnFxMSYy48ePaqkpCRFRkZKkiIjI3Xo0CGdPn3arImOjpaPj4/q1atn1lw7Rk5NzhgAAAAAANzpSnT4f+mll7R161adOHFCO3fu1GOPPaZSpUqpe/fu8vX1Vf/+/TVixAht3rxZ+/bt0zPPPKPIyEj9+c9/liR17NhR9erV09NPP61vv/1WX331lcaPH6/BgwfLw8NDkjRo0CD98MMPGj16tI4cOaJ33nlHH3/8sYYPH16cuw4AAAAAgMuU6Hv+f/75Z3Xv3l1nzpxRpUqVdN9992nXrl2qVKmSJOnNN9+Um5ubnnjiCaWlpSkqKkrvvPOOuX6pUqX0+eef6/nnn1dkZKTKly+vPn36aMqUKWZNeHi4vvjiCw0fPlxz587VXXfdpX//+998zR8AAAAAwDJKdPhfvnx5vsvLli2r+fPna/78+TesqVq1qtatW5fvOG3atNGBAwcK1CMAAAAAACVdib7sHwAAAAAAFB7hHwAAAAAAiyP8AwAAAABgcYR/AAAAAAAsjvAPAAAAAIDFEf4BAAAAALA4wj8AAAAAABZH+AcAAAAAwOII/wAAAAAAWBzhHwAAAAAAiyP8AwAAAABgcYR/AAAAAAAsjvAPAAAAAIDFEf4BAAAAALA4wj8AAAAAABZH+AcAAAAAwOII/wAAAAAAWBzhHwAAAAAAiyP8AwAAAABgcYR/AAAAAAAsjvAPAAAAAIDFEf4BAAAAALA4wj8AAAAAABZH+AcAAAAAwOII/wAAAAAAWBzhHwAAAAAAiytd3A0AhZGUlKSUlJQCr5+QkODCbgAAAACgZCL8446VlJSkiIi6Sk29UuixMtLSXdARAAAAAJRMhH/csVJSUpSaekXN+02UT0i1Ao1x8lCs4tcsVGZmpmubAwAAAIAShPCPO55PSDX5h9Up0Lr2kydc2wwAAAAAlEA88A8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsr0eF/2rRp+tOf/iRvb28FBgaqa9euOnr0qENNmzZtZLPZHF6DBg1yqElKSlKXLl1Urlw5BQYGatSoUcrMzHSo2bJli5o2bSoPDw/VrFlTS5YsKerdAwAAAADgtijR4X/r1q0aPHiwdu3apejoaGVkZKhjx466fPmyQ91zzz2nkydPmq8ZM2aYy7KystSlSxelp6dr586d+s9//qMlS5ZowoQJZk1iYqK6dOmitm3bKi4uTsOGDdOzzz6rr7766rbtKwAAAAAARaV0cTeQn/Xr1ztML1myRIGBgdq3b59atWplzi9XrpyCg4PzHGPDhg367rvvtHHjRgUFBalJkyaaOnWqxowZo0mTJsnd3V0LFixQeHi4Zs2aJUmqW7euduzYoTfffFNRUVFFt4MAAAAAANwGJfrM//UuXLggSfL393eYv3TpUgUEBKhBgwYaN26crly5Yi6LjY1Vw4YNFRQUZM6LioqS3W7X4cOHzZr27ds7jBkVFaXY2Ngb9pKWlia73e7wAgAAAACgJCrRZ/6vlZ2drWHDhqlly5Zq0KCBOb9Hjx6qWrWqKleurIMHD2rMmDE6evSoPv30U0lScnKyQ/CXZE4nJyfnW2O325WamipPT89c/UybNk2TJ0926T4CAAAAAFAU7pjwP3jwYMXHx2vHjh0O8wcMGGD+3LBhQ4WEhKhdu3b6/vvvVaNGjSLrZ9y4cRoxYoQ5bbfbFRoaWmTbAwAAAACgoO6Iy/6HDBmizz//XJs3b9Zdd92Vb23z5s0lScePH5ckBQcH69SpUw41OdM5zwm4UY2Pj0+eZ/0lycPDQz4+Pg4vAAAAAABKohId/g3D0JAhQ7Rq1Spt2rRJ4eHhN10nLi5OkhQSEiJJioyM1KFDh3T69GmzJjo6Wj4+PqpXr55ZExMT4zBOdHS0IiMjXbQnAAAAAAAUnxId/gcPHqwPPvhAy5Ytk7e3t5KTk5WcnKzU1FRJ0vfff6+pU6dq3759OnHihNasWaPevXurVatWatSokSSpY8eOqlevnp5++ml9++23+uqrrzR+/HgNHjxYHh4ekqRBgwbphx9+0OjRo3XkyBG98847+vjjjzV8+PBi23cAAAAAAFylRIf/d999VxcuXFCbNm0UEhJivj766CNJkru7uzZu3KiOHTsqIiJCI0eO1BNPPKG1a9eaY5QqVUqff/65SpUqpcjISPXq1Uu9e/fWlClTzJrw8HB98cUXio6OVuPGjTVr1iz9+9//5mv+AAAAAACWUKIf+GcYRr7LQ0NDtXXr1puOU7VqVa1bty7fmjZt2ujAgQNO9QcAAAAAwJ2gRJ/5BwAAAAAAhUf4BwAAAADA4gj/AAAAAABYHOEfAAAAAACLI/wDAAAAAGBxhH8AAAAAACyO8A8AAAAAgMUR/gEAAAAAsDjCPwAAAAAAFle6uBvAH1dSUpJSUlIKvH5CQoILuwEAAAAA6yL8o1gkJSUpIqKuUlOvFHqsjLR0F3QEAAAAANZF+EexSElJUWrqFTXvN1E+IdUKNMbJQ7GKX7NQmZmZrm0OAAAAACyG8I9i5RNSTf5hdQq0rv3kCdc2AwAAAAAWxQP/AAAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWV7q4G8CdKSkpSSkpKQVePyEhwYXdAAAAAADyQ/iH05KSkhQRUVepqVcKPVZGWroLOgIAAAAA5IfwD6elpKQoNfWKmvebKJ+QagUa4+ShWMWvWajMzEzXNgcAAAAAyIXwjwLzCakm/7A6BVrXfvKEa5sBAAAAANwQD/wDAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsrXdwN4PZLSkpSSkpKgddPSEhwYTcAAAAAgKJG+L/O/PnzNXPmTCUnJ6tx48Z6++23de+99xZ3Wy6TlJSkiIi6Sk29UuixMtLSXdARAAAAAKCoEf6v8dFHH2nEiBFasGCBmjdvrjlz5igqKkpHjx5VYGBgcbfnEikpKUpNvaLm/SbKJ6RagcY4eShW8WsWKjMz07XNAQAAAACKBOH/GrNnz9Zzzz2nZ555RpK0YMECffHFF1q0aJHGjh1bzN25lk9INfmH1SnQuvaTJ1zbDAAUg8LewpSWliYPD49iHaMk9CBJAQEBCgsLK9QYAACgaBH+/7/09HTt27dP48aNM+e5ubmpffv2io2NzVWflpamtLQ0c/rChQuSJLvdXvTNFsKlS5ckSWd/PKrMtNQCjWE/+aMk6cIvx1SmtI0xGKPEjVESemCMkjtGyveHJEm9evUq0PrIzcOjrP773/cVFBRU4DHc3NyUnZ1dqD4Yw5pjlIQeGIMxinqMktADY+QWHBys4ODgQo1R1HLyp2EYN621GbdS9Qfw66+/qkqVKtq5c6ciIyPN+aNHj9bWrVu1e/duh/pJkyZp8uTJt7tNAAAAAAAc/PTTT7rrrrvyreHMfwGNGzdOI0aMMKezs7N19uxZVaxYUTZbwc5GFQW73a7Q0FD99NNP8vHxKe52ABPHJkoqjk2UVBybKKk4NlGSWf34NAxDFy9eVOXKlW9aS/j//wICAlSqVCmdOnXKYf6pU6fyvNTDw8Mj1z2Sfn5+Rdliofj4+FjyYMedj2MTJRXHJkoqjk2UVBybKMmsfHz6+vreUp1bEfdxx3B3d1ezZs0UExNjzsvOzlZMTIzDbQAAAAAAANxpOPN/jREjRqhPnz665557dO+992rOnDm6fPmy+fR/AAAAAADuRIT/a/z1r3/Vb7/9pgkTJig5OVlNmjTR+vXrC/X04uLm4eGhiRMnFvprnABX49hEScWxiZKKYxMlFccmSjKOz//D0/4BAAAAALA47vkHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEf4ubP3++qlWrprJly6p58+b65ptvirslWMi2bdv08MMPq3LlyrLZbFq9erXDcsMwNGHCBIWEhMjT01Pt27fXsWPHHGrOnj2rnj17ysfHR35+furfv78uXbrkUHPw4EHdf//9Klu2rEJDQzVjxoyi3jXc4aZNm6Y//elP8vb2VmBgoLp27aqjR4861Fy9elWDBw9WxYoV5eXlpSeeeEKnTp1yqElKSlKXLl1Urlw5BQYGatSoUcrMzHSo2bJli5o2bSoPDw/VrFlTS5YsKerdwx3s3XffVaNGjeTj4yMfHx9FRkbqyy+/NJdzXKKkmD59umw2m4YNG2bO4/hEcZg0aZJsNpvDKyIiwlzOcekEA5a1fPlyw93d3Vi0aJFx+PBh47nnnjP8/PyMU6dOFXdrsIh169YZf//7341PP/3UkGSsWrXKYfn06dMNX19fY/Xq1ca3335rPPLII0Z4eLiRmppq1nTq1Mlo3LixsWvXLmP79u1GzZo1je7du5vLL1y4YAQFBRk9e/Y04uPjjQ8//NDw9PQ0/vnPf96u3cQdKCoqyli8eLERHx9vxMXFGQ8++KARFhZmXLp0yawZNGiQERoaasTExBh79+41/vznPxstWrQwl2dmZhoNGjQw2rdvbxw4cMBYt26dERAQYIwbN86s+eGHH4xy5coZI0aMML777jvj7bffNkqVKmWsX7/+tu4v7hxr1qwxvvjiC+N///ufcfToUePll182ypQpY8THxxuGwXGJkuGbb74xqlWrZjRq1MgYOnSoOZ/jE8Vh4sSJRv369Y2TJ0+ar99++81cznF56wj/FnbvvfcagwcPNqezsrKMypUrG9OmTSvGrmBV14f/7OxsIzg42Jg5c6Y57/z584aHh4fx4YcfGoZhGN99950hydizZ49Z8+WXXxo2m8345ZdfDMMwjHfeeceoUKGCkZaWZtaMGTPGqFOnThHvEazk9OnThiRj69athmH8fiyWKVPGWLFihVmTkJBgSDJiY2MNw/j9wy03NzcjOTnZrHn33XcNHx8f83gcPXq0Ub9+fYdt/fWvfzWioqKKepdgIRUqVDD+/e9/c1yiRLh48aJRq1YtIzo62mjdurUZ/jk+UVwmTpxoNG7cOM9lHJfO4bJ/i0pPT9e+ffvUvn17c56bm5vat2+v2NjYYuwMfxSJiYlKTk52OAZ9fX3VvHlz8xiMjY2Vn5+f7rnnHrOmffv2cnNz0+7du82aVq1ayd3d3ayJiorS0aNHde7cudu0N7jTXbhwQZLk7+8vSdq3b58yMjIcjs+IiAiFhYU5HJ8NGzZUUFCQWRMVFSW73a7Dhw+bNdeOkVPD37O4FVlZWVq+fLkuX76syMhIjkuUCIMHD1aXLl1yHUMcnyhOx44dU+XKlVW9enX17NlTSUlJkjgunUX4t6iUlBRlZWU5HOSSFBQUpOTk5GLqCn8kOcdZfsdgcnKyAgMDHZaXLl1a/v7+DjV5jXHtNoD8ZGdna9iwYWrZsqUaNGgg6fdjx93dXX5+fg611x+fNzv2blRjt9uVmppaFLsDCzh06JC8vLzk4eGhQYMGadWqVapXrx7HJYrd8uXLtX//fk2bNi3XMo5PFJfmzZtryZIlWr9+vd59910lJibq/vvv18WLFzkunVS6uBsAAKAoDR48WPHx8dqxY0dxtwJIkurUqaO4uDhduHBBK1euVJ8+fbR169bibgt/cD/99JOGDh2q6OholS1btrjbAUydO3c2f27UqJGaN2+uqlWr6uOPP5anp2cxdnbn4cy/RQUEBKhUqVK5nnR56tQpBQcHF1NX+CPJOc7yOwaDg4N1+vRph+WZmZk6e/asQ01eY1y7DeBGhgwZos8//1ybN2/WXXfdZc4PDg5Wenq6zp8/71B//fF5s2PvRjU+Pj78hwQ35O7urpo1a6pZs2aaNm2aGjdurLlz53Jcoljt27dPp0+fVtOmTVW6dGmVLl1aW7du1VtvvaXSpUsrKCiI4xMlgp+fn2rXrq3jx4/z96aTCP8W5e7urmbNmikmJsacl52drZiYGEVGRhZjZ/ijCA8PV3BwsMMxaLfbtXv3bvMYjIyM1Pnz57Vv3z6zZtOmTcrOzlbz5s3Nmm3btikjI8OsiY6OVp06dVShQoXbtDe40xiGoSFDhmjVqlXatGmTwsPDHZY3a9ZMZcqUcTg+jx49qqSkJIfj89ChQw4fUEVHR8vHx0f16tUza64dI6eGv2fhjOzsbKWlpXFcoli1a9dOhw4dUlxcnPm655571LNnT/Nnjk+UBJcuXdL333+vkJAQ/t50VnE/cRBFZ/ny5YaHh4exZMkS47vvvjMGDBhg+Pn5OTzpEiiMixcvGgcOHDAOHDhgSDJmz55tHDhwwPjxxx8Nw/j9q/78/PyMzz77zDh48KDx6KOP5vlVf3fffbexe/duY8eOHUatWrUcvurv/PnzRlBQkPH0008b8fHxxvLly41y5crxVX/I1/PPP2/4+voaW7ZscfhqoCtXrpg1gwYNMsLCwoxNmzYZe/fuNSIjI43IyEhzec5XA3Xs2NGIi4sz1q9fb1SqVCnPrwYaNWqUkZCQYMyfP9+SXw0E1xk7dqyxdetWIzEx0Th48KAxduxYw2azGRs2bDAMg+MSJcu1T/s3DI5PFI+RI0caW7ZsMRITE42vv/7aaN++vREQEGCcPn3aMAyOS2cQ/i3u7bffNsLCwgx3d3fj3nvvNXbt2lXcLcFCNm/ebEjK9erTp49hGL9/3d8rr7xiBAUFGR4eHka7du2Mo0ePOoxx5swZo3v37oaXl5fh4+NjPPPMM8bFixcdar799lvjvvvuMzw8PIwqVaoY06dPv127iDtUXselJGPx4sVmTWpqqvG3v/3NqFChglGuXDnjscceM06ePOkwzokTJ4zOnTsbnp6eRkBAgDFy5EgjIyPDoWbz5s1GkyZNDHd3d6N69eoO2wCu169fP6Nq1aqGu7u7UalSJaNdu3Zm8DcMjkuULNeHf45PFIe//vWvRkhIiOHu7m5UqVLF+Otf/2ocP37cXM5xeetshmEYxXPNAQAAAAAAuB245x8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFgc4R8AAAAAAIsj/AMAAAAAYHGEfwAASojz58/LZrPlevn5+RV3awAA4A5H+AcAoIT55JNPdPLkSZ08eVJz5swp7nYAAIAFEP4BACghMjMzJUkVK1ZUcHCwgoOD5evrm2dt3759c10hMGzYMHO5zWbT6tWrzen33nsvV021atVyfbjQt29fde3a1Zxev3697rvvPvn5+alixYp66KGH9P333+e7Hzdb58SJE7LZbIqLi3NY7/p+rt8HSWrTpo3DPpw7d069e/dWhQoVVK5cOXXu3FnHjh2TJG3ZsiXPKylyXpJ05swZde/eXVWqVFG5cuXUsGFDffjhh/luU5ImTZqkJk2amNNLlizJdYVGq1atHPYzp5/z58+bNU8//XSe+wkAgKsR/gEAKCHS0tIkSR4eHjetNQxDnTp1Mq8QiIyMvGHt5cuX9corr8jLy8vpni5fvqwRI0Zo7969iomJkZubmx577DFlZ2e7dJ2C6tu3r/bu3as1a9YoNjZWhmHowQcfVEZGhlq0aGG+P5988okkmdMnT56UJF29elXNmjXTF198ofj4eA0YMEBPP/20vvnmm0L19emnn+rAgQP51uzbt09r1qwp1HYAALhVpYu7AQAA8LuzZ89Kkry9vW9am5GRIS8vLwUHB0uS3N3db1g7Y8YM1atXz7yywBlPPPGEw/SiRYtUqVIlfffdd2rQoIHL1imIY8eOac2aNfr666/VokULSdLSpUsVGhqq1atXq1u3bub74+/vL0nmdI4qVaropZdeMqdfeOEFffXVV/r444917733FqivjIwMjRkzRmPGjNErr7xyw7oRI0Zo1KhR+dYAAOAqnPkHAKCE+OWXXyRJISEhN6212+0qX778Tet+/fVXzZ49W7Nmzcpz+ZgxY+Tl5WW+li5d6rD82LFj6t69u6pXry4fHx9Vq1ZNkpSUlHTDbd7qOi1atHDYdl5jdu/e3aFm+/bt5rKEhASVLl1azZs3N+dVrFhRderUUUJCQr7vS46srCxNnTpVDRs2lL+/v7y8vPTVV1/lu383M3/+fPn6+qpnz543rFm9erV++OEHjRw5ssDbAQDAGZz5BwCghPjuu+9UqVIl8yx1fn799Vc1atTopnV///vf1a1bNzVu3DjP5aNGjVLfvn3N6TFjxigrK8ucfvjhh1W1alX961//UuXKlZWdna0GDRooPT39htu81XU++ugj1a1b15xu06ZNrrHefPNNtW/f3pzOL1AXxMyZMzV37lzNmTNHDRs2VPny5TVs2LB89y8/586d09SpU7Vq1SrzuQLXy8jI0OjRo/Xqq6/K09OzMO0DAHDLCP8AAJQQMTEx5uXr+bl8+bISEhI0bty4fOvi4uK0cuVKHT169IY1AQEBqlmzpjnt7e1tPpDuzJkzOnr0qP71r3/p/vvvlyTt2LEj3206s05oaKjDtkuXzv3fkuDgYIeaa8Ny3bp1lZmZqd27d5vvW87269Wrl2+fOb7++ms9+uij6tWrlyQpOztb//vf/255/etNnTpV999/v1q1aqUTJ07kWfPuu+/Ky8tLTz/9dIG2AQBAQRD+AQAoZqmpqVq2bJm+/PJLzZ8/X8nJyeayCxcuyDAMJScnq1KlSjp27JhGjx4tPz8/de7cOd9x33jjDY0cOVKVK1cuUF8VKlRQxYoVtXDhQoWEhCgpKUljx451+ToFVatWLT366KN67rnn9M9//lPe3t4aO3asqlSpokcfffSWx1i5cqV27typChUqaPbs2Tp16lSu8J+VlaWrV6+a05mZmTIMQ+np6ebzFq5cuaKFCxdq//79+W5zxowZWrt27Q2vDAAAoChwzz8AAMXso48+0rPPPivDMPS3v/1NISEh5mvYsGGy2+0KCQnRTz/9pEmTJikzM1MbN2686dP7vb29NXr06AL35ebmpuXLl2vfvn1q0KCBhg8frpkzZ7p8ncJYvHixmjVrpoceekiRkZEyDEPr1q1TmTJlbmn98ePHq2nTpoqKilKbNm0UHBzs8FWHOebNmydPT0/z9eqrr+rgwYPq2LGjWZORkaFnnnlGtWvXznebbdu2Vdu2bZ3aTwAACstmGIZR3E0AAPBHtmTJEi1ZskRbtmy5YY3NZlNiYqL58DwUv7i4OA0bNizf3xsAACUFZ/4BAChmnp6eN33IX1BQkEqVKnWbOsKtcHNzy/crFgEAKEk48w8AAAAAgMVx5h8AAAAAAIsj/AMAAAAAYHGEfwAAAAAALI7wDwAAAACAxRH+AQAAAACwOMI/AAAAAAAWR/gHAAAAAMDiCP8AAAAAAFjc/wNv0GgyUP1fSQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/8AAAIjCAYAAABViau2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAamxJREFUeJzt3Xt8z/X///H7e9iM2WZmtmVjDpmz6NNaSkRGJJE+TiEifZBTSDmriJxK5eNbrE8pkZJKNHNKRjksxvigacVGc9ibmR1fvz/67fXxtjlse8/m7Xa9XN6Xy16v1/P1fD1e716b7q/D82UxDMMQAAAAAABwWE7FXQAAAAAAAChahH8AAAAAABwc4R8AAAAAAAdH+AcAAAAAwMER/gEAAAAAcHCEfwAAAAAAHBzhHwAAAAAAB0f4BwAAAADAwRH+AQAAAABwcIR/AAAAAAAcHOEfAJBv4eHhslgs5qds2bK6++67NXToUJ06daq4ywMAAMBVShd3AQCA29e0adMUFBSky5cva9u2bXr//fe1du1axcTEqFy5csVdHgAAAP4/wj8AoMDat2+ve++9V5L03HPPqVKlSpo7d66+/vpr9ejRo5irAwAAQA5u+wcA2M0jjzwiSYqLi5MknT17Vi+99JIaNmwoNzc3ubu7q3379vr1119zrXv58mVNmTJFd999t8qWLSs/Pz916dJFx44dkyQdP37c5lGDqz8tW7Y0+9q8ebMsFos+//xzvfLKK/L19VX58uXVqVMn/fHHH7m2vXPnTrVr104eHh4qV66cHn74Yf3000957mPLli3z3P6UKVNytf3kk0/UrFkzubq6ysvLS927d89z+9fbtytlZ2dr/vz5ql+/vsqWLasqVaro+eef17lz52zaVa9eXR07dsy1naFDh+bqM6/aZ8+enes7laS0tDRNnjxZtWrVkouLiwICAjR27FilpaXl+V3l5Vr7uXnz5lxt+/Xrd8Pvul+/fqpevbrNen/88YdcXV1lsVh0/Phxc35+v5ehQ4decz9yHn25sv+8TJkyRfXq1TOP//vvv1+rV6+2afPjjz+qW7duCgwMNL/XkSNHKjU19aa+j1q1atm0e++991S/fn25uLjI399fQ4YM0fnz53PVdrPHXUpKikaPHq2AgAC5uLioTp06euutt2QYRq7vLOdTqlQp3XXXXRo0aJDNtnN+N6/8733y5ElVr15d9957ry5evGjOP336tAYMGKAqVaqobNmyaty4sT766KPr7kOZMmVUvXp1jRkzRunp6df6zwIAdySu/AMA7CYnqFeqVEmS9Ntvv2n16tXq1q2bgoKCdOrUKf373//Www8/rIMHD8rf31+SlJWVpY4dOyoyMlLdu3fX8OHDdeHCBUVERCgmJkY1a9Y0t9GjRw899thjNtsdP358nvW8/vrrslgsGjdunE6fPq358+erTZs2io6OlqurqyRp48aNat++vZo1a6bJkyfLyclJS5cu1SOPPKIff/xR9913X65+q1atqhkzZkiSLl68qBdeeCHPbU+cOFFPP/20nnvuOf31119655131KJFC+3du1eenp651hk0aJAeeughSdKXX36pr776ymb5888/r/DwcD377LN68cUXFRcXp4ULF2rv3r366aefVKZMmTy/h/w4f/68uW9Xys7OVqdOnbRt2zYNGjRIdevW1f79+zVv3jz997//zRVor+fRRx9Vnz59JEm//PKL3n777Wu29fb21rx588zpZ5555ob9T5o0SZcvX77peopSSkqKnnzySVWvXl2pqakKDw9X165dFRUVZR5bK1eu1KVLl/TCCy+oUqVK+vnnn/XOO+/ozz//1MqVK236c3Fx0QcffGAzr0KFCubPU6ZM0dSpU9WmTRu98MILOnz4sN5//3398ssv1zxGrnfcGYahTp06adOmTRowYICaNGmi9evXa8yYMTpx4oTNfxtJevLJJ9WlSxdlZmYqKipKixcvVmpqqj7++OM8v5/k5GS1b99eZcqU0dq1a+Xm5iZJSk1NVcuWLXX06FENHTpUQUFBWrlypfr166fz589r+PDhee5DWlqa1q9fr7feektly5bV9OnTr/vfBwDuKAYAAPm0dOlSQ5KxYcMG46+//jL++OMPY/ny5UalSpUMV1dX488//zQMwzAuX75sZGVl2awbFxdnuLi4GNOmTTPnLVmyxJBkzJ07N9e2srOzzfUkGbNnz87Vpn79+sbDDz9sTm/atMmQZNx1112G1Wo1569YscKQZCxYsMDsu3bt2kZYWJi5HcMwjEuXLhlBQUHGo48+mmtbDzzwgNGgQQNz+q+//jIkGZMnTzbnHT9+3ChVqpTx+uuv26y7f/9+o3Tp0rnmHzlyxJBkfPTRR+a8yZMnG1f+M/3jjz8akoxly5bZrLtu3bpc86tVq2Z06NAhV+1Dhgwxrv6n/+rax44da/j4+BjNmjWz+U4//vhjw8nJyfjxxx9t1l+0aJEhyfjpp59ybe9q6enphiRj6NCh5ryVK1cakoxNmzblat+rVy8jKCjouvX27dvXqFatmjkdExNjODk5Ge3btzckGXFxceay/H4vQ4YMuea+5PwOXNn/zTh9+rQhyXjrrbfMeZcuXcrVbsaMGYbFYjF+//13c17fvn2N8uXLX7dvZ2dno23btja/dwsXLjQkGUuWLLFpfzPH3erVqw1JxmuvvWaz7lNPPWVYLBbj6NGj5ryr/9sYxt+/L/Xq1TOnc343N23aZFy+fNlo2bKl4ePjY9OPYRjG/PnzDUnGJ598Ys5LT083QkNDDTc3N/P3OufvwtKlS23W9/f3Nx577LFrflcAcCfitn8AQIG1adNGlStXVkBAgLp37y43Nzd99dVXuuuuuyT9fZXSyenvf2qysrJ05swZubm5qU6dOtqzZ4/Zz6pVq+Tt7a1hw4bl2sbVtyDnR58+fWyuij711FPy8/PT2rVrJUnR0dE6cuSIevbsqTNnzigpKUlJSUlKSUlR69attXXrVmVnZ9v0efnyZZUtW/a62/3yyy+VnZ2tp59+2uwzKSlJvr6+ql27tjZt2mTTPuf2ZBcXl2v2uXLlSnl4eOjRRx+16bNZs2Zyc3PL1WdGRoZNu6SkpBteDT9x4oTeeecdTZw40bwCe+X269atq+DgYJs+cx71uHr7ecnZ/o2+vxzp6enX/U7yMn78eDVt2lTdunXLc3l+vpfLly8rKSlJZ86cyXUc5EfONo8dO6aZM2fKyclJzZs3N5fn3IUi/X2nQFJSkh544AEZhqG9e/fe9HY2bNig9PR0jRgxwvy9k6SBAwfK3d1d3333nU37mznu1q5dq1KlSunFF1+0mT969GgZhqHvv//eZv6lS5eUlJSkxMRErVq1Sr/++qtat26dq9/s7Gz16dNHO3bs0Nq1a23u7snZrq+vr83YIWXKlNGLL76oixcvasuWLTbtL168qKSkJJ04cUKLFy9WYmJintsFgDsZt/0DAArs3Xff1d13363SpUurSpUqqlOnjk3oyM7O1oIFC/Tee+8pLi5OWVlZ5rKcRwOkvx8XqFOnjkqXtu8/S7Vr17aZznk+Ouc57SNHjkiS+vbte80+kpOTVbFiRXM6KSkpV79XO3LkiAzDuGa7q2+9znkm+urAfXWfycnJ8vHxyXP56dOnbaZ/+OEHVa5c+bp1Xm3y5Mny9/fX888/ry+++CLX9mNjY6/Z59Xbz0tSUpIkycPD46bqOX/+/HW/k6tt27ZN33zzjSIjIxUfH59nm/x8Lx9++KE+/PBDSZKzs7NCQkI0d+5cc5DLmxUZGan27dtLktzd3fXFF1/o/vvvN5fHx8dr0qRJWrNmTa7xG5KTk296O7///rskqU6dOjbznZ2dVaNGDXN5jps57n7//Xf5+/vbnESTpLp169psM8fs2bM1e/Zsc7pdu3Z68803c/X76quvaseOHbJYLLp06VKe261du7bN35PrbXfYsGE2Jw+fffZZjRw58pr7BQB3IsI/AKDA7rvvvusGoTfeeEMTJ05U//79NX36dHl5ecnJyUkjRowo1JVUe8mpYfbs2WrSpEmeba4MRunp6UpISNCjjz56w34tFou+//57lSpV6rp9SlJiYqIkydfX97p9+vj4aNmyZXkuvzrQhoSE6LXXXrOZt3DhQn399dd5rh8bG6vw8HB98skneT4Xnp2drYYNG2ru3Ll5rh8QEHDN2nPknHS5eoC+a0lMTFS1atVuqq0kjRs3TmFhYXrkkUcUHh6eZ5v8fC9PPPGEhg4dKsMwFBcXp2nTpqljx47mSaOb9Y9//EMRERE6d+6cPvnkE/Xv318BAQG69957lZWVpUcffVRnz57VuHHjFBwcrPLly+vEiRPq169fkf6e3Mxxl1/PPPOM+vTpo+zsbP3222+aPn26OnbsqA0bNtjcxbNz506Fh4dr4cKFGjRokKKjo/N9l8eVxowZo7Zt2yorK0sHDhzQtGnTZBiGli5dao/dAgCHQPgHABSZL774Qq1atTKvnuY4f/68vL29zemaNWtq586dysjIsMugdTmuDmmGYejo0aNq1KiRuV3p76uxbdq0uWF/v/76qzIyMm545bdmzZoyDENBQUG6++67b9jvwYMHZbFYcl2xvbrPDRs2qHnz5ja3iV+Lt7d3rn263qB848ePV5MmTfTPf/7zmtvPuYW7oI9i7Nq1S5Ju6sp5RkaGjh49qnbt2t1U36tXr1ZUVJTN4yR5yc/3UrVqVZu2bm5u6tWrV75uxZf+vsslp5+uXbuqTp06mj17tj7//HPt379f//3vf/XRRx+ZgyBKUkRERL62Ick8UXL48GHVqFHDnJ+enq64uLhc+30zx121atW0YcMGXbhwwebq/6FDh2y2maNGjRo22/Hw8FDPnj21Y8cOhYaGmvOnTp2qvn37qkmTJrr33nv12muv2QzOV61aNe3bt0/Z2dk2V/+vtd169eqZ2w0LC1NaWppeeeUVvf766+bAogBwp+OZfwBAkSlVqlSu14GtXLlSJ06csJnXtWtXJSUlaeHChbn6uHr9/PjPf/6jCxcumNNffPGFEhISzFuwmzVrppo1a+qtt96yecVYjr/++itX7aVKlcrzdXFX6tKli0qVKqWpU6fmqt8wDJ05c8aczszM1KpVq3Tfffdd9/brp59+WllZWXmOXp6ZmZnnq9xuVlRUlL7++mvNnDnzmsH+6aef1okTJ/R///d/uZalpqYqJSXlhtv54osvVKdOHQUHB9+w7ddff63U1FRzTIHrycrK0iuvvKKePXte8w4Oe8i5Cp/X3Rw36/Lly0pJSTFfj5jT15XHiWEYWrBgQb77btOmjZydnfX222/b9Pfhhx8qOTlZHTp0MOfd7HH32GOPKSsrK9fv5rx582SxWMzfpWvJeV3h1a+DzHm7QOPGjfXSSy/pzTffVExMjM12ExMT9fnnn9vU/M4778jNzU0PP/zwTW2X1/0BwP9w5R8AUGQ6duyoadOm6dlnn9UDDzyg/fv3a9myZTZXJaW/B+b7z3/+o1GjRunnn3/WQw89pJSUFG3YsEH/+te/9MQTTxRo+15eXnrwwQf17LPP6tSpU5o/f75q1aqlgQMHSpKcnJz0wQcfqH379qpfv76effZZ3XXXXTpx4oQ2bdokd3d3ffPNN0pJSdG7776rt99+W3fffbfNO8pzThrs27dPUVFRCg0NVc2aNfXaa69p/PjxOn78uDp37qwKFSooLi5OX331lQYNGqSXXnpJGzZs0MSJE7Vv3z598803192Xhx9+WM8//7xmzJih6OhotW3bVmXKlNGRI0e0cuVKLViwQE899VSBvqcffvhBjz766HXvfnjmmWe0YsUKDR48WJs2bVLz5s2VlZWlQ4cOacWKFVq/fv01r+j/9ttvmjVrln7++Wd16dJFn3zyibnsl19+kfT3le7AwED5+vpq8uTJeu+99/TAAw+obdu2N6z/zz//lLOzszmQo73Ex8dr3bp15m3/r7/+uqpVq6Z77rnnpm79z3mNXfv27eXv76+zZ8/q448/VkJCgnr37i1JCg4OVs2aNfXSSy/pxIkTcnd316pVq3I9+38zKleurPHjx2vq1Klq166dOnXqpMOHD+u9997TP/7xD3Ob+TnuHn/8cbVq1Uqvvvqqjh8/rsaNG+uHH37Q119/rREjRuQaqG/fvn365JNPZBiGjh07prfffltVq1a97t0ekydP1qpVqzRw4ED99NNPcnJy0qBBg/Tvf/9b/fr10+7du1W9enV98cUX+umnnzR//vxcYxBERUWpdOnS5m3/77zzju65556bfsQEAO4It/4FAwCA213Oa85++eWX67a7fPmyMXr0aMPPz89wdXU1mjdvbkRFRRkPP/ywzWvkDOPv1529+uqrRlBQkFGmTBnD19fXeOqpp4xjx44ZhlGwV/199tlnxvjx4w0fHx/D1dXV6NChg82r03Ls3bvX6NKli1GpUiXDxcXFqFatmvH0008bkZGRNtu+0adv3742/a5atcp48MEHjfLlyxvly5c3goODjSFDhhiHDx82DMMwhg0bZrRo0cJYt25drpqufuVajsWLFxvNmjUzXF1djQoVKhgNGzY0xo4da5w8edJsk99X2lksFmP37t028/P6b5Senm68+eabRv369Q0XFxejYsWKRrNmzYypU6caycnJubaXI+d4udFn6dKlxp9//mkEBAQYI0aMyLNP5fGqP0nG8OHD89xmYV71l/OxWCyGr6+v0aVLFyM2Nvaa/V8tNTXV+Oc//2lUrVrVcHZ2Nnx8fIxWrVoZ33zzjU27gwcPGm3atDHc3NwMb29vY+DAgcavv/6a6xV2N3rVX46FCxcawcHBRpkyZYwqVaoYL7zwgnHu3DlzeX6PuwsXLhgjR440/P39jTJlyhi1a9c2Zs+ebfN6zJv5zgzD9lV/V9q8ebNhsVjM13AahmGcOnXKePbZZw1vb2/D2dnZaNiwYa5X+l39u+nk5GRUrVrV6Nu3r/nKUQDA3yyGUYj7KQEAKIE2b96sVq1aaeXKlQW+Gn6l48ePKygoSHFxcde8kjhlyhQdP378mgPN3cnCw8PN7+daWrZsqX79+qlfv363rC4AAO4kPPMPAAAAAICD45l/AABuIGeU9+sNjNaoUSNGFb+GmjVr6sknn7xum0cffTTX8+MAAMB+uO0fAOBw7H3bPwAAwO2O8A8AAAAAgIPjmX8AAAAAABwc4R8AAAAAAAfHgH92kp2drZMnT6pChQqyWCzFXQ4AAAAAwMEZhqELFy7I399fTk7Xv7ZP+LeTkydPKiAgoLjLAAAAAADcYf744w9VrVr1um0I/3ZSoUIFSX9/6e7u7sVcDQAAAADA0VmtVgUEBJh59HoI/3aSc6u/u7s74R8AAAAAcMvczKPnDPgHAAAAAICDI/wDAAAAAODgCP8AAAAAADg4wj8AAAAAAA6uWMP/jBkz9I9//EMVKlSQj4+POnfurMOHD9u0uXz5soYMGaJKlSrJzc1NXbt21alTp2zaxMfHq0OHDipXrpx8fHw0ZswYZWZm2rTZvHmzmjZtKhcXF9WqVUvh4eG56nn33XdVvXp1lS1bViEhIfr555/tvs8AAAAAANxqxRr+t2zZoiFDhmjHjh2KiIhQRkaG2rZtq5SUFLPNyJEj9c0332jlypXasmWLTp48qS5dupjLs7Ky1KFDB6Wnp2v79u366KOPFB4erkmTJplt4uLi1KFDB7Vq1UrR0dEaMWKEnnvuOa1fv95s8/nnn2vUqFGaPHmy9uzZo8aNGyssLEynT5++NV8GAAAAAABFxGIYhlHcReT466+/5OPjoy1btqhFixZKTk5W5cqV9emnn+qpp56SJB06dEh169ZVVFSU7r//fn3//ffq2LGjTp48qSpVqkiSFi1apHHjxumvv/6Ss7Ozxo0bp++++04xMTHmtrp3767z589r3bp1kqSQkBD94x//0MKFCyVJ2dnZCggI0LBhw/Tyyy/fsHar1SoPDw8lJyfzqj8AAAAAQJHLTw4tUc/8JycnS5K8vLwkSbt371ZGRobatGljtgkODlZgYKCioqIkSVFRUWrYsKEZ/CUpLCxMVqtVBw4cMNtc2UdOm5w+0tPTtXv3bps2Tk5OatOmjdnmamlpabJarTYfAAAAAABKohIT/rOzszVixAg1b95cDRo0kCQlJibK2dlZnp6eNm2rVKmixMREs82VwT9nec6y67WxWq1KTU1VUlKSsrKy8myT08fVZsyYIQ8PD/MTEBBQsB0HAAAAAKCIlZjwP2TIEMXExGj58uXFXcpNGT9+vJKTk83PH3/8UdwlAQAAAACQp9LFXYAkDR06VN9++622bt2qqlWrmvN9fX2Vnp6u8+fP21z9P3XqlHx9fc02V4/Kn/M2gCvbXP2GgFOnTsnd3V2urq4qVaqUSpUqlWebnD6u5uLiIhcXl4LtMAAAAAAAt1CxXvk3DENDhw7VV199pY0bNyooKMhmebNmzVSmTBlFRkaa8w4fPqz4+HiFhoZKkkJDQ7V//36bUfkjIiLk7u6uevXqmW2u7COnTU4fzs7OatasmU2b7OxsRUZGmm0AAAAAALhdFeuV/yFDhujTTz/V119/rQoVKpjP13t4eMjV1VUeHh4aMGCARo0aJS8vL7m7u2vYsGEKDQ3V/fffL0lq27at6tWrp2eeeUazZs1SYmKiJkyYoCFDhphX5gcPHqyFCxdq7Nix6t+/vzZu3KgVK1bou+++M2sZNWqU+vbtq3vvvVf33Xef5s+fr5SUFD377LO3/osBAAAAAMCOivVVfxaLJc/5S5cuVb9+/SRJly9f1ujRo/XZZ58pLS1NYWFheu+992xux//999/1wgsvaPPmzSpfvrz69u2rmTNnqnTp/53b2Lx5s0aOHKmDBw+qatWqmjhxormNHAsXLtTs2bOVmJioJk2a6O2331ZISMhN7Quv+gMAAAAA3Er5yaHFGv4dCeEfAAAAAHAr5SeHlpjR/gEAAAAAQNEg/AMAAAAA4OAI/wAAAAAAOLhiHe0fAEqy+Ph4JSUlFaoPb29vBQYG2qkiAAAAoGAI/wCQh/j4eAUH11Vq6qVC9ePqWk6HDsVyAgAAAADFivAPAHlISkpSauolhfSfLHe/6gXqw5pwXDuXTFVSUhLhHwAAAMWK8A8A1+HuV11egXWKuwwAAACgUBjwDwAAAAAAB0f4BwAAAADAwRH+AQAAAABwcIR/AAAAAAAcHOEfAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABwc4R8AAAAAAAdH+AcAAAAAwMER/gEAAAAAcHCEfwAAAAAAHBzhHwAAAAAAB0f4BwAAAADAwRH+AQAAAABwcIR/AAAAAAAcHOEfAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABwc4R8AAAAAAAdH+AcAAAAAwMER/gEAAAAAcHCEfwAAAAAAHBzhHwAAAAAAB0f4BwAAAADAwRH+AQAAAABwcIR/AAAAAAAcHOEfAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABwc4R8AAAAAAAdH+AcAAAAAwMER/gEAAAAAcHCEfwAAAAAAHBzhHwAAAAAAB0f4BwAAAADAwRVr+N+6dasef/xx+fv7y2KxaPXq1TbLLRZLnp/Zs2ebbapXr55r+cyZM2362bdvnx566CGVLVtWAQEBmjVrVq5aVq5cqeDgYJUtW1YNGzbU2rVri2SfAQAAAAC41Yo1/KekpKhx48Z6991381yekJBg81myZIksFou6du1q027atGk27YYNG2Yus1qtatu2rapVq6bdu3dr9uzZmjJlihYvXmy22b59u3r06KEBAwZo79696ty5szp37qyYmJii2XEAAAAAAG6h0sW58fbt26t9+/bXXO7r62sz/fXXX6tVq1aqUaOGzfwKFSrkaptj2bJlSk9P15IlS+Ts7Kz69esrOjpac+fO1aBBgyRJCxYsULt27TRmzBhJ0vTp0xUREaGFCxdq0aJFhdlFAAAAAACK3W3zzP+pU6f03XffacCAAbmWzZw5U5UqVdI999yj2bNnKzMz01wWFRWlFi1ayNnZ2ZwXFhamw4cP69y5c2abNm3a2PQZFhamqKioa9aTlpYmq9Vq8wEAAAAAoCQq1iv/+fHRRx+pQoUK6tKli838F198UU2bNpWXl5e2b9+u8ePHKyEhQXPnzpUkJSYmKigoyGadKlWqmMsqVqyoxMREc96VbRITE69Zz4wZMzR16lR77BoAAAAAAEXqtgn/S5YsUa9evVS2bFmb+aNGjTJ/btSokZydnfX8889rxowZcnFxKbJ6xo8fb7Ntq9WqgICAItseAAAAAAAFdVuE/x9//FGHDx/W559/fsO2ISEhyszM1PHjx1WnTh35+vrq1KlTNm1ypnPGCbhWm2uNIyBJLi4uRXpyAQAAAAAAe7ktnvn/8MMP1axZMzVu3PiGbaOjo+Xk5CQfHx9JUmhoqLZu3aqMjAyzTUREhOrUqaOKFSuabSIjI236iYiIUGhoqB33AgAAAACA4lGs4f/ixYuKjo5WdHS0JCkuLk7R0dGKj48321itVq1cuVLPPfdcrvWjoqI0f/58/frrr/rtt9+0bNkyjRw5Ur179zaDfc+ePeXs7KwBAwbowIED+vzzz7VgwQKbW/aHDx+udevWac6cOTp06JCmTJmiXbt2aejQoUX7BQAAAAAAcAsU623/u3btUqtWrczpnEDet29fhYeHS5KWL18uwzDUo0ePXOu7uLho+fLlmjJlitLS0hQUFKSRI0faBHsPDw/98MMPGjJkiJo1ayZvb29NmjTJfM2fJD3wwAP69NNPNWHCBL3yyiuqXbu2Vq9erQYNGhTRngMAAAAAcOtYDMMwirsIR2C1WuXh4aHk5GS5u7sXdzkACmnPnj1q1qyZHn11qbwC6xSoj7PxhxXx+rPavXu3mjZtaucKAQAAcKfLTw69LZ75BwAAAAAABUf4BwAAAADAwRH+AQAAAABwcIR/AAAAAAAcHOEfAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABwc4R8AAAAAAAdH+AcAAAAAwMER/gEAAAAAcHCEfwAAAAAAHBzhHwAAAAAAB0f4BwAAAADAwRH+AQAAAABwcIR/AAAAAAAcHOEfAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABwc4R8AAAAAAAdH+AcAAAAAwMER/gEAAAAAcHCEfwAAAAAAHFzp4i4AABxdbGxsodb39vZWYGCgnaoBAADAnYjwDwBFJDX5jCSLevfuXah+XF3L6dChWE4AAAAAoMAI/wBQRDIuXZBkqEnPcaocFFygPqwJx7VzyVQlJSUR/gEAAFBghH8AKGJuPoHyCqxT3GUAAADgDsaAfwAAAAAAODjCPwAAAAAADo7wDwAAAACAgyP8AwAAAADg4Aj/AAAAAAA4OMI/AAAAAAAOjvAPAAAAAICDI/wDAAAAAODgCP8AAAAAADg4wj8AAAAAAA6O8A8AAAAAgIMj/AMAAAAA4OAI/wAAAAAAODjCPwAAAAAADo7wDwAAAACAgyP8AwAAAADg4Aj/AAAAAAA4uGIN/1u3btXjjz8uf39/WSwWrV692mZ5v379ZLFYbD7t2rWzaXP27Fn16tVL7u7u8vT01IABA3Tx4kWbNvv27dNDDz2ksmXLKiAgQLNmzcpVy8qVKxUcHKyyZcuqYcOGWrt2rd33FwAAAACA4lCs4T8lJUWNGzfWu+++e8027dq1U0JCgvn57LPPbJb36tVLBw4cUEREhL799ltt3bpVgwYNMpdbrVa1bdtW1apV0+7duzV79mxNmTJFixcvNtts375dPXr00IABA7R371517txZnTt3VkxMjP13GgAAAACAW6x0cW68ffv2at++/XXbuLi4yNfXN89lsbGxWrdunX755Rfde++9kqR33nlHjz32mN566y35+/tr2bJlSk9P15IlS+Ts7Kz69esrOjpac+fONU8SLFiwQO3atdOYMWMkSdOnT1dERIQWLlyoRYsW2XGPAaB4xMfHKykpqVB9eHt7KzAw0E4VAQAA4FYq1vB/MzZv3iwfHx9VrFhRjzzyiF577TVVqlRJkhQVFSVPT08z+EtSmzZt5OTkpJ07d+rJJ59UVFSUWrRoIWdnZ7NNWFiY3nzzTZ07d04VK1ZUVFSURo0aZbPdsLCwXI8hXCktLU1paWnmtNVqtdMeA4B9xcfHKzi4rlJTLxWqH1fXcjp0KJYTAAAAALehEh3+27Vrpy5duigoKEjHjh3TK6+8ovbt2ysqKkqlSpVSYmKifHx8bNYpXbq0vLy8lJiYKElKTExUUFCQTZsqVaqYyypWrKjExERz3pVtcvrIy4wZMzR16lR77CYAFKmkpCSlpl5SSP/JcverXqA+rAnHtXPJVCUlJRH+AQAAbkMlOvx3797d/Llhw4Zq1KiRatasqc2bN6t169bFWJk0fvx4m7sFrFarAgICirEiAFcq7G3usbGxdqymZHD3qy6vwDrFXQYAAACKQYkO/1erUaOGvL29dfToUbVu3Vq+vr46ffq0TZvMzEydPXvWHCfA19dXp06dsmmTM32jNtcaa0D6eywCFxeXQu8TAPuz123ukpSRlm6HigAAAIDidVuF/z///FNnzpyRn5+fJCk0NFTnz5/X7t271axZM0nSxo0blZ2drZCQELPNq6++qoyMDJUpU0aSFBERoTp16qhixYpmm8jISI0YMcLcVkREhEJDQ2/h3gGwF3vc5p6wP0oxaxYrMzPTvsUBAAAAxaBYw//Fixd19OhRczouLk7R0dHy8vKSl5eXpk6dqq5du8rX11fHjh3T2LFjVatWLYWFhUmS6tatq3bt2mngwIFatGiRMjIyNHToUHXv3l3+/v6SpJ49e2rq1KkaMGCAxo0bp5iYGC1YsEDz5s0ztzt8+HA9/PDDmjNnjjp06KDly5dr165dNq8DBHD7Kcxt7taE4/YtBgAAAChGTsW58V27dumee+7RPffcI0kaNWqU7rnnHk2aNEmlSpXSvn371KlTJ919990aMGCAmjVrph9//NHmdvtly5YpODhYrVu31mOPPaYHH3zQJrR7eHjohx9+UFxcnJo1a6bRo0dr0qRJ5mv+JOmBBx7Qp59+qsWLF6tx48b64osvtHr1ajVo0ODWfRkAAAAAABSRYr3y37JlSxmGcc3l69evv2EfXl5e+vTTT6/bplGjRvrxxx+v26Zbt27q1q3bDbcHAAAAAMDtpliv/AMAAAAAgKJH+AcAAAAAwMER/gEAAAAAcHCEfwAAAAAAHBzhHwAAAAAAB0f4BwAAAADAwRH+AQAAAABwcIR/AAAAAAAcHOEfAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwpYu7AADA7SM2NrZQ63t7eyswMNBO1QAAAOBmEf4BADeUmnxGkkW9e/cuVD+uruV06FAsJwAAAABuMcI/AOCGMi5dkGSoSc9xqhwUXKA+rAnHtXPJVCUlJRH+AQAAbjHCPwDgprn5BMorsE5xlwEAAIB8YsA/AAAAAAAcHOEfAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABwc4R8AAAAAAAdH+AcAAAAAwMER/gEAAAAAcHCEfwAAAAAAHBzhHwAAAAAAB0f4BwAAAADAwRH+AQAAAABwcIR/AAAAAAAcHOEfAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABwc4R8AAAAAAAdXOr8rrFmz5rrLO3XqVOBiAAAAAACA/d1U+E9JSVH58uUlSZ07d5bFYpEkGYZh085isSgrK8vOJQIAAAAAgMK4qfB/zz33qGPHjpo7d6569eqlb775RmPHjtXo0aPl4uJS1DUCuAPFx8crKSmpQOvGxsbauRoAAADg9nZT4f+XX36Rt7e3Jk2apI8//li7d+/W6NGj9e9//1tvvPGGevXqVdR1AriDxMfHKzi4rlJTLxWqn4y0dDtVBAAAANzebir8Z2RkyGKxqHTpv5s3a9ZMmzdv1urVqzVu3DjNmzdPc+fOVYsWLYq0WAB3hqSkJKWmXlJI/8ly96ue7/UT9kcpZs1iZWZm2r84AAAA4DZ0U+G/ZcuWeuONN+Tm5iar1WrOf+SRR/TTTz/p/fffV8eOHfXII49o9erVRVUrgDuMu191eQXWyfd61oTj9i8GAAAAuI3dVPiPiYkxf/b09DQH/LuSYRj65ptv7FcZAAAAAACwi3y/6m/Tpk1FUQcAAAAAACgi+Q7/Dz/8cFHUAQAAAAAAiohTQVb68ccf1bt3bz3wwAM6ceKEJOnjjz/Wtm3b7FocAAAAAAAovHyH/1WrViksLEyurq7as2eP0tLSJEnJycl644037F4gAAAAAAAonHyH/9dee02LFi3S//3f/6lMmTLm/ObNm2vPnj12LQ4AAAAAABRevsP/4cOH1aJFi1zzPTw8dP78eXvUBAAAAAAA7CjfA/75+vrq6NGjql69us38bdu2qUaNGvnqa+vWrZo9e7Z2796thIQEffXVV+rcubMkKSMjQxMmTNDatWv122+/ycPDQ23atNHMmTPl7+9v9lG9enX9/vvvNv3OmDFDL7/8sjm9b98+DRkyRL/88osqV66sYcOGaezYsTbrrFy5UhMnTtTx48dVu3Ztvfnmm3rsscfytT8AgBuLjY0t1PppaWlycXEpVB/e3t4KDAwsVB8AAAC3k3yH/4EDB2r48OFasmSJLBaLTp48qaioKL300kuaOHFivvpKSUlR48aN1b9/f3Xp0sVm2aVLl7Rnzx5NnDhRjRs31rlz5zR8+HB16tRJu3btsmk7bdo0DRw40JyuUKGC+bPValXbtm3Vpk0bLVq0SPv371f//v3l6empQYMGSZK2b9+uHj16aMaMGerYsaM+/fRTde7cWXv27FGDBg3y+xUBAPKQmnxGkkW9e/cuXEcWi2QYherC1bWcDh2K5QQAAAC4Y+Q7/L/88svKzs5W69atdenSJbVo0UIuLi566aWXNGzYsHz11b59e7Vv3z7PZR4eHoqIiLCZt3DhQt13332Kj4+3+R+2ChUqyNfXN89+li1bpvT0dC1ZskTOzs6qX7++oqOjNXfuXDP8L1iwQO3atdOYMWMkSdOnT1dERIQWLlyoRYsW5WufAAB5y7h0QZKhJj3HqXJQcIH6SNgfpZg1iwvVhzXhuHYumaqkpCTCPwAAuGPkO/xbLBa9+uqrGjNmjI4ePaqLFy+qXr16cnNzK4r6bCQnJ8tiscjT09Nm/syZMzV9+nQFBgaqZ8+eGjlypEqX/nvXoqKi1KJFCzk7O5vtw8LC9Oabb+rcuXOqWLGioqKiNGrUKJs+w8LCtHr16mvWkpaWZr7pQPr7DgMAwI25+QTKK7BOgda1JhwvdB8AAAB3onwP+Ne/f39duHBBzs7Oqlevnu67775bEvwvX76scePGqUePHnJ3dzfnv/jii1q+fLk2bdqk559/Xm+88YbN8/yJiYmqUqWKTV8504mJiddtk7M8LzNmzJCHh4f5CQgIKPQ+AgAAAABQFPId/j/66COlpqYWRS3XlJGRoaefflqGYej999+3WTZq1Ci1bNlSjRo10uDBgzVnzhy98847Nlfli8L48eOVnJxsfv74448i3R4AAAAAAAWV79v+DcOQxWIpilrylBP8f//9d23cuNHmqn9eQkJClJmZqePHj6tOnTry9fXVqVOnbNrkTOeME3CtNtcaR0CSXFxcCj3aNAAAAAAAt0K+w7/09632rq6ueS5bsmRJoQq6Uk7wP3LkiDZt2qRKlSrdcJ3o6Gg5OTnJx8dHkhQaGqpXX31VGRkZKlOmjCQpIiJCderUUcWKFc02kZGRGjFihNlPRESEQkND7bYvAAAAAAAUlwKFf8MwZBTyNUuSdPHiRR09etScjouLU3R0tLy8vOTn56ennnpKe/bs0bfffqusrCzzGXwvLy85OzsrKipKO3fuVKtWrVShQgVFRUVp5MiR6t27txnse/bsqalTp2rAgAEaN26cYmJitGDBAs2bN8/c7vDhw/Xwww9rzpw56tChg5YvX65du3Zp8eLFhd5HAAAAAACKW4FG+3/77bfNK+uFsWvXLrVq1cqczhlxv2/fvpoyZYrWrFkjSWrSpInNeps2bVLLli3l4uKi5cuXa8qUKUpLS1NQUJBGjhxpM3K/h4eHfvjhBw0ZMkTNmjWTt7e3Jk2aZL7mT5IeeOABffrpp5owYYJeeeUV1a5dW6tXr1aDBg0KvY8AAAAAABS3Aj3zby8tW7a8bn832lbTpk21Y8eOG26nUaNG+vHHH6/bplu3burWrdsN+wIAAAAA4HaT79H++/bte83n/QEAAAAAQMmT7yv/S5cuLYo6AAAAAABAESnQgH+7du3SihUrFB8fr/T0dJtlX375pV0KAwAAAAAA9pHv2/6XL1+uBx54QLGxsfrqq6+UkZGhAwcOaOPGjfLw8CiKGgEAAAAAQCHkO/y/8cYbmjdvnr755hs5OztrwYIFOnTokJ5++mkFBgYWRY0AAAAAAKAQ8h3+jx07pg4dOkiSnJ2dlZKSIovFopEjR2rx4sV2LxAAAAAAABROvsN/xYoVdeHCBUnSXXfdpZiYGEnS+fPndenSJftWBwAAAAAACi3fA/61aNFCERERatiwobp166bhw4dr48aNioiIUOvWrYuiRgAAAAAAUAj5Dv8LFy7U5cuXJUmvvvqqypQpo+3bt6tr166aMGGC3QsEAAAAAACFk+/w7+XlZf7s5OSkl19+2a4FAQAAAAAA+8p3+C9VqpQSEhLk4+NTFPUAcADx8fFKSkoq8PqxsbF2rAYAAABAvsO/YRhFUQcABxEfH6/g4LpKTS38AKAZael2qAgAAABAvsO/JFksFnvXAcBBJCUlKTX1kkL6T5a7X/UC9ZGwP0oxaxYrMzPTvsUBAAAAd6gChX9fX99rLsvKyipwMQAch7tfdXkF1inQutaE4/YtBgAAALjDFSj8f/HFFzYD/wEAAAAAgJIr3+HfYrGoefPmDPgHAAAAAMBtwim/KzDgHwAAAAAAt5d8h/9NmzZxyz8AAAAAALeRfIf/lJQURUZG5pq/fv16ff/993YpCgAAAAAA2E++w//LL7+c54j+hmHo5ZdftktRAAAAAADAfvId/o8cOaJ69erlmh8cHKyjR4/apSgAAAAAAGA/+Q7/Hh4e+u2333LNP3r0qMqXL2+XogAAAAAAgP3kO/w/8cQTGjFihI4dO2bOO3r0qEaPHq1OnTrZtTgAAAAAAFB4+Q7/s2bNUvny5RUcHKygoCAFBQWpbt26qlSpkt56662iqBEAAAAAABRC6fyu4OHhoe3btysiIkK//vqrXF1d1ahRI7Vo0aIo6gMAAAAAAIWU7/AvSRaLRW3btlXbtm3tXQ8AAAAAALCzfN/2DwAAAAAAbi+EfwAAAAAAHBzhHwAAAAAAB0f4BwAAAADAwRVowL+srCytXr1asbGxkqT69eurU6dOKlWqlF2LAwAAAAAAhZfv8H/06FF16NBBf/75p+rUqSNJmjFjhgICAvTdd9+pZs2adi8SAAAAAAAUXL5v+3/xxRdVo0YN/fHHH9qzZ4/27Nmj+Ph4BQUF6cUXXyyKGgEAAAAAQCHk+8r/li1btGPHDnl5eZnzKlWqpJkzZ6p58+Z2LQ4AAAAAABRevq/8u7i46MKFC7nmX7x4Uc7OznYpCgAAAAAA2E++w3/Hjh01aNAg7dy5U4ZhyDAM7dixQ4MHD1anTp2KokYAAAAAAFAI+Q7/b7/9tmrWrKnQ0FCVLVtWZcuWVfPmzVWrVi0tWLCgKGoEAAAAAACFkO9n/j09PfX111/ryJEjOnTokCSpbt26qlWrlt2LAwAAAAAAhZfv8J+jdu3aql27tiQpKyvLbgUBAAAAAAD7yvdt/3FxcerRo4deeOEFnTt3Tp06dZKLi4vq1Kmjffv2FUWNAAAAAACgEPId/p9//nnFxsYqJiZGjzzyiNLT0/X111+rXr16GjFiRBGUCAAAAAAACiPft/3v3LlTP/74o6pVqyYvLy/98ssvatq0qWrVqqWQkJCiqBEAAAAAABRCvq/8X7hwQX5+fvLw8FC5cuXk6ekp6e+BAC9cuGDv+gAAAAAAQCEVaMC/devWycPDQ9nZ2YqMjFRMTIzOnz9v59IAAAAAAIA9FCj89+3b1/z5+eefN3+2WCyFrwgAAAAAANhVvm/7z87OvuYnv6/827p1qx5//HH5+/vLYrFo9erVNssNw9CkSZPk5+cnV1dXtWnTRkeOHLFpc/bsWfXq1Uvu7u7y9PTUgAEDdPHiRZs2+/bt00MPPaSyZcsqICBAs2bNylXLypUrFRwcrLJly6phw4Zau3ZtvvYFAAAAAICSKt/h/z//+Y/S0tLssvGUlBQ1btxY7777bp7LZ82apbfffluLFi3Szp07Vb58eYWFheny5ctmm169eunAgQOKiIjQt99+q61bt2rQoEHmcqvVqrZt26patWravXu3Zs+erSlTpmjx4sVmm+3bt6tHjx4aMGCA9u7dq86dO6tz586KiYmxy34CAAAAAFCc8h3+n332WSUnJ9tl4+3bt9drr72mJ598MtcywzA0f/58TZgwQU888YQaNWqk//znPzp58qR5h0BsbKzWrVunDz74QCEhIXrwwQf1zjvvaPny5Tp58qQkadmyZUpPT9eSJUtUv359de/eXS+++KLmzp1rbmvBggVq166dxowZo7p162r69Olq2rSpFi5caJf9BAAAAACgOOU7/BuGURR15BIXF6fExES1adPGnOfh4aGQkBBFRUVJkqKiouTp6al7773XbNOmTRs5OTlp586dZpsWLVrI2dnZbBMWFqbDhw/r3LlzZpsrt5PTJmc7eUlLS5PVarX5AAAAAABQEhVowL8VK1bI3d09z2V9+vQpVEE5EhMTJUlVqlSxmV+lShVzWWJionx8fGyWly5dWl5eXjZtgoKCcvWRs6xixYpKTEy87nbyMmPGDE2dOrUAewYAAAAAwK1VoPA/a9YslSpVKtd8i8Vit/Bf0o0fP16jRo0yp61WqwICAoqxIgAAAAAA8lag8L9r165cV9ztzdfXV5J06tQp+fn5mfNPnTqlJk2amG1Onz5ts15mZqbOnj1rru/r66tTp07ZtMmZvlGbnOV5cXFxkYuLSwH2DAAAAACAWyvfz/zfKkFBQfL19VVkZKQ5z2q1aufOnQoNDZUkhYaG6vz589q9e7fZZuPGjcrOzlZISIjZZuvWrcrIyDDbREREqE6dOqpYsaLZ5srt5LTJ2Q4AAAAAALezfIf/atWq5XnLf0FcvHhR0dHRio6OlvT3IH/R0dGKj4+XxWLRiBEj9Nprr2nNmjXav3+/+vTpI39/f3Xu3FmSVLduXbVr104DBw7Uzz//rJ9++klDhw5V9+7d5e/vL0nq2bOnnJ2dNWDAAB04cECff/65FixYYHPL/vDhw7Vu3TrNmTNHhw4d0pQpU7Rr1y4NHTrULvsJAAAAAEBxyvdt/3FxcXbb+K5du9SqVStzOieQ9+3bV+Hh4Ro7dqxSUlI0aNAgnT9/Xg8++KDWrVunsmXLmussW7ZMQ4cOVevWreXk5KSuXbvq7bffNpd7eHjohx9+0JAhQ9SsWTN5e3tr0qRJGjRokNnmgQce0KeffqoJEybolVdeUe3atbV69Wo1aNDAbvsKAIURGxtbLOsCAADAMeQ7/L/44ouqVauWXnzxRZv5Cxcu1NGjRzV//vyb7qtly5bXfXWgxWLRtGnTNG3atGu28fLy0qeffnrd7TRq1Eg//vjjddt069ZN3bp1u37BAHCLpSafkWRR7969C91XRlp64QsCAADAbSnf4X/VqlVas2ZNrvkPPPCAZs6cma/wDwC4voxLFyQZatJznCoHBReoj4T9UYpZs1iZmZn2LQ4AAAC3jXyH/zNnzsjDwyPXfHd3dyUlJdmlKADFJz4+vlC/y9xiXjTcfALlFVinQOtaE47btxgAAADcdvId/mvVqqV169blGgzv+++/V40aNexWGIBbLz4+XsHBdZWaeqnQfXGLOQAAAFBy5Dv8jxo1SkOHDtVff/2lRx55RJIUGRmpOXPmcMs/cJtLSkpSauolhfSfLHe/6gXqg1vMAQAAgJIn3+G/f//+SktL0+uvv67p06dLkqpXr673339fffr0sXuBAG49d7/q3GIOAAAAOJB8h39JeuGFF/TCCy/or7/+kqurq9zc3OxdFwAAAAAAsBOngqyUmZmpDRs26MsvvzRf1Xfy5EldvHjRrsUBAAAAAIDCy/eV/99//13t2rVTfHy80tLS9Oijj6pChQp68803lZaWpkWLFhVFnQAAAAAAoIDyfeV/+PDhuvfee3Xu3Dm5urqa85988klFRkbatTgAAAAAAFB4+b7y/+OPP2r79u1ydna2mV+9enWdOHHCboUBAAAAAAD7yPeV/+zsbGVlZeWa/+eff6pChQp2KQoAAAAAANhPvsN/27ZtNX/+fHPaYrHo4sWLmjx5sh577DF71gYAAAAAAOwg37f9z5kzR2FhYapXr54uX76snj176siRI/L29tZnn31WFDUCAAAAAIBCyHf4r1q1qn799VctX75c+/bt08WLFzVgwAD16tXLZgBAAAAAAABQMuQ7/EtS6dKl1bt3b3vXAgAAAAAAikC+w/+aNWuuu7xTp04FLgYAAAAAANhfvsN/586dbaYtFosMwzB/zutNAAAAAAAAoPgU6FV/V37KlSuno0ePXvMVgAAAAAAAoHjlO/xfzWKx2KMOAAAAAABQRAoV/o8fP66UlBRVqFDBXvUAAAAAAAA7y/cz/126dJEkpaamaseOHWrdurUqV65s98IAAAAAAIB95Dv8e3h4SJJ8fX31+OOPq3///nYvCgAAAAAA2E++w//SpUuLog4AAAAAAFBE8h3+rVbrdZe7u7sXuBgAAAAAAGB/+Q7/np6eeY7wbxiGLBYLr/sDAAAAAKCEyXf4r1Gjhk6fPq2XX35ZzZs3L4qaAAAAAACAHeU7/MfGxuqdd97R66+/rr1792rWrFkKCgoqitoAAAAAAIAdOOV3hTJlymjUqFE6cuSI7rrrLjVq1EijR4/W+fPni6A8AAAAAABQWPkO/zm8vLw0f/587d27V8ePH1etWrU0f/58O5YGAAAAAADsId+3/d9zzz25BvwzDENpaWkaPXq0RowYYa/aAAAAAACAHeQ7/Hfu3LkIygAA4NaKjY0t1Pre3t4KDAy0UzUAAABFK9/hf/LkyUVRBwAAt0Rq8hlJFvXu3btQ/bi6ltOhQ7GcAAAAALeFfId/q9V63eXu7u4FLgYAgKKWcemCJENNeo5T5aDgAvVhTTiunUumKikpifAPAABuC/kO/56enrme+Zf+fu7fYrEoKyvLLoUBAFCU3HwC5RVYp7jLAAAAuCXyHf4l6YsvvpCXl5e9awEAAAAAAEWgQOG/efPm8vHxsXctAAAAAACgCBQo/B88eFBnzpxR+fLl5evrK2dnZ3vXBQAAAAAA7MSpICu1bt1a9evXV1BQkMqXL6+GDRtq3rx59q4NAAAAAADYQb6v/MfFxckwDGVkZMhqterkyZP6+eefNXHiRGVmZmrMmDFFUScAAAAAACigfIf/atWq2Uw3a9ZMjz/+uO6++25NmzaN8A8AAAAAQAlToGf+89K9e3fVr1/fXt0BAAAAAAA7KXD43717t2JjYyVJ9erVU9OmTdW0aVO7FQYAAAAAAOwj3+H/9OnT6t69uzZv3ixPT09J0vnz59WqVSstX75clStXtneNAAAAAACgEPI92v+wYcN04cIFHThwQGfPntXZs2cVExMjq9WqF198sShqBAAAAAAAhZDvK//r1q3Thg0bVLduXXNevXr19O6776pt27Z2LQ4AAAAAABRevq/8Z2dnq0yZMrnmlylTRtnZ2XYpCgAAAAAA2E++w/8jjzyi4cOH6+TJk+a8EydOaOTIkWrdurVdi5Ok6tWry2Kx5PoMGTJEktSyZctcywYPHmzTR3x8vDp06KBy5crJx8dHY8aMUWZmpk2bzZs3q2nTpnJxcVGtWrUUHh5u930BAAAAAKA45Pu2/4ULF6pTp06qXr26AgICJEl//PGHGjRooE8++cTuBf7yyy/Kysoyp2NiYvToo4+qW7du5ryBAwdq2rRp5nS5cuXMn7OystShQwf5+vpq+/btSkhIUJ8+fVSmTBm98cYbkqS4uDh16NBBgwcP1rJlyxQZGannnntOfn5+CgsLs/s+AQAAAABwK+U7/AcEBGjPnj3asGGDDh06JEmqW7eu2rRpY/fiJOV6e8DMmTNVs2ZNPfzww+a8cuXKydfXN8/1f/jhBx08eFAbNmxQlSpV1KRJE02fPl3jxo3TlClT5OzsrEWLFikoKEhz5swx92fbtm2aN28e4R8AAAAAcNu76dv+L1y4YP5ssVj06KOPatiwYRo2bJgZ/H/55Rf7V3iF9PR0ffLJJ+rfv78sFos5f9myZfL29laDBg00fvx4Xbp0yVwWFRWlhg0bqkqVKua8sLAwWa1WHThwwGxz9cmLsLAwRUVFXbOWtLQ0Wa1Wmw8AAAAAACXRTYf/tm3b6uLFi3kuy8zM1IQJE9S8eXO7FZaX1atX6/z58+rXr585r2fPnvrkk0+0adMmjR8/Xh9//LF69+5tLk9MTLQJ/pLM6cTExOu2sVqtSk1NzbOWGTNmyMPDw/zkPAIBAAAAAEBJc9O3/V+4cEFt2rTRDz/8IHd3d3N+TEyMnnnmGf31119avXp1UdRo+vDDD9W+fXv5+/ub8wYNGmT+3LBhQ/n5+al169Y6duyYatasWWS1jB8/XqNGjTKnrVYrJwAAAAAAACXSTV/537Rpk1JSUvToo4/KarXKMAy9+eabuvfee1W3bl3t379fjz32WJEV+vvvv2vDhg167rnnrtsuJCREknT06FFJkq+vr06dOmXTJmc6Z5yAa7Vxd3eXq6trnttxcXGRu7u7zQcAAAAAgJLopsN/5cqVtXHjRl2+fFmPPPKIHnzwQc2ZM0effPKJPv30U1WsWLEo69TSpUvl4+OjDh06XLdddHS0JMnPz0+SFBoaqv379+v06dNmm4iICLm7u6tevXpmm8jISJt+IiIiFBoaasc9AAAAAACgeNx0+Jf+PgEQGRmpzMxM7d69W1u3btVTTz1VVLWZsrOztXTpUvXt21elS//vSYVjx45p+vTp2r17t44fP641a9aoT58+atGihRo1aiTp77EK6tWrp2eeeUa//vqr1q9frwkTJmjIkCFycXGRJA0ePFi//fabxo4dq0OHDum9997TihUrNHLkyCLfNwAAAAAAilq+wr8keXt7a+PGjapXr5569uypc+fOFUVdNjZs2KD4+Hj179/fZr6zs7M2bNigtm3bKjg4WKNHj1bXrl31zTffmG1KlSqlb7/9VqVKlVJoaKh69+6tPn36aNq0aWaboKAgfffdd4qIiFDjxo01Z84cffDBB7zmDwAAAADgEG56wL8uXbrYTLu7u2vr1q2677771LBhQ3P+l19+ab/q/r+2bdvKMIxc8wMCArRly5Ybrl+tWjWtXbv2um1atmypvXv3FrhGAAAAAABKqpsO/x4eHrmmg4KC7F4QAAAAAACwr5sO/0uXLi3KOgAAAAAAQBHJ9zP/AAAAAADg9kL4BwAAAADAwd30bf8ASr74+HglJSUVeP3Y2Fg7VgMAAACgpCD8Aw4iPj5ewcF1lZp6qdB9ZaSl26EiAAAAACUF4R9wEElJSUpNvaSQ/pPl7le9QH0k7I9SzJrFyszMtG9xAAAAAIoV4R9wMO5+1eUVWKdA61oTjtu3GAAAAAAlAgP+AQAAAADg4Aj/AAAAAAA4OMI/AAAAAAAOjmf+AQAooMK+HtPb21uBgYF2qgYAAODaCP8AAORTavIZSRb17t27UP24upbToUOxnAAAAABFjvAPAEA+ZVy6IMlQk57jVDkouEB9WBOOa+eSqUpKSiL8AwCAIkf4BwCggNx8Agv8ak0AAIBbiQH/AAAAAABwcIR/AAAAAAAcHOEfAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABwc4R8AAAAAAAdH+AcAAAAAwMER/gEAAAAAcHCEfwAAAAAAHBzhHwAAAAAAB0f4BwAAAADAwRH+AQAAAABwcIR/AAAAAAAcHOEfAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABwc4R8AAAAAAAdH+AcAAAAAwMER/gEAAAAAcHCli7sAAADuZLGxsQVe19vbW4GBgXasBgAAOCrCP1BCxMfHKykpqcDrFyZAALj1UpPPSLKod+/eBe7D1bWcDh2K5QQAAAC4IcI/UALEx8crOLiuUlMvFbqvjLR0O1QEoKhlXLogyVCTnuNUOSg43+tbE45r55KpSkpKIvwDAIAbIvwDJUBSUpJSUy8ppP9kuftVL1AfCfujFLNmsTIzM+1bHIAi5eYTKK/AOsVdBgAAcHCEf6AEcferXuAQYE04bt9iAAAAADgMRvsHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABwc4R8AAAAAAAdXosP/lClTZLFYbD7Bwf97HdLly5c1ZMgQVapUSW5uburatatOnTpl00d8fLw6dOigcuXKycfHR2PGjMk1GvrmzZvVtGlTubi4qFatWgoPD78VuwcAAAAAwC1RosO/JNWvX18JCQnmZ9u2beaykSNH6ptvvtHKlSu1ZcsWnTx5Ul26dDGXZ2VlqUOHDkpPT9f27dv10UcfKTw8XJMmTTLbxMXFqUOHDmrVqpWio6M1YsQIPffcc1q/fv0t3U8AAAAAAIpKiX/VX+nSpeXr65trfnJysj788EN9+umneuSRRyRJS5cuVd26dbVjxw7df//9+uGHH3Tw4EFt2LBBVapUUZMmTTR9+nSNGzdOU6ZMkbOzsxYtWqSgoCDNmTNHklS3bl1t27ZN8+bNU1hY2C3dVwAAAAAAikKJv/J/5MgR+fv7q0aNGurVq5fi4+MlSbt371ZGRobatGljtg0ODlZgYKCioqIkSVFRUWrYsKGqVKlitgkLC5PVatWBAwfMNlf2kdMmp49rSUtLk9VqtfkAAAAAAFASlejwHxISovDwcK1bt07vv/++4uLi9NBDD+nChQtKTEyUs7OzPD09bdapUqWKEhMTJUmJiYk2wT9nec6y67WxWq1KTU29Zm0zZsyQh4eH+QkICCjs7gIAAAAAUCRK9G3/7du3N39u1KiRQkJCVK1aNa1YsUKurq7FWJk0fvx4jRo1ypy2Wq2cAAAAAAAAlEgl+sr/1Tw9PXX33Xfr6NGj8vX1VXp6us6fP2/T5tSpU+YYAb6+vrlG/8+ZvlEbd3f3655gcHFxkbu7u80HAAAAAICS6LYK/xcvXtSxY8fk5+enZs2aqUyZMoqMjDSXHz58WPHx8QoNDZUkhYaGav/+/Tp9+rTZJiIiQu7u7qpXr57Z5so+ctrk9AEAAAAAwO2uRIf/l156SVu2bNHx48e1fft2PfnkkypVqpR69OghDw8PDRgwQKNGjdKmTZu0e/duPfvsswoNDdX9998vSWrbtq3q1aunZ555Rr/++qvWr1+vCRMmaMiQIXJxcZEkDR48WL/99pvGjh2rQ4cO6b333tOKFSs0cuTI4tx1AAAAAADspkQ/8//nn3+qR48eOnPmjCpXrqwHH3xQO3bsUOXKlSVJ8+bNk5OTk7p27aq0tDSFhYXpvffeM9cvVaqUvv32W73wwgsKDQ1V+fLl1bdvX02bNs1sExQUpO+++04jR47UggULVLVqVX3wwQe85g8AAAAA4DBKdPhfvnz5dZeXLVtW7777rt59991rtqlWrZrWrl173X5atmypvXv3FqhGAAAAAABKuhJ92z8AAAAAACg8wj8AAAAAAA6O8A8AAAAAgIMj/AMAAAAA4OAI/wAAAAAAODjCPwAAAAAADq5Ev+oPAABcX2xsbKHW9/b2VmBgoJ2qAQAAJRXhHwCA21Bq8hlJFvXu3btQ/bi6ltOhQ7GcAAAAwMER/gEAuA1lXLogyVCTnuNUOSi4QH1YE45r55KpSkpKIvwDAODgCP8AANzG3HwC5RVYp7jLAAAAJRwD/gEAAAAA4OAI/wAAAAAAODjCPwAAAAAADo7wDwAAAACAgyP8AwAAAADg4Aj/AAAAAAA4OMI/AAAAAAAOjvAPAAAAAICDI/wDAAAAAODgCP8AAAAAADg4wj8AAAAAAA6O8A8AAAAAgIMj/AMAAAAA4OAI/wAAAAAAOLjSxV0AAAAoXrGxsYVa39vbW4GBgXaqBgAAFAXCPwAAd6jU5DOSLOrdu3eh+nF1LadDh2I5AQAAQAlG+AcA4A6VcemCJENNeo5T5aDgAvVhTTiunUumKikpifAPAEAJRvgHAOAO5+YTKK/AOsVdBgAAKEIM+AcAAAAAgIMj/AMAAAAA4OAI/wAAAAAAODjCPwAAAAAADo7wDwAAAACAgyP8AwAAAADg4Aj/AAAAAAA4OMI/AAAAAAAOjvAPAAAAAICDI/wDAAAAAODgCP8AAAAAADg4wj8AAAAAAA6O8A8AAAAAgIMrXdwFAI4gPj5eSUlJBV4/NjbWjtUAwK1X2L9j3t7eCgwMtFM1AADgaoR/oJDi4+MVHFxXqamXCt1XRlq6HSoCgFsnNfmMJIt69+5dqH5cXcvp0KFYTgAAAFBECP9AISUlJSk19ZJC+k+Wu1/1AvWRsD9KMWsWKzMz077FAUARy7h0QZKhJj3HqXJQcIH6sCYc184lU5WUlET4BwCgiBD+ATtx96sur8A6BVrXmnDcvsUAwC3m5hNY4L+BAACg6JXoAf9mzJihf/zjH6pQoYJ8fHzUuXNnHT582KZNy5YtZbFYbD6DBw+2aRMfH68OHTqoXLly8vHx0ZgxY3JdYd28ebOaNm0qFxcX1apVS+Hh4UW9ewAAAAAA3BIlOvxv2bJFQ4YM0Y4dOxQREaGMjAy1bdtWKSkpNu0GDhyohIQE8zNr1ixzWVZWljp06KD09HRt375dH330kcLDwzVp0iSzTVxcnDp06KBWrVopOjpaI0aM0HPPPaf169ffsn0FAAAAAKColOjb/tetW2czHR4eLh8fH+3evVstWrQw55crV06+vr559vHDDz/o4MGD2rBhg6pUqaImTZpo+vTpGjdunKZMmSJnZ2ctWrRIQUFBmjNnjiSpbt262rZtm+bNm6ewsLCi20EAAAAAAG6BEn3l/2rJycmSJC8vL5v5y5Ytk7e3txo0aKDx48fr0qX/jboeFRWlhg0bqkqVKua8sLAwWa1WHThwwGzTpk0bmz7DwsIUFRV1zVrS0tJktVptPgAAAAAAlEQl+sr/lbKzszVixAg1b95cDRo0MOf37NlT1apVk7+/v/bt26dx48bp8OHD+vLLLyVJiYmJNsFfkjmdmJh43TZWq1WpqalydXXNVc+MGTM0depUu+4jAAB3stjY2EKt7+3tzdsCAAC4htsm/A8ZMkQxMTHatm2bzfxBgwaZPzds2FB+fn5q3bq1jh07ppo1axZZPePHj9eoUaPMaavVqoCAgCLbHgAAjio1+Ywki3r37l2oflxdy+nQoVhOAAAAkIfbIvwPHTpU3377rbZu3aqqVatet21ISIgk6ejRo6pZs6Z8fX31888/27Q5deqUJJnjBPj6+przrmzj7u6e51V/SXJxcZGLi0uB9gcAAPxPxqULkgw16TlOlYOCC9SHNeG4di6ZqqSkJMI/AAB5KNHh3zAMDRs2TF999ZU2b96soKCgG64THR0tSfLz85MkhYaG6vXXX9fp06fl4+MjSYqIiJC7u7vq1atntlm7dq1NPxEREQoNDbXj3gAAgOtx8wmUV2Cd4i4DAACHVKIH/BsyZIg++eQTffrpp6pQoYISExOVmJio1NRUSdKxY8c0ffp07d69W8ePH9eaNWvUp08ftWjRQo0aNZIktW3bVvXq1dMzzzyjX3/9VevXr9eECRM0ZMgQ88r94MGD9dtvv2ns2LE6dOiQ3nvvPa1YsUIjR44stn0HAAAAAMBeSnT4f//995WcnKyWLVvKz8/P/Hz++eeSJGdnZ23YsEFt27ZVcHCwRo8era5du+qbb74x+yhVqpS+/fZblSpVSqGhoerdu7f69OmjadOmmW2CgoL03XffKSIiQo0bN9acOXP0wQcf8Jo/AAAAAIBDKPG3/V9PQECAtmzZcsN+qlWrluu2/qu1bNlSe/fuzVd9AAAAAADcDkr0lX8AAAAAAFB4hH8AAAAAABwc4R8AAAAAAAdH+AcAAAAAwMER/gEAAAAAcHCEfwAAAAAAHBzhHwAAAAAAB0f4BwAAAADAwRH+AQAAAABwcIR/AAAAAAAcHOEfAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABxc6eIuAChu8fHxSkpKKvD6sbGxdqwGAAAAAOyP8I87Wnx8vIKD6yo19VKh+8pIS7dDRQCAwijsCVlvb28FBgbaqRoAAEoOwj/uaElJSUpNvaSQ/pPl7le9QH0k7I9SzJrFyszMtG9xAICblpp8RpJFvXv3LlQ/rq7ldOhQLCcAAAAOh/APSHL3qy6vwDoFWteacNy+xQAA8i3j0gVJhpr0HKfKQcEF6sOacFw7l0xVUlIS4R8A4HAI/wAAwGG4+QQW+GQuAACOjNH+AQAAAABwcIR/AAAAAAAcHOEfAAAAAAAHR/gHAAAAAMDBMeAfAADAFWJjYwu1vre3N28LAACUOIR/AAAASanJZyRZ1Lt370L14+paTocOxXICAABQohD+AQAAJGVcuiDJUJOe41Q5KLhAfVgTjmvnkqlKSkoi/AMAShTCPwAAwBXcfALlFVinuMsAAMCuGPAPAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABwcA/4BAADYWWxsbKHW9/b25m0BAAC7IvwDAADYSWryGUkW9e7du1D9uLqW06FDsZwAAADYDeEfAADATjIuXZBkqEnPcaocFFygPqwJx7VzyVQlJSUR/gEAdkP4x20tPj5eSUlJBV6/sLdlAgCQFzefQHkF1inuMgAAMBH+cduKj49XcHBdpaZeKnRfGWnpdqgIAAAAAEomwj9uW0lJSUpNvaSQ/pPl7le9QH0k7I9SzJrFyszMtG9xAAAUUmHvTktLS5OLi0uh+mDgQQBwHIR/3Pbc/aoX+NZKa8Jx+xYDAEAh2WvQQFkskmEUqgsXl7JateoL+fn5FbgPTiAAQMlA+AcAAChB7DFoYM6dbYXp468jvyp6xQJ17NixQOvn4M0FAFAyEP4BAABKoMIMGphzZ1vh++DNBQDgKAj/AAAAuCbeXAAAjoHwDwAAgCJVmMELGTMAAOyD8A8AAIAiYY/BCxkzAADsg/CPYhMfH6+kpKQCr1/YVyABAICiVdjBCxkzAADsh/CPYhEfH6/g4LpKTb1U6L4y0tLtUBEAACgqhR03oLAn/Hl0AAAI/ygmSUlJSk29pJD+k+XuV71AfeS8xigzM9O+xQEAgBLBHo8NSJKLS1mtWvWF/Pz8CtwHJxAA3O4I/1d59913NXv2bCUmJqpx48Z65513dN999xV3WQ7L3a96oV9jBAAAHFNhHxuQpL+O/KroFQvUsWPHQtVijxMIaWlpcnFxKVQdnIQAUFCE/yt8/vnnGjVqlBYtWqSQkBDNnz9fYWFhOnz4sHx8fIq7PAAAgDtSYR4b+PtiQck4gSCLRTKMQnXBSQgABUX4v8LcuXM1cOBAPfvss5KkRYsW6bvvvtOSJUv08ssvF3N1JQuD9QEAgNtJcZ9AyHlckZMQ/2OPkxCO0kdJOSFT2P/Ht1cdKBqE//8vPT1du3fv1vjx4815Tk5OatOmjaKionK1T0tLU1pamjmdnJwsSbJarUVfbCElJiYqMTGxwOufOnVKzzzTR2lplwtdy19HY5SZllqgda0Jv0uSkk8cUZnSFvqgjxJVA33QR1H3URJqoA/6KOo+SkINV/aRlZFW4P9vycpIL3QfaRfOSzJUo2U3eVSpWqA+zh6P1e871xWqj+STv+m3H78u/EkI2JWLS1l9/PF/VKVKlQKtb6//xy9sHdLfOSw7O7tQddijD19fX/n6+haqj6KWkz+NmzihZzFuptUd4OTJk7rrrru0fft2hYaGmvPHjh2rLVu2aOfOnTbtp0yZoqlTp97qMgEAAAAAsPHHH3+oatXrn9Djyn8BjR8/XqNGjTKns7OzdfbsWVWqVEkWS8HOKt8KVqtVAQEB+uOPP+Tu7l7c5eAOx/GIkoTjESUJxyNKEo5HlCQcj7YMw9CFCxfk7+9/w7aE///P29tbpUqV0qlTp2zmnzp1Ks9bPVxcXHI9l+Pp6VmUJdqVu7s7vywoMTgeUZJwPKIk4XhEScLxiJKE4/F/PDw8bqqdUxHXcdtwdnZWs2bNFBkZac7Lzs5WZGSkzWMAAAAAAADcbrjyf4VRo0apb9++uvfee3Xfffdp/vz5SklJMUf/BwAAAADgdkT4v8I///lP/fXXX5o0aZISExPVpEkTrVu3rlAjVZY0Li4umjx5cqFfJQLYA8cjShKOR5QkHI8oSTgeUZJwPBYco/0DAAAAAODgeOYfAAAAAAAHR/gHAAAAAMDBEf4BAAAAAHBwhH8AAAAAABwc4f8O8+6776p69eoqW7asQkJC9PPPPxd3SbgDTJkyRRaLxeYTHBxsLr98+bKGDBmiSpUqyc3NTV27dtWpU6eKsWI4iq1bt+rxxx+Xv7+/LBaLVq9ebbPcMAxNmjRJfn5+cnV1VZs2bXTkyBGbNmfPnlWvXr3k7u4uT09PDRgwQBcvXryFewFHcaPjsV+/frn+VrZr186mDccj7GXGjBn6xz/+oQoVKsjHx0edO3fW4cOHbdrczL/P8fHx6tChg8qVKycfHx+NGTNGmZmZt3JX4ABu5nhs2bJlrr+RgwcPtmnD8Xh9hP87yOeff65Ro0Zp8uTJ2rNnjxo3bqywsDCdPn26uEvDHaB+/fpKSEgwP9u2bTOXjRw5Ut98841WrlypLVu26OTJk+rSpUsxVgtHkZKSosaNG+vdd9/Nc/msWbP09ttva9GiRdq5c6fKly+vsLAwXb582WzTq1cvHThwQBEREfr222+1detWDRo06FbtAhzIjY5HSWrXrp3N38rPPvvMZjnHI+xly5YtGjJkiHbs2KGIiAhlZGSobdu2SklJMdvc6N/nrKwsdejQQenp6dq+fbs++ugjhYeHa9KkScWxS7iN3czxKEkDBw60+Rs5a9YscxnH400wcMe47777jCFDhpjTWVlZhr+/vzFjxoxirAp3gsmTJxuNGzfOc9n58+eNMmXKGCtXrjTnxcbGGpKMqKioW1Qh7gSSjK+++sqczs7ONnx9fY3Zs2eb886fP2+4uLgYn332mWEYhnHw4EFDkvHLL7+Ybb7//nvDYrEYJ06cuGW1w/FcfTwahmH07dvXeOKJJ665DscjitLp06cNScaWLVsMw7i5f5/Xrl1rODk5GYmJiWab999/33B3dzfS0tJu7Q7AoVx9PBqGYTz88MPG8OHDr7kOx+ONceX/DpGenq7du3erTZs25jwnJye1adNGUVFRxVgZ7hRHjhyRv7+/atSooV69eik+Pl6StHv3bmVkZNgcm8HBwQoMDOTYRJGKi4tTYmKizbHn4eGhkJAQ89iLioqSp6en7r33XrNNmzZt5OTkpJ07d97ymuH4Nm/eLB8fH9WpU0cvvPCCzpw5Yy7jeERRSk5OliR5eXlJurl/n6OiotSwYUNVqVLFbBMWFiar1aoDBw7cwurhaK4+HnMsW7ZM3t7eatCggcaPH69Lly6Zyzgeb6x0cReAWyMpKUlZWVk2vwySVKVKFR06dKiYqsKdIiQkROHh4apTp44SEhI0depUPfTQQ4qJiVFiYqKcnZ3l6elps06VKlWUmJhYPAXjjpBzfOX1dzFnWWJionx8fGyWly5dWl5eXhyfsLt27dqpS5cuCgoK0rFjx/TKK6+offv2ioqKUqlSpTgeUWSys7M1YsQINW/eXA0aNJCkm/r3OTExMc+/oTnLgILI63iUpJ49e6patWry9/fXvn37NG7cOB0+fFhffvmlJI7Hm0H4B1Dk2rdvb/7cqFEjhYSEqFq1alqxYoVcXV2LsTIAKDm6d+9u/tywYUM1atRINWvW1ObNm9W6detirAyObsiQIYqJibEZjwcoLtc6Hq8c36Rhw4by8/NT69atdezYMdWsWfNWl3lb4rb/O4S3t7dKlSqVa4TWU6dOydfXt5iqwp3K09NTd999t44ePSpfX1+lp6fr/PnzNm04NlHUco6v6/1d9PX1zTUoamZmps6ePcvxiSJXo0YNeXt76+jRo5I4HlE0hg4dqm+//VabNm1S1apVzfk38++zr69vnn9Dc5YB+XWt4zEvISEhkmTzN5Lj8foI/3cIZ2dnNWvWTJGRkea87OxsRUZGKjQ0tBgrw53o4sWLOnbsmPz8/NSsWTOVKVPG5tg8fPiw4uPjOTZRpIKCguTr62tz7FmtVu3cudM89kJDQ3X+/Hnt3r3bbLNx40ZlZ2eb/9MBFJU///xTZ86ckZ+fnySOR9iXYRgaOnSovvrqK23cuFFBQUE2y2/m3+fQ0FDt37/f5qRURESE3N3dVa9evVuzI3AINzoe8xIdHS1JNn8jOR5voLhHHMSts3z5csPFxcUIDw83Dh48aAwaNMjw9PS0GRETKAqjR482Nm/ebMTFxRk//fST0aZNG8Pb29s4ffq0YRiGMXjwYCMwMNDYuHGjsWvXLiM0NNQIDQ0t5qrhCC5cuGDs3bvX2Lt3ryHJmDt3rrF3717j999/NwzDMGbOnGl4enoaX3/9tbFv3z7jiSeeMIKCgozU1FSzj3bt2hn33HOPsXPnTmPbtm1G7dq1jR49ehTXLuE2dr3j8cKFC8ZLL71kREVFGXFxccaGDRuMpk2bGrVr1zYuX75s9sHxCHt54YUXDA8PD2Pz5s1GQkKC+bl06ZLZ5kb/PmdmZhoNGjQw2rZta0RHRxvr1q0zKleubIwfP744dgm3sRsdj0ePHjWmTZtm7Nq1y4iLizO+/vpro0aNGkaLFi3MPjgeb4zwf4d55513jMDAQMPZ2dm47777jB07dhR3SbgD/POf/zT8/PwMZ2dn46677jL++c9/GkePHjWXp6amGv/617+MihUrGuXKlTOefPJJIyEhoRgrhqPYtGmTISnXp2/fvoZh/P26v4kTJxpVqlQxXFxcjNatWxuHDx+26ePMmTNGjx49DDc3N8Pd3d149tlnjQsXLhTD3uB2d73j8dKlS0bbtm2NypUrG2XKlDGqVatmDBw4MNcJeo5H2Etex6IkY+nSpWabm/n3+fjx40b79u0NV1dXw9vb2xg9erSRkZFxi/cGt7sbHY/x8fFGixYtDC8vL8PFxcWoVauWMWbMGCM5OdmmH47H67MYhmHcuvsMAAAAAADArcYz/wAAAAAAODjCPwAAAAAADo7wDwAAAACAgyP8AwAAAADg4Aj/AAAAAAA4OMI/AAAAAAAOjvAPAAAAAICDI/wDAAAAAODgCP8AAAAAADg4wj8AAAAAAA6O8A8AQAlz/vx5WSyWXB9PT8/iLg0AANymCP8AAJRQq1atUkJCghISEjR//vziLgcAANzGCP8AAJQwmZmZkqRKlSrJ19dXvr6+8vDwyLNtv379ct0hMGLECHO5xWLR6tWrzekPP/wwV5vq1avnOrnQr18/de7c2Zxet26dHnzwQXl6eqpSpUrq2LGjjh07dt39eOaZZ+Tj4yMXFxfVqFFDb731lrnszJkz6tGjh+666y6VK1dODRs21GeffWazfsuWLXPt21NPPWUuX7VqlerXry8XFxdVr15dc+bMyVXDlClTcvVx5X6dO3dOffr0UcWKFVWuXDm1b99eR44cMZeHh4eb65UqVUr+/v4aN26csrOzJUmbN2+WxWLR+fPnzf4aNWqkPn36yDCMAn93AADYG+EfAIASJi0tTZLk4uJyw7aGYahdu3bmHQKhoaHXbJuSkqKJEyfKzc0t3zWlpKRo1KhR2rVrlyIjI+Xk5KQnn3zSDMF56d69uzZs2KAjR47o9ddf1/jx47V161ZJ0uXLl9WsWTN99913iomJ0aBBg/TMM8/o559/tulj4MCB5r4lJCTogw8+kCTt3r1bTz/9tLp37679+/drypQpmjhxosLDw3N9P/Xr1zfXf/rpp22W9+vXT7t27dKaNWsUFRUlwzD02GOPKSMjw2zj7u6uhIQExcfHa968eZo1a5bWr1+fa38vXryoxx57TDVq1NCSJUtksVgK/N0BAGBvpYu7AAAAYOvs2bOSpAoVKtywbUZGhtzc3OTr6ytJcnZ2vmbbWbNmqV69euadBfnRtWtXm+klS5aocuXKOnjwoBo0aJDnOh06dDB/Pnv2rEqXLq2srCxJ0l133aWXXnrJXD5s2DCtX79eK1as0H333WfOL1eunLlvV5o7d65at26tiRMnSpLuvvtuHTx4ULNnz1a/fv3MdhkZGXJ1dTX7cHV1NU+uHDlyRGvWrNFPP/2kBx54QJK0bNkyBQQEaPXq1erWrZukv++eyFk/KChITk5Oue7ESEtL01NPPaVy5crp888/V+nS//tfrIJ8dwAA2BtX/gEAKGFOnDghSfLz87thW6vVqvLly9+w3cmTJzV37tw8b42XpHHjxsnNzc38LFu2zGb5kSNH1KNHD9WoUUPu7u6qXr26JCk+Pv662x08eLBcXV117733auLEiWrVqpUkKSsrS9OnT1fDhg3l5eUlNzc3rV+//ob95YiNjVXz5s1t5jVv3lxHjhwxTzBI1/9+YmNjVbp0aYWEhJjzKlWqpDp16ig2Ntacl5ycLDc3N7m6uur+++/XuHHjzJMFOXr16qXIyEg9/PDDue7YKOh3BwCAPRH+AQAoYQ4ePKjKlSvLy8vrhm1Pnjwpf3//G7Z79dVX1a1bNzVu3DjP5WPGjFF0dLT56dSpk83yxx9/XGfPntX//d//aefOndq5c6ckKT09/brbnTZtmnbv3q358+dr7ty5ZqiePXu2FixYoHHjxmnTpk2Kjo5WWFjYDfvLr5v9fq6nQoUKio6O1r59+/Tll19q0aJFWrVqlU2bxMRErVq1Sm+88Yb2799vs6yg3x0AAPZE+AcAoISJjIzMdWU5LykpKYqNjdU999xz3XbR0dH64osv9Nprr12zjbe3t2rVqmV+rnzk4MyZMzp8+LAmTJig1q1bq27dujp37txN7YuPj4/q1aunoUOHKiAgQN99950k6aefftITTzyh3r17q3HjxqpRo4b++9//3lSfklS3bl399NNPNvN++ukn3X333SpVqpQkKTs7W3v27Lnm91O3bl1lZmaaYfzKfa1Xr545z8nJSbVq1VLt2rXVuXNnPfLII/rqq69s+lqzZo26dOmigQMH6tlnnzUfrSjMdwcAgD0R/gEAKCFSU1P14Ycf6vvvv1dYWJgSExPNT3JysgzDUGJiorKysnTo0CH16NFDnp6eat++/XX7feuttzRq1KgCXwGvWLGiKlWqpMWLF+vo0aPauHGjRo0add11zp8/r/DwcB06dEi//fab3n77be3fv98M4rVr11ZERIS2b9+u2NhYPf/88zp16tRN1zR69GhFRkZq+vTp+u9//6uPPvpICxcuNMcR+OOPPzRw4ECdPn1a//znP/Pso3bt2nriiSc0cOBAbdu2Tb/++qt69+6tu+66S0888YTZLud7T0hI0KZNm7RlyxYFBwfb9JVzl8bMmTN17tw5zZw5s8DfHQAARYEB/wAAKCE+//xzPffcc5Kkf/3rX/rXv/6Vq42fn5/i4uI0ZcoUZWZmasOGDTccvb9ChQoaO3ZsgetycnLS8uXL9eKLL6pBgwaqU6eO3n77bbVs2fKa6xiGofDwcI0cOVJpaWmqUaOG3n//fbVu3VqSNGHCBP32228KCwtTuXLlNGjQIHXu3FnJyck3VVPTpk21YsUKTZo0SdOnT5efn5+mTZtmDva3YMECHT16VD/88IMCAwOv2c/SpUs1fPhwdezYUenp6WrRooXWrl2rMmXKmG2sVqv8/PxksVhUpUoVdevWTWPGjMmzv/Lly2vJkiVq166dOnfurAYNGuT7uwMAoChYjJyX0AIAgGIVHh6u8PBwbd68+ZptLBaL4uLizEHjAAAAbga3/QMAUEK4urrecJC/KlWqmM+0AwAA3Cyu/AMAAAAA4OC48g8AAAAAgIMj/AMAAAAA4OAI/wAAAAAAODjCPwAAAAAADo7wDwAAAACAgyP8AwAAAADg4Aj/AAAAAAA4OMI/AAAAAAAO7v8BpeEaanum7hEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Пропущенные данные:\n", "Series([], dtype: int64)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/oAAAKiCAYAAABmTKePAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XlcVOX+B/APOyoCYgq4g2uilHpLySJvWpba6tVrkdm1DaRSbPF6ZRGXvHUzsxtgpWVXUa9m1nVpMdNoQa3EUEytxKwENwQ0ZZuZ3x/8zmlWmDOcmbPM5/169co5czjzzMyZc57vs3wfH5PJZAIRERERERER6YKv0gUgIiIiIiIiIvkw0CciIiIiIiLSEQb6RERERERERDrCQJ+IiIiIiIhIRxjoExEREREREekIA30iIiIiIiIiHWGgT0RERERERKQjDPSJiIiIiIiIdISBPhEREREREZGOMNAnIiIiuw4ePIj33ntPfLx//35s3bpVuQIRERGRUxjoExHp2DvvvAMfHx+7/w0YMEDp4pHKXbhwAY899hh2796NH374AdOnT8eBAweULhYRERE1w1/pAhARkfv94x//wJVXXik+XrhwoYKlIa1ISEgQ/wOAPn364JFHHlG4VERERNQcBvpERF7g5ptvxogRI8THy5cvx9mzZ5UrEGnGe++9h0OHDuHy5csYOHAgAgMDlS4SERERNYND94mIdKyurg4A4Ovr/OV+xIgRdof6r1y50mIf84YDAPj666/Ffc35+Pjg8ccft3mdcePGoUePHhbbXnzxRVx33XVo3749WrVqhSFDhuCdd95xqtyff/45JkyYgG7duiEoKAhdu3ZFWloaLl++bLHfgw8+iJCQEJu/F6Y57Nq1y+J92pvi8OKLL8LHxwfHjx+32J6bm4u4uDgEBQWhU6dOSE1NRWVlpcXxHE2lsP7s3nrrLdx0003o2LEjgoKC0L9/f+Tl5dmUpUePHhg3bpzN9scff9zmu5g7d67NtosXLyIqKsruexe+4/79+2PIkCH47rvv7H7H9jT3XqV+dk0pKirCbbfdhtDQUISEhGDkyJHYvXu3zX6VlZVIS0tDjx49EBQUhC5duuCBBx4QG7127doFHx8fu+dcSEgIHnzwQYttx44dw4QJExAREYHWrVtj2LBhNjkMhGMK/wUFBaFPnz5YtGgRTCaTuJ/w3Vg3wH3zzTc2vz9H57A5Hx8fzJ071+b4HTt2RH19vcW+a9euFcvXVAPggw8+2Oz5a/69fvDBB7jhhhvQpk0btG3bFmPHjkVJSYlTx+zVq5e4z/vvv4+xY8eiU6dOCAoKQs+ePTF//nwYDAaLYwnn3F133WVT9scee4xTlojIq7BHn4hIx4RAPygoSNLf9evXD3PmzAEAnD17Fmlpac3+zaxZs6QX0MrSpUtxxx13ICkpCXV1dVi3bh0mTJiALVu2YOzYsU3+7YYNG3Dp0iWkpKSgffv22Lt3L/7973/j119/xYYNG1pctubMnTsX2dnZGDVqFFJSUnDkyBHk5eXh66+/xpdffomAgADMmTMHDz/8MIA/PtdHH30UN9xwg83x8vLyEBcXhzvuuAP+/v7YvHkzpk2bBqPRiNTUVNnKvXjxYpw6dcqpfaV+x126dMGiRYsstm3btg1r16612ObMZ+dISUkJbrjhBoSGhuLZZ59FQEAAXnvtNYwYMQKfffYZhg4dCqCxQeOGG27A999/j6lTp2Lw4ME4e/Ys/ve//+HXX3/FFVdcIem9nTp1Ctdddx0uXbqEJ598Eu3bt8fbb7+NO+64A++88w7uvvtui/2F6TOXL1/Gf//7X/zjH/9Ax44d8dBDD0l63Za6cOECtmzZYlG+t956C8HBwaipqWnybx977DGMGjVKfDx58mTcfffduOeee8RtHTp0AACsWrUKU6ZMwejRo/H888/j0qVLyMvLw/XXX4+ioiKLRr6goCAsX77c4rXatm0r/nvlypUICQnBzJkzERISgk8//RSZmZmorq7Gv/71L4u/Cw4OxtatW3H69Gl07NgRAMTPPDg42MlPiYhIB0xERKRbL7/8sgmA6bvvvrPYfuONN5ri4uLs/s3w4cNNf/7zn8XHpaWlJgCmt956y+Lvb7zxRvHxtm3bTABMt956q8n61gLAlJqaavM6Y8eONXXv3t1i26VLlywe19XVmQYMGGC66aabmnqbdv/WZDKZFi1aZPLx8TH9/PPP4rYpU6aY2rRpY7Pvhg0bTABMO3fuFLc5+pz+9a9/mQCYSktLTSaTyXT69GlTYGCg6ZZbbjEZDAZxv1dffdUEwPTmm2/aHMPe59rc+xk9erQpNjbWYlv37t1NY8eOtdk3NTXV5rvIysqy2Hb69GlT27ZtTbfddpvd9+7sd2yPOz87c3fddZcpMDDQ9NNPP4nbTp48aWrbtq0pMTFR3JaZmWkCYHr33XdtjmE0Gk0mk8m0c+dOEwDThg0bbPZp06aNacqUKeLjGTNmmACYPv/8c3HbhQsXTDExMaYePXqI70U4pvlnW1NTY/L19TVNmzZN3CZ8N2fOnLF43a+//trmPHF0DpsDYMrKyrI5/r333msaN26cuP3nn382+fr6mu699167ry/lNQQXLlwwhYeHmx555BGL7eXl5aawsDCL7c68F3u/hccee8zUunVrU01NjbhNOOfi4+NNL774orh91apVpi5duphuuOEGh9c9IiK94dB9IiIdO3fuHIA/etmcUVdXJ2kEgMlkwuzZszF+/Hix99RaTU0Nzp49a/Gf9fBhAGjVqpX47/Pnz6Oqqgo33HAD9u3b12w5zP/2999/x9mzZ3HdddfBZDKhqKjIZn/r8ly4cMHucQ0Gg82+ly5dstjnk08+QV1dHWbMmGExTeKRRx5BaGioS0vSmb+fqqoqnD17FjfeeCOOHTuGqqoqycezZ/78+QgLC8OTTz7Z5H7OfMeuaslnZzAY8PHHH+Ouu+5CbGysuD06Ohr33XcfvvjiC1RXVwMANm7ciKuuusqmpx2AzVSECxcu2Hzn1rZt24Zrr70W119/vbgtJCQEjz76KI4fP45Dhw5Z7C98hydOnMALL7wAo9GIm266yea4FRUVFq/b1Hct7NNcT7y5qVOn4sMPP0R5eTkA4O2330ZCQgL69Onj9DGas337dlRWVuLee++1eC9+fn4YOnQodu7cKel45r8F4bu54YYbcOnSJRw+fNhm/7/97W946623xMdvvfUWpkyZImkKExGR1nHoPhGRjv3888/w9/eXFOhXVlaie/fuTu+fn5+PkpISrF+/HmvWrLG7z4oVK7BixQqb7davs2XLFixYsAD79+9HbW2tuN2ZOeEnTpxAZmYm/ve//+H8+fMWz1kHS7///rvTn8nhw4eb3ffnn38GAPTt29die2BgIGJjY8Xnpfjyyy+RlZWFwsJCm4aFqqoqhIWFST6mudLSUrz22mvIy8trdkizM9+xq1ry2Z05cwaXLl2y+VsAuPLKK2E0GvHLL78gLi4OP/30E8aPH+9UmaZOnepUue01egirW/z8888W88HN5437+voiPT3dbnnsvRd7rM/hrl274qmnnsL06dOb/Lurr74aAwYMwH/+8x8888wzWLlyJf7xj3/gl19+cep1nfHDDz8AgN2GDAAIDQ2VdLySkhKkp6fj008/FRtuBPYaQpKSkvDss89i79696NixI3bt2oXXXnsNX3zxhaTXJSLSMgb6REQ6duTIEcTGxsLf3/nLfXl5OUaPHu3UvnV1dcjIyMBDDz3UZI/gnXfeaZOQLz09XexVBBqT6d1xxx1ITExEbm4uoqOjERAQgLfeeqvZ4NJgMODmm29GRUUFZs2ahX79+qFNmzb47bff8OCDD8JoNFrsHxwcjM2bN1ts+/zzzzFv3jybY/fo0QNvvPGGxbYNGzbg9ddfb7JMLfHTTz9h5MiR6NevH1566SV07doVgYGB2LZtG5YsWWLzflwxZ84c9O7dG1OmTMHnn3/ucD9nv2M9yczMtMmbcPvtt7fomC+++CKuuuoq1NfX4+uvv8aCBQvg7++PrKwsi/02btxoEQgfPXrUbk4G83P4woULePPNNzFjxgxER0dj4sSJTZZl6tSpyM3NxbXXXovy8nJMnDgRixcvbtH7Myecn6tWrUJUVJTN81KuR5WVlbjxxhsRGhqKefPmoWfPnggODsa+ffswa9Ysu7+FDh064Pbbb8dbb72FyMhIDB8+3CK5HxGRN2CgT0SkU7W1tdi/f7/dDNSO/Prrr7hw4YLYK9mc3NxcnD592iK7tz1dunSxSOIFAC+//LJFoL9x40YEBwfjo48+spg6YD4E15EDBw7g6NGjePvtt/HAAw+I27dv3253fz8/P5vyOMrw3qZNG5t99+/fb/FYGJkgNKwI6urqUFpaavP3zdm8eTNqa2vxv//9D926dRO3Sx3y7EhRURHWrVuH9957D35+fk3u6+x37KqWfHYdOnRA69atceTIEZvnDh8+DF9fX3Tt2hUA0LNnTxw8eNCpMg0cONDmda0/p+7duzt8XfP3JRgyZIi4isFtt92G3377Dc8//zwyMjIshpQnJiZaJAYMDw+3W0brc3js2LGIiIjAhx9+2Gygn5SUhGeeeQbTp0/HX/7yF4vEd3Lo2bMnAKBjx46Sz31ru3btwrlz5/Duu+8iMTFR3F5aWtrk302dOhVJSUkICwtz27lLRKRmnKxERKRTa9asQW1tLUaOHOn036xbtw6A4yG35i5cuICFCxciLS3Nbq+dVH5+fvDx8bFYMuv48eN47733nPpbABbLlZlMJixdurTF5XLGqFGjEBgYiFdeecWiDCtWrEBVVVWzKwZYs/d+qqqqnGr0cMbf//53DB8+HHfccUeT+8n9HdvTks/Oz88Pt9xyC95//32LZd1OnTqFNWvW4Prrrxd7x8ePH4/vvvsOmzZtsjmO+es6a8yYMdi7dy8KCwvFbb///jtef/119OjRA/3792/y7y9fvoyGhgY0NDRIfm17hPfQXMMNAERERODOO+9EcXGxU9MUpBo9ejRCQ0Px3HPP2c3FcebMGaePZe+3UFdXh9zc3Cb/7tZbb0WbNm1QUVHRbMMHEZEesUefiEhnfv/9d/z73//GvHnz4OfnB5PJhNWrV1vsc+rUKVy8eBGrV6/GzTffDADIysrC8uXLMWnSJPTr16/Z19m3bx+uuOIKPPvss7KUe+zYsXjppZdw66234r777sPp06eRk5ODXr16obi4uMm/7devH3r27Imnn34av/32G0JDQ7Fx40abufru0qFDB8yePRvZ2dm49dZbcccdd+DIkSPIzc3FNddcg/vvv1/S8W655RYEBgbi9ttvx2OPPYaLFy/ijTfeQMeOHVFWVmaz/5kzZ/Dhhx9abDtx4gQA4MMPP8S1116LiIgI8bmPP/4YX375ZbPlkPs7tqeln92CBQuwfft2XH/99Zg2bRr8/f3x2muvoba2Fi+88IK43zPPPIN33nkHEyZMwNSpUzFkyBBUVFTgf//7H5YtW4arrrpKUrn//ve/Y+3atbjtttvw5JNPIiIiAm+//TZKS0uxceNGm8Rv27dvx6+//ioO3c/Pz8cdd9yBwMBASa8rMBgM4nd+4cIFvPXWW/j999+dHsGzcuVK5OTkSF5W0BmhoaHIy8vD5MmTMXjwYEyaNAkdOnTAiRMnsHXrVgwfPhyvvvqqU8e67rrr0K5dO0yZMgVPPvkkfHx8sGrVqmYbZ/z8/PD999/DZDKhTZs2crwtIiJNYaBPRKQzZ86cwezZs8XHjz32mMN9J0+ejJ07dyIwMBA7duxARkaGxd82Z86cOZITazly0003YcWKFfjnP/+JGTNmICYmBs8//zyOHz/ebKAfEBCAzZs348knn8SiRYsQHByMu+++G48//rjkAM5Vc+fORYcOHfDqq68iLS0NERERePTRR/Hcc881uQ68PX379sU777yD9PR0PP3004iKikJKSgo6dOhgtwd27969uO222+we67bbbsPOnTvFYeNAY86E6667zqmyyPkdO9KSzy4uLg6ff/45Zs+ejUWLFsFoNGLo0KFYvXq1RbK8kJAQfP7558jKysKmTZvw9ttvo2PHjhg5ciS6dOkiucyRkZH46quvMGvWLPz73/9GTU0N4uPjsXnzZrujEJ577jkAjfPTO3fujMcffxzZ2dmSX1dQU1MjfuchISHo06cPVq1a5fTokVatWllks5fbfffdh06dOuGf//wn/vWvf6G2thadO3fGDTfcgL/97W9OH6d9+/bYsmULnnrqKaSnp6Ndu3a4//77MXLkyGZzibj7vCUiUjMfkyvj1YiISLWOHz+OmJgYm+DO1f1I23x8fPgdExEReRnO0SciIiIiIiLSEQb6REQ6ExISgqSkJERGRsqyH2nb6NGjLebnExERkf5x6D4RERERERGRjrBHn4iIiIiIiEhHGOgTERERERER6QgDfSIiIiIiIiId8Ve6AFphNBpx8uRJtG3bFj4+PkoXh4iIiIiIiHTOZDLhwoUL6NSpE3x9ne+nZ6DvpJMnT6Jr165KF4OIiIiIiIi8zC+//IIuXbo4vT8DfSe1bdsWQOMHHBoaqnBpiIiIiIiISO+qq6vRtWtXMR51FgN9JwnD9UNDQxnoExERERERkcdInT7OZHxEREREREREOsJAn4iIiIiIiEhHGOgTERERERER6QgDfSIiIiIiIiIdYaBPREREREREpCMM9ImIiIiIiIh0hIE+ERERERERkY4w0CciIiIiIiLSEQb6RERERERERDrCQJ+IiIiIiIhIRxjoExEREREREekIA30iIiIiIiIiHWGgT0RERERERKQj/koXgIiIiIiIiLTJYDCguLgYFRUViIiIQHx8PPz8/JQultdjoE9ERERERESSFRQUIDc3F+Xl5eK2qKgoTJs2DYmJiQqWjDh0n4iIiIiIiCQpKChAVlYWYmNjkZOTg23btiEnJwexsbHIyspCQUGB0kX0aj4mk8mkdCG0oLq6GmFhYaiqqkJoaKjSxSEiIiIiIlKEwWBAUlISYmNjsWDBAvj6/tF/bDQakZ6ejtLSUqxevZrD+FvI1TiUPfpERERERETktOLiYpSXlyMpKckiyAcAX19fJCUloaysDMXFxQqVkBjoExERERERkdMqKioAADExMXafF7YL+5HnMdAnIiIiIiIip0VERAAASktL7T4vbBf2I89joE9EREREREROi4+PR1RUFPLz82E0Gi2eMxqNyM/PR3R0NOLj4xUqISka6M+dOxc+Pj4W//Xr1098vqamBqmpqWjfvj1CQkIwfvx4nDp1yuIYJ06cwNixY9G6dWt07NgRzzzzDBoaGiz22bVrFwYPHoygoCD06tULK1eu9MTbIyIiIiIi0h0/Pz9MmzYNhYWFSE9PR0lJCS5duoSSkhKkp6ejsLAQKSkpTMSnIH+lCxAXF4dPPvlEfOzv/0eR0tLSsHXrVmzYsAFhYWF4/PHHcc899+DLL78E0JjtcezYsYiKisJXX32FsrIyPPDAAwgICMBzzz0HoHHYyNixY5GcnIz8/Hzs2LEDDz/8MKKjozF69GjPvlkiIiIiIiIdSExMRHZ2NnJzc5Gamipuj46ORnZ2NhITExUsHSm6vN7cuXPx3nvvYf/+/TbPVVVVoUOHDlizZg3+8pe/AAAOHz6MK6+8EoWFhRg2bBg++OADjBs3DidPnkRkZCQAYNmyZZg1axbOnDmDwMBAzJo1C1u3bsXBgwfFY0+aNAmVlZX48MMPnS4rl9cjIiIiIiKyZDAYUFxcjIqKCkRERCA+Pp49+TLS7PJ6P/zwAzp16oTY2FgkJSXhxIkTAIBvv/0W9fX1GDVqlLhvv3790K1bNxQWFgIACgsLMXDgQDHIB4DRo0ejuroaJSUl4j7mxxD2EY7hSG1tLaqrqy3+IyIiIiIioj/4+flh0KBBGDlyJAYNGsQgXyUUDfSHDh2KlStX4sMPP0ReXh5KS0txww034MKFCygvL0dgYCDCw8Mt/iYyMhLl5eUAgPLycosgX3heeK6pfaqrq3H58mWHZVu0aBHCwsLE/7p27drSt0tERERERETkdorO0b/tttvEf8fHx2Po0KHo3r071q9fj1atWilYMmD27NmYOXOm+Li6uprBPhEREREREame4kP3zYWHh6NPnz748ccfERUVhbq6OlRWVlrsc+rUKURFRQEAoqKibLLwC4+b2yc0NLTJxoSgoCCEhoZa/EdERERERESkdqoK9C9evIiffvoJ0dHRGDJkCAICArBjxw7x+SNHjuDEiRNISEgAACQkJODAgQM4ffq0uM/27dsRGhqK/v37i/uYH0PYRzgGERERERERkZ4oGug//fTT+Oyzz3D8+HF89dVXuPvuu+Hn54d7770XYWFheOihhzBz5kzs3LkT3377Lf72t78hISEBw4YNAwDccsst6N+/PyZPnozvvvsOH330EdLT05GamoqgoCAAQHJyMo4dO4Znn30Whw8fRm5uLtavX4+0tDQl3zoRERERERGRWyg6R//XX3/Fvffei3PnzqFDhw64/vrrsXv3bnTo0AEAsGTJEvj6+mL8+PGora3F6NGjkZubK/69n58ftmzZgpSUFCQkJKBNmzaYMmUK5s2bJ+4TExODrVu3Ii0tDUuXLkWXLl2wfPlyjB492uPvl4iIiIiIiMjdfEwmk0npQmiBq+sXEhEREREREbnC1ThUVXP0iYiIiIiIiKhlGOgTERERERER6QgDfSIiIiIiIiIdYaBPREREREREpCMM9ImIiIiIiIh0hIE+ERERERERkY4w0CciIiIiIiLSEQb6RERERERERDrCQJ+IiIiIiIhIRxjoExEREREREekIA30iIiIiIiIiHWGgT0RERERERKQjDPSJiIiIiIiIdISBPhEREREREZGOMNAnIiIiIiIi0hEG+kREREREREQ6wkCfiIiIiIiISEcY6BMRERERERHpCAN9IiIiIiIiIh1hoE9ERERERESkIwz0iYiIiIiIiHSEgT4RERERERGRjjDQJyIiIiIiItIRBvpEREREREREOsJAn4iIiIiIiEhHGOgTERERERER6QgDfSIiIiIiIiIdYaBPREREREREpCMM9ImIiIiIiIh0hIE+ERERERERkY4w0CciIiIiIiLSEQb6RERERERERDrCQJ+IiIiIiIhIRxjoExEREREREekIA30iIiIiIiIiHWGgT0RERERERKQjDPSJiIiIiIiIdISBPhEREREREZGOMNAnIiIiIiIi0hEG+kREREREREQ6wkCfiIiIiIiISEcY6BMRERERERHpCAN9IiIiIiIiIh1hoE9ERERERESkIwz0iYiIiIiIiHSEgT4RERERERGRjjDQJyIiIiIiItIRBvpEREREREREOsJAn4iIiIiIiEhHGOgTERERERER6QgDfSIiIiIiIiIdYaBPREREREREpCMM9ImIiIiIiIh0hIE+ERERERERkY4w0CciIiIiIiLSEQb6RERERERERDrCQJ+IiIiIiIhIRxjoExEREREREekIA30iIiIiIiIiHWGgT0RERERERKQjDPSJiIiIiIiIdISBPhEREREREZGOMNAnIiIiIiIi0hEG+kREREREREQ64q90AUh7DAYDiouLUVFRgYiICMTHx8PPz0/pYhEREREREREY6JNEBQUFyM3NRXl5ubgtKioK06ZNQ2JiooIlIyIiIiIiIoBD90mCgoICZGVlITY2Fjk5Odi2bRtycnIQGxuLrKwsFBQUKF1EIiIiIiIir+djMplMShdCC6qrqxEWFoaqqiqEhoYqXRyPMxgMSEpKQmxsLBYsWABf3z/aiIxGI9LT01FaWorVq1dzGD8REREREZEMXI1D2aNPTikuLkZ5eTmSkpIsgnwA8PX1RVJSEsrKylBcXKxQCYmIiIiIiAhgoE9OqqioAADExMTYfV7YLuxHREREREREymCgT06JiIgAAJSWltp9Xtgu7EdERERERETKYKBPTomPj0dUVBTy8/NhNBotnjMajcjPz0d0dDTi4+MVKiEREREREREBKgv0//nPf8LHxwczZswQt9XU1CA1NRXt27dHSEgIxo8fj1OnTln83YkTJzB27Fi0bt0aHTt2xDPPPIOGhgaLfXbt2oXBgwcjKCgIvXr1wsqVKz3wjvTDz88P06ZNQ2FhIdLT01FSUoJLly6hpKQE6enpKCwsREpKChPxERERERERKcxf6QIIvv76a7z22ms2PcJpaWnYunUrNmzYgLCwMDz++OO455578OWXXwJozAY/duxYREVF4auvvkJZWRkeeOABBAQE4LnnngPQOKx87NixSE5ORn5+Pnbs2IGHH34Y0dHRGD16tMffq1YlJiYiOzsbubm5SE1NFbdHR0cjOzsbiYmJCpaOiIiIiIiIAJUsr3fx4kUMHjwYubm5WLBgAa6++mq8/PLLqKqqQocOHbBmzRr85S9/AQAcPnwYV155JQoLCzFs2DB88MEHGDduHE6ePInIyEgAwLJlyzBr1iycOXMGgYGBmDVrFrZu3YqDBw+Krzlp0iRUVlbiww8/dKqM3r68njmDwYDi4mJUVFQgIiIC8fHx7MknIiIiIiKSmaaX10tNTcXYsWMxatQoi+3ffvst6uvrLbb369cP3bp1Q2FhIQCgsLAQAwcOFIN8ABg9ejSqq6tRUlIi7mN97NGjR4vHsKe2thbV1dUW/1EjPz8/DBo0CCNHjsSgQYMY5BMREREREamI4kP3161bh3379uHrr7+2ea68vByBgYEIDw+32B4ZGYny8nJxH/MgX3heeK6pfaqrq3H58mW0atXK5rUXLVqE7Oxsl98XERERERERkRIU7dH/5ZdfMH36dOTn5yM4OFjJotiYPXs2qqqqxP9++eUXpYtERERERERE1CxFA/1vv/0Wp0+fxuDBg+Hv7w9/f3989tlneOWVV+Dv74/IyEjU1dWhsrLS4u9OnTqFqKgoAEBUVJRNFn7hcXP7hIaG2u3NB4CgoCCEhoZa/EdERERERESkdooG+iNHjsSBAwewf/9+8b8//elPSEpKEv8dEBCAHTt2iH9z5MgRnDhxAgkJCQCAhIQEHDhwAKdPnxb32b59O0JDQ9G/f39xH/NjCPsIxyAiIiIiIiLSC0Xn6Ldt2xYDBgyw2NamTRu0b99e3P7QQw9h5syZiIiIQGhoKJ544gkkJCRg2LBhAIBbbrkF/fv3x+TJk/HCCy+gvLwc6enpSE1NRVBQEAAgOTkZr776Kp599llMnToVn376KdavX4+tW7d69g0TERERERERuZniyfias2TJEvj6+mL8+PGora3F6NGjkZubKz7v5+eHLVu2ICUlBQkJCWjTpg2mTJmCefPmifvExMRg69atSEtLw9KlS9GlSxcsX74co0ePVuItEREREREREbmNj8lkMildCC1wdf1CIiIiIiIiIle4GoeqvkefHDMYDCguLkZFRQUiIiIQHx/PNe2JiIiIiIi8HAN9jSooKEBubi7Ky8vFbVFRUZg2bRoSExMVLBkREREREREpSdGs++SagoICZGVlITY2Fjk5Odi2bRtycnIQGxuLrKwsFBQUKF1EIiIiIiIiUgjn6DtJLXP0DQYDkpKSEBsbiwULFsDX94+2GqPRiPT0dJSWlmL16tUcxk9ERERERKRhrsah7NHXmOLiYpSXlyMpKckiyAcAX19fJCUloaysDMXFxQqVkIiIiIiIiJTEQF9jKioqADQuGWiPsF3Yj4iIiIiIiLwLA32NiYiIAACUlpbafV7YLuxHRERERERE3oWBvsbEx8cjKioK+fn5MBqNFs8ZjUbk5+cjOjoa8fHxCpWQiIiIiIiIlMRAX2P8/Pwwbdo0FBYWIj09HSUlJbh06RJKSkqQnp6OwsJCpKSkMBEfERERERGRl2LWfSepJeu+oKCgALm5uSgvLxe3RUdHIyUlBYmJiQqWjIiIiIiIiOTgahzKQN9Jagv0gcal9oqLi1FRUYGIiAjEx8ezJ5+IiIiIiEgnXI1D/d1YJnIzPz8/DBo0SOliEBERERERkYpwjj4RERERERGRjjDQJyIiIiIiItIRBvpEREREREREOsJAn4iIiIiIiEhHGOgTERERERER6Qiz7ktkMBhQVFTEJe2IiIiIiIhIlRjoS/Twww/j3Llz4uOoqChMmzYNiYmJCpaKiIiIiIiIqBGH7kvUo0cP5OTkYNu2bcjJyUFsbCyysrJQUFCgdNGIiIiIiIiI4GMymUxKF0ILqqurERYWhvPnzyM8PFzcbjQakZ6ejtLSUqxevZrD+ImIiIiIiEgWQhxaVVWF0NBQp/+OPfoS+fr62jxOSkpCWVkZiouLFSoVERERERERUSMG+jKIiYkBAFRUVChcEiIiIiIiIvJ2DPRlUFpaCgCIiIhQuCRERERERETk7RjoS2Q0Gm0e5+fnIzo6GvHx8QqVioiIiIiIiKgRA32J5s+fj5KSEly6dAklJSVIT09HYWEhUlJSmIiPiIiIiIiIFOevdAG05vjx40hNTRUfR0dHIzs7G4mJiQqWioiIiIiIiKgRA32Jli9fjuPHj6OiogIRERGIj49nTz4RERERERGpBgN9ifz8/DBo0CCli0FERERERERkFwN9iQwGA4qKitijT0RERERERKrEQF+ihx9+GOfOnRMfR0VFYdq0aZyjT0RERERERKrArPsS9ejRAzk5Odi2bRtycnIQGxuLrKwsFBQUKF00IiIiIiIiIviYTCaT0oXQgurqaoSFheH8+fMIDw8XtxuNRqSnp6O0tBSrV6/mMH4iIiIiIiKShRCHVlVVITQ01Om/Y4++RL6+vjaPk5KSUFZWhuLiYoVKRURERERERNSIgb4MYmJiAAAVFRUKl4SIiIiIiIi8HZPxSWQv635paSkAICIiQuHSERERERERkbdjoC/RQw89ZNFzHxkZifDwcERHRyM+Pl7BkhERERERERFx6L5kdXV1eOqpp/DOO+/gqaeeQl1dHY4cOYIbb7yRifiIiIiIiIhIccy67yQh2+E999yDc+fOidujo6MRGhqK6upqZt0nIiIiIiIi2biadZ9D9yVavnw5jh8/bjFH//Dhw0hNTUVxcTEGDRqkdBGJiIiIiIjIizHQl8jPz88mmGfWfSIiIiIiIlILztGXAbPuExERERERkVqwR18io9Fo8zg/P59Z94mISDMMBgOKi4stpqExxwwREZF+MNCXaP78+Zg6dSpiYmJQWlqK/Px8FBYWIjs7m5UkIiJSvYKCAuTm5qK8vFzcFhUVhWnTpiExMVHBkhEREZFcmHXfSU1l3U9JSWHliIiIVK+goABZWVlISEhAUlKS3UZr3s+IiIjUw9Ws+wz0nSR8wBUVFTZZ99mTT0REamcwGJCUlITY2FhkZ2fj4MGD4r1swIAByMrKQmlpKZeKJSIiUhEur+ch9rLuExERqV1xcTHKy8tx++23Y/LkyTZD92+//XZ89dVXXCqWiIhIBxjoExEReQFhCdjly5cjISEBGRkZFkP3ly9fbrEfERERaReX1yMiIvIC4eHhAIABAwZgwYIFiIuLQ+vWrREXF4cFCxZgwIABFvsRERGRdjHQJyIiIiIiItIRBvpEREReoLKyEgBw4MABpKeno6SkBJcuXUJJSQnS09Nx4MABi/2IiIhIuzhHn4iIVMNgMKC4uJgrm7hBREQEAOCRRx7B5s2bkZqaKj4XHR2Nhx9+GMuXLxf3IyIiIu1ioE9ERKpQUFCA3Nxcm2zw06ZN49ruMoiPj0dUVBRKSkqwatUqu8vrRUdHIz4+XumiEhERUQtx6D4RESmuoKAAWVlZiI2NRU5ODrZt24acnBzExsYiKysLBQUFShdR8/z8/DBt2jQUFhYiMzMTx48fR21tLY4fP47MzEwUFhYiJSWFIyiIiIh0wMdkMpmULoQWVFdXIywsDFVVVQgNDVW6OEREumEwGJCUlITY2FgsWLAAvr5/tEEbjUakp6ejtLQUq1evZhAqg2XLlmHDhg0wGAziNj8/P0yYMAHJyckKloyIiIisuRqHcug+EREpqri4GOXl5cjIyLAI8gHA19cXSUlJSE1NRXFxMQYNGqRQKfWhoKAA//3vfzFs2DBce+21CA4ORk1NDfbu3Yv//ve/6N+/P6dJEBER6QADfSIiUlRFRQUAICYmxu7zwnZhP3KNwWBAbm4uEhISbEZO3HnnnUhPT0deXh6GDx/OkRNEREQaxzn6RESkKCHLe2lpqd3nhe3MBt8ywsiJpKQkhyMnysrKUFxcrFAJiYiISC4u9+jv2LEDO3bswOnTp2E0Gi2ee/PNN1tcMCIi8g5CNvj8/Hy7c/Tz8/OZDV4GHDlBRETkPVzq0c/OzsYtt9yCHTt24OzZszh//rzFf3pmMBhQVFSEHTt2oKioyCKZERERSWeeDT49PR0lJSW4dOkSSkpKkJ6ezmzwMuHICSIiIu/hUtb96OhovPDCC5g8ebI7yqRKQrbDe+65B+fOnRO3c41nIiJ5FBQUIDc3F+Xl5eK26OhopKSk8BorA/PVDbKzs3Hw4EFUVFQgIiICAwYMQFZWFlc3ICIiUhlXs+67FOi3b98ee/fuRc+ePaX+qWYJH/DMmTMxdepUxMTEoLS0FPn5+SgsLER2djYrokTkFIPBgOLiYjHIio+PZ2D1//jZuFdBQQGysrIQEBCAuro6cXtgYCDq6+t5LyMiIlIZjy6v9/DDD2PNmjXIyMhw5c81LSMjA+Hh4QCAuLg4LFiwgJmKichp9nqtOTLoD35+flxCz81MJpNFkA/A5jERERFpm9M9+jNnzhT/bTQa8fbbbyM+Ph7x8fEICAiw2Pell16St5Qq0FRLSklJCVJTU7FkyRKvqKCyx43INUJvakJCApKSkjgyiDzKYDBg/PjxqKysxLBhwzB06FAEBQWhtrYWe/bswe7duxEeHo6NGzfymk5ERKQSbu/RLyoqsnh89dVXAwAOHjzo9IvpVbdu3QA0VuIB6DrwZW8kkWscrWHOkUHkKfv370dlZSUGDhyI+fPni3P0o6OjMW7cOMycORMHDhzA/v37MWTIEKWLS0RERC3gdKC/c+dOd5ZDswoKCrB06VIAwKZNm7Bp0ybdBr7mvZEZGRkWvZFZWVnsjSRqgrCGeUZGhsM1zFNTU1FcXOwVI4PI8/bv3w8AGDJkCCZPnmzTYDt69GgG+kSkGhxBStQyLi2vN3XqVFy4cMFm+++//46pU6e2uFBqZjQaxX8Lga/RaET79u2xZcsW5OTkIDY2FllZWWIPvx5Y90bGxcWhdevWYm9kQkIC8vLyuNwgkQNcw5zUYuXKlYiNjUVOTg62bdsm3rfefvttpYtGRASgsY6dlJSEtLQ0zJ8/H2lpaUhKStJV3ZrI3VwK9N9++21cvnzZZvvly5fxn//8p8WFUrP58+ejpKQEFy5cwNKlSxEeHo7z589j+vTpCAkJ0W3gK/RGJiUlOeyNLCsrQ3FxsUIlJFI3rmFOSouPjwcAtG3bFvPmzbNosJ03bx7atm1rsR8RkRKEjjR7DZJ660gjcidJgX51dTWqqqpgMplw4cIFVFdXi/+dP38e27ZtQ8eOHd1VVlU4fvw4UlNTcfvtt+PcuXPw9fXFvHnzLIas6zHwZW8kUcvEx8cjKioK+fn5FiODgMaRQvn5+YiOjmaQ5WUMBgOKioqwY8cOFBUVubVxWGikvXDhAjIyMlBSUoJLly6hpKQEGRkZ4kg968ZcIiJP8dYRpJ68F5D3kLS8Xnh4OHx8fODj44M+ffrYPO/j44Ps7GzZCqdGy5cvx/Hjx1FQUIBNmzbh7bffRkhIiM1+egt8zXsj4+LibJ7Xc28k54iRHPz8/DBt2jRkZWUhPT3dYdZ9nlvew9PJTSsrK8V/79u3D4WFheLjoKAgu/sREXmSN+azYaJrchdJgf7OnTthMplw0003YePGjRZBXWBgILp3745OnTrJXkg1MV/jedOmTfj555+9IvA17400zxgO6Ls3khdfklNiYiKys7ORm5uL1NRUcXt0dDSTWXoZJZKbCvejRx55BJs3b7a4rkVERGDcuHF44403dHPfIiLt8bYRpEx0Te7kYzKZTFL/6Oeff0a3bt3g4+PjjjKpkvX6hQaDAUlJSYiNjbUb+Kanp6O0tBSrV6/WTQ+dt60B7m3vlzyHo0S8m1L3D/PXzc7OFpfXi4iIwIABA5CVlaW7+xYRaUtRURHS0tKQk5NjtyOtpKQEqampWLJkieZ79L0xliDXWMehznJpIl5VVRUOHDiA4uJii/8OHDiAH374AbW1tU4dJy8vD/Hx8QgNDUVoaCgSEhLwwQcfiM/X1NQgNTUV7du3R0hICMaPH49Tp05ZHOPEiRMYO3YsWrdujY4dO+KZZ55BQ0ODxT67du3C4MGDERQUhF69emHlypWuvG0LwjDcwsJCpKenW8x1TE9PR2FhIVJSUnT1wxR6I48dO4bU1FSMGTMGqampKC0t1V3Q661zxMgzhJFBI0eOxKBBg3R1naDmKZXc1Py+lZWVhcDAQCQkJCAwMBBZWVm6vG8RkbZ4Uz4bJromd5M0dF9w9dVXN9mbHxAQgL/+9a947bXXEBwc7HC/Ll264J///Cd69+4Nk8mEt99+G3feeSeKiooQFxeHtLQ0bN26FRs2bEBYWBgef/xx3HPPPfjyyy8BNAZjY8eORVRUFL766iuUlZXhgQceQEBAAJ577jkAjUPox44di+TkZOTn52PHjh14+OGHER0djdGjR7vy9kXeOAw3MTERw4cP131vpDfOESMiz1ByaKpw38rJybG4b0VFRen2vkVE2uFN+Wy8bZoCeZ5Lgf6mTZswa9YsPPPMM7j22msBAHv37sXixYuRlZWFhoYG/P3vf0d6ejpefPFFh8e5/fbbLR4vXLgQeXl52L17N7p06YIVK1ZgzZo1uOmmmwAAb731Fq688krs3r0bw4YNw8cff4xDhw7hk08+QWRkJK6++mrMnz8fs2bNwty5cxEYGIhly5YhJiYGixcvBgBceeWV+OKLL7BkyZIWB/qA9wS+5szzFOgVL75EBLhnmoUakpt609Q7ItIWb+lIU8O9gPTNpUB/4cKFWLp0qUWgPHDgQHTp0gUZGRnYu3cv2rRpg6eeeqrJQN+cwWDAhg0b8PvvvyMhIQHffvst6uvrMWrUKHGffv36oVu3bigsLMSwYcNQWFiIgQMHIjIyUtxn9OjRSElJQUlJCQYNGoTCwkKLYwj7zJgxo8ny1NbWWkxBqK6udrivNwS+3oYXXyL30kKeAncl41QyuSkTPxGRFnhDR5q3Jromz3Fpjv6BAwfQvXt3m+3du3fHgQMHADQO7y8rK3PqWCEhIQgKCkJycjI2bdqE/v37o7y8HIGBgQgPD7fYPzIyUqx0lZeXWwT5wvPCc03tU11djcuXLzss16JFixAWFib+17Vr12bfC+mHN80RI/K0goICJCUlIS0tDfPnz0daWhqSkpJQUFCgdNFEQkAcGxuLnJwcbNu2DTk5OYiNjUVWVlaLyqpUjhfmHiEiLdF7PhtvzPdFnuVSoN+vXz/885//RF1dnbitvr4e//znP9GvXz8AwG+//WYTYNvTt29f7N+/H3v27EFKSgqmTJmCQ4cOuVIsWc2ePRtVVVXif7/88ovSRSIP4sWXyD3cGUDLxRMBsRLJTZn4iYhIXbwp0TV5nktD93NycnDHHXegS5cuYo/mgQMHYDAYsGXLFgDAsWPHMG3atGaPFRgYiF69egEAhgwZgq+//hpLly7FX//6V9TV1aGystKiV//UqVOIiooC0DiEcu/evRbHE7Lym+9jnan/1KlTCA0NRatWrRyWKygoCEFBQc2Wn/TLW+aIEXmKdQAtBJtCAJ2eno68vDwMHz5c0UY0TyXj9PTQVOYecQ8tTEMhIvXyhmkKzuL1VF4uBfrXXXedOKfv6NGjAIAJEybgvvvuQ9u2bQEAkydPdqlARqMRtbW1GDJkCAICArBjxw6MHz8eAHDkyBGcOHECCQkJAICEhAQsXLgQp0+fRseOHQEA27dvR2hoKPr37y/us23bNovX2L59u3gMoqbw4kskH62sZuHJgNiTOV6Ye0R+7srjQJ7F4IKUxnxfvJ66g0uBPgC0bdsWycnJLXrx2bNn47bbbkO3bt1w4cIFrFmzBrt27cJHH32EsLAwPPTQQ5g5cyYiIiIQGhqKJ554AgkJCRg2bBgA4JZbbkH//v0xefJkvPDCCygvL0d6ejpSU1PF3vjk5GS8+uqrePbZZzF16lR8+umnWL9+PbZu3dqispP34MWXSB5a6VHWa0DMxE/yYmJDfWBwQaQ8Xk/dw+VA/4cffsDOnTtx+vRpm2RlmZmZTh3j9OnTeOCBB1BWVoawsDDEx8fjo48+ws033wwAWLJkCXx9fTF+/HjU1tZi9OjRyM3NFf/ez88PW7ZsQUpKChISEtCmTRtMmTIF8+bNE/eJiYnB1q1bkZaWhqVLl6JLly5Yvny5LEvrERGR87QSQOs1IPam9andTSvTUKhpDC6IlOeO6ylH6TTyMZlMJql/9MYbbyAlJQVXXHEFoqKiLNbj9fHxwb59+2QtpBpUV1cjLCwMVVVVCA0NVbo4RESaYzAYkJSUhNjYWLsBdHp6OkpLS7F69WrFb8jmAYCjgFirAYC9Hszo6GikpKRo9j15WlFREdLS0pCTk2O30aqkpASpqalYsmQJR4SplJauR0R6Jvf1VI+jdFyNQ13q0V+wYAEWLlyIWbNmufLnRETkhbTUo6znZJzMPdJyWpmGQo5pJWcIkd7JeT3lKB1LLgX658+fx4QJE+QuCxER6ZyWAmg9B8TMPdIyWpmGQo6xsYZIHeS6nnJKlS3f5nexNWHCBHz88cdyl4WIiLxAYmIi8vPzsWTJEmRkZGDJkiVYvXq1qoJ8gRAQjxw5EoMGDfKaygE1zTyPg3WeIi3ncfAm5sGFPWysIfIMua6nwiidpKQkh6N0ysrKUFxcLPt7UCuXevR79eqFjIwM7N69GwMHDkRAQIDF808++aQshSMiIn1ijzJpmZamoZB9ek26SaQ1cl1POUrHlkvJ+Bx9gEBjMr5jx461qFBqxGR8REREZI6JDbVNz0k3ibSmpddTPSdJdTUOdSnQ90YM9ImIiMgal3HSNjbWEKlHS66nel5JQ5FAv66uDqWlpejZsyf8/V2aBaAZrnzAvPkTERERqRvra0T6oNdROh4N9C9duoQnnngCb7/9NgDg6NGjiI2NxRNPPIHOnTvj73//u9RDqp7UD1iPazgSERERERGplR5H6Xg00J8+fTq+/PJLvPzyy7j11ltRXFyM2NhYvP/++5g7dy6KioqkHlL1pHzAem1NIvIW7N0hIiIi0ia91eM8Guh3794d//3vfzFs2DC0bdsW3333HWJjY/Hjjz9i8ODBqK6ulnpI1XP2A9bz/BAib8DROERERESkFq4G+r7N72LrzJkz6Nixo83233//HT4+Pq4cUje4hiORdgmjcWJjY5GTk4Nt27YhJycHsbGxyMrKQkFBgdJFJCIiIiJqlkuB/p/+9Cds3bpVfCwE98uXL0dCQoI8JdMoruFIpE0GgwG5ublISEjAggULEBcXh9atWyMuLg4LFixAQkIC8vLyYDAYlC4qEREREVGTXEqV/9xzz+G2227DoUOH0NDQgKVLl+LQoUP46quv8Nlnn8ldRk2JiIgAAJSWltpdw7G0tNRiPyJSB2E0TkZGhsPROKmpqSguLtbc+qtERERE5F1c6tG//vrrsX//fjQ0NGDgwIH4+OOP0bFjRxQWFmLIkCFyl1FT4uPjERUVhfz8fBiNRovnjEYj8vPzER0djfj4eIVK2HIGgwFFRUXYsWMHioqK2MNJusDROORNeB0nIiLSN5d69AGgZ8+eeOONN+Qsiy74+flh2rRpyMrKQnp6usOs+1pNxMdEZaRXHI1D3oLXcSIiIv1zOuu+lEz6UrIBaoWQ7bCiogLHjx9vdrkGPa7hyGUDSc+4YgZ5AzVex/W2DBIREZGc3L68nq+vb7MZ9U0mE3x8fHQ5BFD4gO+55x6cO3dO3N5UL4ieKi8MgsgbqDEIIn1Qw/1Ajddxji4gIiJqmquBvtND93fu3OlSwfSmR48emDdvnkUAkJWVZTcA8PPz003SLiYqI2+QmJiI7Oxs5ObmIjU1VdweHR3NIJ9cppZgVm3XcfOGtYyMDKfuq0REROQcpwP9G2+8UfLBp02bhnnz5uGKK66Q/LdqlZGRgfDwcAAQl91KT09HXl4ehg8frtvebCYqI2+RmJiI4cOHK977SvrgajDrjhEAarqOWy9nKTQ8eNN9lYiIyJ1cyrrvrNWrV0ua268FjnpBysrKUFxcrFCp3M88UZk9TFTmOma/Vh9hNM7IkSMxaNAgBhrkEutgNi4uDq1btxaD2YSEBOTl5dn85gsKCpCUlIS0tDTMnz8faWlpSEpKQkFBQYvKo6bruDC6ICkpyWvvq0RERO7k1kDfyen/mucNvdnesGygEtxVoSci5bkSzAojAGJjY5GTk4Nt27YhJycHsbGxyMrKatG1wR3XcVcbKtU0uoCIiEiP3Broewtv6M0Wlg0sLCxEeno6SkpKcOnSJZSUlCA9PR2FhYVISUlhz6cE7qzQy42jDoikkxrMujoCwFlyX8db0lCpptEFREREeuT0HH1q5M292WpNVKaGbNZSaWl+qloSiRFpjXkwGxcXZ/O8dTDriWR5cl3HW5pIz3x0gb0VALzlvkpEROQuDPQlmj9/PqZOnWp32S2lAzJPUFuiMq0GoWrLfu0Is2ITuU5qMOup4ewtvY7L0VApjC7IyspCenq6w+UsveG+SkRE5A4M9CUqLS216AWJioryumBHLcsGajkI1cL8VC2NOiBSI6nBrNQRAC0tm6vXcbkaKtU6SoyIiEgP3Bro33///QgNDXXnS3jc2bNnLSo2p0+fxqFDh1gh8TCtB6GerNC7SiujDojUTEowq5Xh7HI2VKptlBgREZFeuBTo9+jRA1OnTsWDDz6Ibt26OdwvLy/P5YKpVWhoKJKTk5GQkIDCwkKsWLEC69atAwAkJycrXDrvofUgVAsVei2MOiDSAmeDWa0MZ5e7oVIto8SIiIj0xKWs+zNmzMC7776L2NhY3HzzzVi3bh1qa2vlLpsq/ec//8G4cePQvn17jBs3Dhs2bEC7du2wYcMG1NXVKV08r6H1IFQLqxgwKzaRfIRgduTIkRg0aJDD37YwAuDYsWNITU3FmDFjkJqaitLSUlmHs9fU1ODo0aPifzU1NU7/LZdbJSIiUj8fUwsWu9+3bx9WrlyJtWvXwmAw4L777sPUqVMxePBgOcuoCtXV1QgLC0NVVZXNdITNmzdj8eLFSE1NxYQJExQq4R+0mIVeqqKiIqSlpSEnJ8duj1JJSQlSU1OxZMkSVfcU2UsmGB0djZSUFFkq9DU1NThx4oTFtm7duiE4OLjZvzUYDEhKSkJsbKzdUQfp6ekoLS3F6tWrdXd+ESnN3dfxo0eP4tFHHxUfv/766+jTp4/Tf2+eI8XRyANOaSMiImq5puLQprQo0BfU19cjNzcXs2bNQn19PQYOHIgnn3wSf/vb3+Dj49PSw6tCUx/w2bNn8Ze//AV33303pk+frlAJG2k1C71UegpC3Vmht67MA9Iq9KzME+lTTU0NPv/8cyxcuBBz5szBDTfc4FQDoDl3N1QSERGRQoF+fX09Nm3ahLfeegvbt2/HsGHD8NBDD+HXX39FTk4ObrrpJqxZs8bVw6uK8AFXVFTg+PHjFkHZtm3bVNGj721Bmbe9X1dYV+a7d+/udI++gJV5In0SGgKl9uab84YRZEREREryaKC/b98+vPXWW1i7di18fX3xwAMP4OGHH0a/fv3EfQ4ePIhrrrkGly9flnp4VRI+4DvvvBOVlZXi9g4dOuDSpUuoqanBBx98gMDAQEXKp6cebikYhDaPlXkiskeOawMRKY/3aCJ9czXQdynr/jXXXIObb74ZeXl5uOuuuxAQEGCzT0xMDCZNmuTK4VXt7Nmz8Pf/42M7c+YMAGD48OGKBfmA9rPQu4pLM3kGs2ITERGpj7dM2SQi6SQH+gaDAW+++SbuuOMOtGvXzuF+bdq0wVtvvdWiwmlJSUkJDAZDiwLMlrTIaj0LfUswCCUiIiJvYz6FMSMjw2IKY1ZWFqcwEnk5yYG+n58fHnvsMSQmJjYZ6OtVhw4dcP78efFxx44dERwcjBMnTmD//v0YMmSIS8dtaYus3OsaExFJwaGjRESeYzAYkJubi4SEBIspm3FxcViwYAHS09ORl5eH4cOH81pM5KV8m9/F1oABA3Ds2DG5y6IJPXr0wPjx4zFu3DiMHz8esbGx4vJl+/fvd+mYQotsbGwscnJysG3bNuTk5CA2NhZZWVkoKCho9hhc15iIlFJQUICkpCSkpaVh/vz5SEtLQ1JSklPXLiIikk6YspmUlORwymZZWRmKi4sVKiERKc2lQH/BggV4+umnsWXLFpSVlaG6utriPz3bt28fNm7ciC1btmDjxo34+uuv0b59ewCwCbCdYd0iGxcXh9atW4stsgkJCcjLy4PBYGjyOH5+fpg2bRoKCwuRnp6OkpISXLp0CSUlJUhPT0dhYSFSUlLYqovGz7yoqAg7duxAUVFRs58tETkmR0MlERFJ481TNonIOS4l4xszZgwA4I477oCPj4+43WQywcfHR9eBU9u2bZGcnIyEhAQUFhZixYoVOHfuHABIyoIokDOJXmJiIrKzs5Gbm4vU1FRxe3R0NOdp/T8mrSGSD4eOEhEpg1M2iag5LgX6O3fulLscmtGrVy/ExMSgVatWiImJQZ8+fbBnzx4ArgX6crfIMgu9Y0xaQyQvb13tg4hIaeZTNu0tq8wpm0TkUqB/4403yl0OzSguLrboLQ8KChL/feTIEdx2223NHsM8aZUQwMvZIsss9LbY80gkPw4dJSJShjBlMysrC+np6UhKSrLowCgsLER2djbrNERezKVAX3Dp0iWcOHECdXV1Ftv13HrY0NBg0Wra0NCAyMhInDp1yqm/tzd03M/PD6+88gry8vLYIusm7Hkkkp8Wh45ydQAi0gtO2SSiprgU6J85cwZ/+9vf8MEHH9h9Xs9z9E0mk8Vjo9EoBvmdO3e2eM66QllVVYXs7GyboeOvvPIKjhw5gpSUFDz55JNskXUD9jwSyU9rQ0eZo4OI9IZTNonIEZcC/RkzZqCyshJ79uzBiBEjsGnTJpw6dQoLFizA4sWL5S6jqlgH+uaPx40bJ/7bUc99nz59bIaO5+XlISUlBT/++CNbZN1Eiz2PpBz2+jpHzUNHnW1oZY4OItI6TtkkIntcCvQ//fRTvP/++/jTn/4EX19fdO/eHTfffDNCQ0OxaNEijB07Vu5yqkZAQAD+/Oc/o2/fvjhy5Ag+//xz1NfXAwAOHTqEIUOG2E369tFHH2Hp0qU4cuQIvvjiC4sKpa+vL5588kmkpqYiNTUVERERDC5kprWeR1IOe32lUePQUSkNrczRQWQfGzyJiLTNpUD/999/R8eOHQEA7dq1w5kzZ9CnTx8MHDgQ+/btk7WAamM0GvHpp5/i008/BdBYeWzfvj3OnTuHffv24eqrr7ab9E3IyD906FC7FUph6Hh1dTV7ld1AzT2PpB5cmcE1aho66kpDK3N0EFligycRkfa5FOgLvdk9evTAVVddhddeew09evTAsmXLEB0dLXcZVWXjxo3YuXMnTp48iU6dOuHOO+/E5s2b8e9//xunT592mPRNCN5vuOEGvPjiizYVyk2bNgEAVq1aJW7jTVVeaux5JPUwX5khOzsbBw8eRGFhISIiIpCdnY2srCz2+jZBDUNHHa2u4WxDK3N0ELHBk4hIL1wK9KdPn46ysjIAQFZWFm699Vbk5+cjMDAQK1eulLN8quPv748JEyaIj41GI3bs2AEA6Nixo8Okb8LQ8c8//xyAZYVy165deOONNxAUFIQXX3wRPXv25E3VTdTU80jqIjTS3X777Zg8ebJNT9a4cePw1VdfsddXxVxtaGWODqJGXIqWiEg/XAr077//fvHfQ4YMwc8//4zDhw+jW7duuOKKK2QrnBoJQXdQUBBqa2uxZ88eHDp0CAAwePBg8aZonfTNfOg40DhE/9KlS/jpp5+waNEiAMDs2bMxcOBAALypupMaeh5JfYTGtzfeeAPXXXedTU/W8uXLLfYj9XGloZU5Ooj+wKVoiYj0w6VA31rr1q0xePBgOQ6lel9//TWKiopstoeHh+Pqq68GAIdJ366//nr06dMHP/74I5YuXYqlS5eKzz3yyCMYMWKExTF5UyXynPDwcADAwIED7fZkTZ8+HQcOHBD3I/VxtLqGo4ZW5uggsuSOpWhrampw4sQJ8XG3bt0QHBzcglISkbsxGac+uBTom0wmvPPOO9i5cydOnz4No9Fo8fy7774rS+G05NZbbxV/AE0lfTt69CiysrIQFhaGiooKHD9+HKtWrcLdd99t97icO0pE5JymVtdw1NDKHB1Ef3DHUrQnTpzAo48+Kj5+/fXX0adPnxaWlIjchck49cOlQH/GjBl47bXX8Oc//xmRkZHw8fGRu1ya8+GHH+KRRx6Bn5+fpKRvRUVFWLVqFUpLS9G7d2+8//77Fon+1Dh3lK3zpEeVlZUAgIMHD9ptpDt48KDFfqQ+za2uYd3Qyl4KIkvuWIq2W7dumDNnDhYuXIg5c+agW7du7ig6EcmAyTj1xaVAf9WqVXj33XcxZswYucujeoGBgRYjGAIDA1FXV4fKykrs378fQ4YMAeB80jfhprpw4UKUl5dbHDsvLw9RUVGqmzvK1nn1sW58AdgAI5XQmPbwww9j8+bNNo10Dz/8MN544w1VNbqRLa6uQeQ6dyxFGxwcjO7duwMAunfvzvsStRg7nNyDyTj1x6VAPywsDLGxsXKXRROuvvpqPPTQQ+KNb/Xq1SgsLATQ2DsvBPqAc0nf/Pz80LNnT3z55ZcICAjAX//6V4wZMwbbtm3DO++8g5MnT6ruB8XWefWxbnwB2AAjldDoVlJSglWrVuHgwYNiI92AAQOQlZWlukY3so+raxC5jo1lpHbscHIPJuPUH5cC/blz5yI7OxtvvvkmWrVqJXeZVC0zM1NMxhUXF4eFCxdi6tSpOH78uMVcFmfV1dVh9+7daNOmDUJCQrB27VqsXbsWQON8mAsXLmD37t2oq6tDYGCgnG/FZWydVx/rxpfu3buzAUYi856srKwsJCUlISEhAaWlpcjKymLCNo3h6hpErmNjGakZO5zcwx3JOElZLgX6EydOxNq1a9GxY0f06NEDAQEBFs/v27dPlsKpUV1dHTZs2CDOo7/99ttbdLz3338fBoMBKSkpuO2222xuqtu2bcPixYvx/vvvY8KECTK9C9Ib68YXtmy7hj1ZpBbeNDSVU4/UiY1lpFbscHIPdyTjJGW5FOhPmTIF3377Le6//36vS8Z3zz33wN//j48tJydH/HdkZKTk4508eRIAkJCQYPemmpCQYLEfEbkXe7JIDbxpaCqnHrmGy18RkZzckYyTlOVSoL9161Z89NFHuP766+Uuj6YNHjxY8t906tQJAFBYWIhx48bZPC/M/xf2IyL3Y08WKc2bhqZy6pF0XP6KiOTmjmScpCzf5nex1bVrV4SGhspdFk2wnicfFBQk/rt///6Sj3fnnXfCz88PK1asQENDg8VzDQ0NePPNN+Hn54c777zTtQITEZFqGQwGFBUVYceOHSgqKoLBYADgXUNT7U090vP7bSlh+avY2Fjk5ORg27ZtyMnJQWxsLLKyslBQUKB0EYlIo4QpjMeOHUNqairGjBmD1NRUlJaWcgqjBrnUo7948WI8++yzWLZsGXr06CFzkdStrq7OYuh+bW2t+O8tW7ZInkcfGBiICRMmYN26dZgwYQKmTp2KhIQEFBYW4s0338T58+cxadIk1STiIyIiebBXlqTi8ldE5G6cwqgfLgX6999/Py5duoSePXuidevWNsn4vDUbo6vz6JOTkwEAGzZswOLFi8Xtfn5+mDRpkvg8EclLqYRn3pRojewTemUTEhKQkZFhMTwyKysL2dnZiIqKUrqYpDJc/oqIPIFTGPXBpUD/5ZdflrkY2nHNNdcgMTERQUFBqK2txZ49e7B7924AaFGlLDk5GVOnTsX7778vZvS/8847Ze3JZ3BBZEmphGfelGiNbDnbK5uZmalwSUltuPwV6RHrp0Tu4XLWfW81Z84cXHHFFeLjsWPH4tZbb4XRaERlZSWKiopcHt5iNBpx1VVX4aqrrgIAHD9+XNaLHYMLIktKJTzzpkRrZMvZXtkffvhBoRKSWnH5K9Ij1k+J3MOlZHyC06dP4+DBgyguLrb4T88efPBBbN68GWfPnsXmzZtx9913w2g0AgDWrl2LtLQ03HfffS4lwxEudOb/Wa8t3BJCcAHAo8FFTU0Njh49Kv5XU1Pjkdclao5SCc+8KdEa2XK2V7a6utpjZSJtMF/+Sqh7CLj8FWmVUvVTIr1zqUf/22+/xZQpU/D999/DZDJZPOfj4yNmDdajCxcuWMyjBxp7YMxvuJWVlcjMzMS8efMkJVRy9xJDSgUXbKklIvqDs72y3rq6DTnG5a9Ij9j4TeQeLgX6U6dORZ8+fbBixQpERkbCx8dH7nKp1oYNG/DZZ5/ht99+w4cffoiamhq0adMGFy5cwHPPPYewsDCsXr0ahYWFeOmllyRlvrW3xJAecJiyfKznsQGcy0akNea9suZz9AHLXtnevXsrWEpSK2H5q9zcXKSmporbo6OjufwVERGJXAr0jx07ho0bN6JXr15yl0f1MjIycNddd6Fz586oqalBSEgILly4gHbt2mHo0KHw8/PDwoULMX36dBw4cADvvPMOrrjiCq9emoIttfKxHh0BcIQEkdawV9Y9DAaD1ywHxeWviIioOS4F+iNHjsR3333nlYF+SUkJjhw5Ij6+fPkyfHx8kJaWJt5gfX19MXjwYBw4cAB5eXnivlwfmVrK3dM7iMgznOmVPXr0qIIl1JaCggLk5uaivLxc3Kb3ey6XvyIioqa4FOgvX74cU6ZMwcGDBzFgwAAEBARYPH/HHXfIUjg1ioiIsEiQ1LZtW8ycOdOiIlFQUIC3337b5m8rKirE9ZH1WvEgeTQ1RF+P0zuIvBF7ZeVRUFCArKwsJCQkICMjw2J0BO+5RETkrVwK9AsLC/Hll1/igw8+sHlO78n43n77bXzxxRdiQr4uXbrg+uuvF583GAx46aWXHP69yWTCkiVLJM3dJ+/DIfpE3oG9si1jMBiQm5uLhIQEi3wHcXFxWLBgAdLT05GXl8d7LhEReR2Xltd74okncP/996OsrAxGo9HiPz0H+UBjpaxv374AGnvzDx48iDlz5qCkpASXLl3C+++/j8rKSgCAv78//v3vf2Pbtm3IycnBkCFDAADnz5/H/v37FXoHpAXdunXD66+/zuVmiIiaUFxcjPLyciQlJVkkNQQap9ElJSWhrKxM90v/ugOXxiUi0jaXevTPnTuHtLQ0REZGyl0eTUlKSsJrr72Gffv2obCw0Ob59PR0DBw4EEBj78LChQvx+OOP49ChQ/jkk0/Qtm1bcV9mTidzwcHBFr33TGJIRGqjhlVAKioqAAAxMTF2nxe2C/uR87g0LhGRtrkU6N9zzz3YuXMnevbsKXd5NGXw4MFiMiXzBEAAMGbMGIwYMcJim6+vL0aOHIlDhw7hgw8+sJj6wBsoEZF8vCkDu1LUMMUoIiICAFBaWoq4uDib50tLSy32I+dxaVzvY914542dUGpowCSSi0uBfp8+fTB79mx88cUXGDhwoE0yvieffNKp4yxatAjvvvsuDh8+jFatWuG6667D888/Lw6NBxp/cE899RTWrVuH2tpajB49Grm5uRajCU6cOIGUlBTs3LkTISEhmDJlChYtWgR//z/e3q5duzBz5kyUlJSga9euSE9Px4MPPujK27dgnUypsLAQn3zyCY4fPw6j0WizPvKOHTsAANdddx2++uorZk4nVeENjvTAGzOwK0GYYvTzzz8rFgzGx8cjKioK+fn5FnP0gcZ7bn5+PqKjoxEfH+/RcukBl8b1PhzFoY4GTCK5uJx1PyQkBJ999hk+++wzi+d8fHycDvQ/++wzpKam4pprrkFDQwP+8Y9/4JZbbsGhQ4fQpk0bAEBaWhq2bt2KDRs2ICwsDI8//jjuuecefPnllwAae23Gjh2LqKgofPXVVygrK8MDDzyAgIAAPPfccwAaW/THjh2L5ORk5OfnY8eOHXj44YcRHR2N0aNHu/IRWDBPphQeHo5PPvkEhw4dwpw5c3D//feLGYBXr16NQ4cOAQCGDh2Kr776yi2Z05VqkWVLsPbxBkdaxwzsnqOGKUZ+fn6YNm0asrKykJ6ejqSkJIvvvLCwENnZ2RzNQeQEjuJQRwMmkVxcCvSFoXAt9eGHH1o8XrlyJTp27Ihvv/0WiYmJqKqqwooVK7BmzRrcdNNNAIC33noLV155JXbv3o1hw4bh448/Fue8R0ZG4uqrr8b8+fMxa9YszJ07F4GBgVi2bBliYmLETPlXXnklvvjiCyxZskSWQN88wG3Tpg3atm2LCxcu2MzdDwoKAgC0a9fOrYGTUi2ybAnWPuubPEebKI+jLJzHDOy2vKEBNjExUZxGl5qaKm6Pjo5mww6RBBzFoY4GTFIPrd9DXQr03aWqqgrAH3Ppvv32W9TX12PUqFHiPv369UO3bt1QWFiIYcOGobCwEAMHDrQYyj969GikpKSgpKQEgwYNQmFhocUxhH1mzJjhsCy1tbWora0VH1dXVzvc114vKNC4lJ71Yx8fH6Slpbm1kqlUiyxbgrXP+ibPhhrnuPNGIHWUhTc3DAgZ2DMyMhxmYE9NTUVxcbHXLGnnLQ2w1tPomJeBiIhaSuv3UJcC/alTpzb5/Jtvvin5mEajETNmzMDw4cMxYMAAAEB5eTkCAwMRHh5usW9kZKQ497K8vNwm+7/wuLl9qqurcfnyZbRq1cqmPIsWLUJ2drZTZbfXC3rixAksX77cYo5o+/btkZKSgsTERBw9etSpY7tCqRZZrbQEa711jtTHnTcCqcMIvXn6BTOw2/KmBljzaXTk3by5wZOI5KP1e6hLgf758+ctHtfX1+PgwYOorKwUh9hLlZqaioMHD+KLL75w6e/lNnv2bMycOVN8XF1dja5du9rd114vaJ8+fZCQkIBPP/0UVVVVCAsLQ+/evdGjRw9PFJ+aIDUoY8MANcedNwKpwwi9eX4hM7Db0koDLJGcvLnBk4jko/V7qEuB/qZNm2y2GY1GpKSkuLTk3uOPP44tW7agoKAAXbp0EbdHRUWhrq4OlZWVFr36p06dQlRUlLjP3r17LY536tQp8Tnh/8I2831CQ0Pt9uYDjfPphTn1rvrtt9/EvAACLd1o9BrgSg3KtD5sx56LFy9i0aJFOHnyJDp16oTZs2cjJCRE6WJplppuBN48v5AZ2L1bVVUV5syZg1OnTiEyMhILFy5EWFiYbMfRyj2RS0s6bvC8fPkyXnvtNfz666/o0qULHnvsMYf1QDU6efIkHn30UXE06uuvv45OnTq5/XUdfW6OttfV1eH9998X6xh33nknAgMDHW7XCiXKz99z07R+TrmbbHP0fX19MXPmTIwYMQLPPvusU39jMpnwxBNPYNOmTdi1a5fNcMshQ4YgICAAO3bswPjx4wEAR44cwYkTJ5CQkAAASEhIwMKFC3H69Gl07NgRALB9+3aEhoaif//+4j7btm2zOPb27dvFY7iL1hOb6THABaQHZVoftmMtOTkZhw8fFh+XlpZi3Lhx6NevH5YtW6ZgyYhaxpMZ2Fn5co0cn5u9YdlZWVkoKysTH585cwZ33nknOnfujPz8fKePnZSUhN9++83ucbKyslR/T+TSko3sNXjOnz9fXLEJAL755hu89957GD58OBYuXKhEMSW5+eabUV9fLz6+ePEi7rvvPgQEBGD79u1ue905c+bY/dwiIiIspkEJ2zt37oyTJ09a5KnKzc1F3759cfToURiNRnF7Xl4eJk6ciOTkZLeVXy7Lli3Dhg0bYDAYLLZNmDDBbeUvKChATk6ORWdlZGQkUlNTver37IgS34nWyJqM76effkJDQ4PT+6empmLNmjV4//330bZtW/HGFBYWhlatWiEsLAwPPfQQZs6ciYiICISGhuKJJ55AQkIChg0bBgC45ZZb0L9/f0yePBkvvPACysvLkZ6ejtTUVLFHPjk5Ga+++iqeffZZTJ06FZ9++inWr1+PrVu3yvn2bWg9sZneAlxXqam3tqWsg3xzhw8fRnJyssWUFaVxqUiSyhMZ2BlMuaapz00YgecMRwlw7fntt9+QlJTkVLBvHeRbHycrK0vV90QuLelYTk4OvvvuO7vPffnll+L3qlbWQb65+vp63HzzzW4J9q2DfHMVFRXw8fHBvffeizFjxmDbtm1Yt26d3d+QyWSyW/cwGo1Yt24dALg89dcTli1bhnXr1qFdu3Z46KGHkJCQgMLCQqxYsUIsv9yBZUFBATIzMxEQEGCxvaKiApmZmUhPT7e5BnXr1g2+vr5e0cMt93cidWSAVhr7XQr0rQMBk8mEsrIybN26FVOmTHH6OHl5eQCAESNGWGx/66238OCDDwIAlixZAl9fX4wfPx61tbUYPXo0cnNzxX39/PywZcsWpKSkICEhAW3atMGUKVMwb948cZ+YmBhs3boVaWlpWLp0Kbp06YLly5fLsrSenrk7wPWmYEoNiYFqamocBvmCw4cP49KlSx4qUfO0vlSkN53jauLODOwMplwjfG7XXnst+vTpg4sXLyIkJAS1tbXIysrCY4895vSxzBuh09LSsGTJkib3/+2338RcOY5UVVU5DPIFZWVlaN++PQD1NfqaLy2ZmZmJzZs345NPPkGnTp2QmZmJefPmed3SkuYcBfmCL7/80mFyZqWdPHnSYZAvqK+vFwMUudTV1TkM8gUmkwmTJ09Gq1at8OCDD2LNmjUuvdZ///tf3HDDDS79rTkpwZez9bKGhgZs2LAB7dq1w4YNG+Dv3xg6jRs3DrfeeismTJiADRs2YOrUqU4F1M68rsFgwEsvvQQANt+98Pjll1/GxYsXLZ675ZZbsGPHDll6uNVcf6mrq5P1O5E6MkBLIy1cCvSLioosHvv6+qJDhw5YvHhxsxn5zVkvP2dPcHAwcnJykJOT43Cf7t272wzNtzZixAibcmuFo4sCAFl+hEr9mB0FU47KI9d2R6Ts7+x3Imx3lBhIeM56f3d8/m+88YZT+61YscJmm1LfiaNRJWp7XUfc2VAhtfFI6jmrlu2u/m4dZWBvybljNBqRk5ODhIQEixwAcXFxWLBgAdLT0x0GU+6+TslxHZerQdL6OMLnFh4ejj179tjs365dO7zzzjuSyiM0QtvLGWTP9OnT8Y9//MPiOMAf59qiRYucOs4rr7zi1H6A+6+b5tuPHDmC8vJyDBgwAGPGjLEZHn3TTTeJHTL9+vVz6vhSufMe6ok6yYIFCyw6q9TyGzIfmdSUBx98EK+++qrLr2lt7dq1Tu33yiuvYNasWWIvqitMJhM+/fRTm+1SzilHI4Yefvhhuz3fziZs3LVrFwwGAx566CH4+PigqKjIoiFh8uTJeOWVV7B8+XJxKe+myulMffD7779HZWWl3b8XCFM31qxZgzlz5uDrr7/Gxx9/bLO0rMlkwrp169DQ0IBbbrnF4jNo6vev5jr6J598In4nQpAv8Pf3x9SpU7F48WK734n163788cd45513mhwZYD7aRBhpYZ3HrbKyEpmZmUhOTsbgwYOdfl/u5lKgv3XrVphMJrRp0wYAcPz4cbz33nvo3r27zQdOLefoogBAliBCqV5TR8GUo/LItd0RKfs7+50I2x0lBvJkZuBDhw45td/3339vs02p78TRqBK1va4j7pz+IvXckXrOqmW7nL/bpvZ3djsAZGZm2lSmfH19kZSUhNTUVLvBlLuvU3Jcx+W6HjU1tD4gIAATJkwQh/pu2LDBZiUfKeVprhdecPz4cZvPB7A9B4HG6YOPPPKIWOF74403UFVV5fD1pFaU3bUdaKwA+/j4WGwzmUz45JNPAEDsJXTm+I5Ifb/2SL0eeaJO8uWXX1r0YLvSGO9so77URmJn1NXViX8jx2f2zTffOLXfzp07cffdd2PDhg2SX8PX11dslNq/f7/N886eU8KIIeve2/Pnz2PBggU2+zdVL7N25swZAICPjw/uu+8+m15cIXhev3491q9f32Q5Acf5uxx95wEBARa9+uaPhbJ17txZbKy85pprMGzYMAQFBaG2tha7d+/Gnj17sHHjRosG1eZ+/0rV0Z29vgCNOdjs7S/kYLP3nVgfx9fXt9mRAcJoE6PRKF5DBw8ejPvvv18c1bd69WoUFhba5Lpq6joifJ7ObLdeat5Zvs3vYuuuu+7CqlWrADS2YAwbNgyLFy/GXXfdJQ7HJ/kIPzagcb6UcNJYb3c1iJDrOFI5CqYclUeu7Y5I2V+4QVjv72i7kBjI+v062t8dzIckDRs2DDk5Odi2bRtycnLEnBcA7ObZcPd3UlNTg6NHj4r/1dTUNPle3H0uSH1dR9w5/UXquSP1nHX2uuPu7XL+bpva35ntd911FwDYJI4VCNtfeuklPProo3j00UfFm7W7r1NynOOOzgXr32dzv1Hr44wbNw5AY0/L//73P1xzzTU4cuQIrrnmGvzvf/9z2EHg6BwxZ35da4oQ/Do618xt3LgR48aNQ/v27TFu3Dhs3LhRfM7eEGqh4tjS77wl2++9916xPNajJc0fC/u15NyR+n7tkXo9ksvQoUMt7n1Dhw612cf8HLF+r+bv19H7snfOOvrMnDmOVM58Zs7cc2tra516vZqaGjz66KO4cOGCU/v7+flh1qxZmD59Oq699lpxu71pg86cU0LwZTKZMHjwYIvvV+hZbdu2LWbPnm1xHEf1MmsdOnQAAPzrX/+y6WWvrKwU46Gbb765yXIK7OXvEuqDwntt166duP+QIUMwffp08TMbMmSI+JwwJeXTTz+F0WhEZGQkfv75ZyxduhQvvPACli5dip9//hmRkZEwmUwYOXKkTRkdfcZK1dGdub4IvfSFhYV29y8sLHT4nVgfx2g0NjkywGAw4LPPPgPQOHKqsrISAwcOxMKFCxEXF4fWrVsjLi5OfAwA9913n8XrOrqOSNn+66+/OjqlmuRS9/u+ffvEOXHvvPMOIiMjUVRUhI0bNyIzMxMpKSkuFYbsayqpnxxBhNqSzTkqj1zbpb6uo30dLWEmZWkzpZZCy8zMROvWrQE0DjvOzMzEmDFjmiynO78TuXrc5ToXpL6uEqSeO66cs85cd9y9Xc7fbVP7O7NdWD62tLRUvKGbKy0tBQAx+ZszlSZ3l18KR+fI0aNHJfWyWh/nl19+AQD0798fDz74oE2PWP/+/VFcXNzse7X3ev7+/qirq2v2vQUEBKCurs7huWaurq7OotLX3PGFiqN1z5e7r5vm283LaG8IqjBqQgjeWnLuSH2/9sh1D5UqMzMTR48eRWFhISIiIpCZmYmxY8da7GN+jli/V6H31ZlpJU0dR0ojsVTOfGbO3HN9fHycmmLraL8nn3wSN954Ix599FGcO3dO3G4wGPD8888DACIiIsTt9ubSO3NOmQdf8+bNw8GDB8Xvd968eZg5cyYOHDggNmZIPacSExPFXuFBgwZh8uTJYi/uqlWrsHv3bgDAHXfcge3bt4vHlzqNw/y9Cg2Y/v7+OHbsmPgaANCxY0f4+/ujoaFBfE8//vgjgMalw6+77jqb/DFfffUVAIjfgyfvQVK3O3N9ueeee7Bz506sWLECq1atsti/U6dOmDVrFvz8/HDXXXdZfCeOPueEhAS7yfiEkQHCyIkjR44AAP72t7/ZHdU3depUPPXUU2KDkHWnnr3RI85uN19+XgqXAv1Lly6hbdu2ABrnNtxzzz3w9fXFsGHD8PPPP7tUECJyL/Ob8dixYzFq1ChxWJIwrFMpUitBREro3bs3oqKikJ+fbzFHH2jsVcrPz0d0dDSuv/565OfnK94YJJemKinOEILQ4uJiu/MazQN/qZwJ8gH7PfHm2rZtK/ZIjhkzBv379xenF5hPezLfT6CGBsAffvhB/HefPn1QX1+PPXv2oL6+Hn369BFzIwgBQUuo4f26yjqoN2cvYHUUuLvS+OXqZ+ZswO3n5+f0CBdn7rnOvq6jsgQEBMBkMjWZDM18eT7r7PLOEoKvIUOGYPLkyTZz9G+55RYcOHBA3E+qn376Sfz34cOHsWHDBjGQN09wfOzYMYu/a8lUqODgYFRXV6OhoQG1tbWYOHEiOnXqhJMnT+Kjjz4SR14K11PhM46JibGbP2bq1Kk4fvy4JrLvO/Nb8ff3x4QJE7Bu3TpMnjxZ/F3//PPPyM3Nxfnz5zFp0qRmzylhtMaiRYtQVFRkk4xPyPMj7CeQ+rtwpWFTrgZPl4bu9+rVC++99x5++eUXfPTRR+L8lNOnTyM0NNSlghCRew0cOFD8t8lkwvbt2/Hoo49i+/btFhet+Ph4j5dNyxVH8h6+vr6YNm0aCgsLMXv2bHzwwQcoLi7GBx98gNmzZ6OwsBApKSm6y2ru7BBXR8wrSdaBubOBeks1VzGzXtrr0KFDePHFF21ym6h1CTChB6lr16745ptvLIbufvPNN+jatavFfmRLGLHjDGemlcjFOueCI1KCD2fuuc4G3vZe12AwYPHixfjLX/6CsrIyp45zxRVXOLWfIytXrkRsbKzF0P3Y2Fj85z//adFxhQaCrl27orKyErt27cKHH36IXbt2obKyUvxtWTcktOQcueqqq8R/V1VVYf369Xj55Zexfv16MV+I+X5CGU6dOmWRiBNobIQ+ffo0ALjcK6xGycnJmDRpEqqrq7F69WoAwOrVq1FdXY1JkyY5tcrAiBEj4OPjg2+++QahoaF4+umnsXHjRjz99NMIDQ3FN998Ax8fH9x4440AgL59+wJoPNfsfc4rV6602E8NXAr0MzMz8fTTT6NHjx4YOnSoOLTh448/tpvlmIjsO3XqFI4ePSqOhPn5559b1LvVlD//+c+y7kfkjRITE5GdnY0ff/wRzz//PJ588kk8//zz+Omnn7i0ngPmjYzWjSBqaRRxdrld86zVaiLM6f3ll18wZMgQjB8/HuPGjcP48eMxZMgQcfqEqwmdvMGtt97q9L6O5lnribPJtYXfsPm8cldER0e79He9e/cG0DjaZt68eRbzpufNmyeOQBb2c5XwG3J2e0vOkaaWAjUn/J6F/1+6dAkTJkzA5s2bcfbsWWzevBkTJkwQ8x/o7fefnJyMDz74ABMnTgQATJw4ER988IHkpQSBxgYr6/+s9e3bF+Hh4Thw4ADmzJmDkpISXLp0CSUlJZgzZw4OHDiAdu3aeSR5qLNcGrr/l7/8Bddffz3KysosWp1GjhyJu+++W7bCEenZqVOncP/kB1Bf90fCm4ULFyIgMAirV/0HkZGRsr7elVdeidatW9tNeCNo06aNmC2cSMukrKcsVWJiIoYMGYK1a9di9erVuP/++3HvvfeKK9GQJSF3AWCb7NNe8k8phLmqLd3P398fkyZNanKJMGeGgiqlV69eYmKub775Bnv37hWfM59i0rt3b7v5EMj1oeMt4cx1yrrn0BFn93OWs79Nf39/GAwGjBw50u4ymc7at2+fS38nnN8XLlxARkaGTSZ0YaqN9ZxqZ/Xq1Uv89zXXXINu3bqhrq4OgYGBOHHiBL7++mub/VoqJCTEqf2ERgzzAP78+fNYvHix3f31FugDjdMWRo0ahfXr12PUqFGSpifs2rULJpMJ11xzDb799luLz83X1xd/+tOf8M0334jJ+Hx9fTFz5kxkZWVh3759YtI/oHEahY+PD9LS0lTTgA24GOgDjfNeoqKiLLaZZ88koqZVVVWhvq4Wl2NvhDG4sfXWt6YKOPYZqqqqZA/0fX198fe//x2ZmZkO9xESmBBpmaP1lKdNmyZbj3ubNm2QmJiI1atXIzExkUF+E8zn4cqtdevWqK6ubna/kJCQZoetC71A//3vfy16c3x8fPDXv/4VycnJOHr0aIvK6y7mQ3LtDSm1tx9Z8vS0Bk9cp1qiubwWAmH6zU033YR3333X5QYH8yHpUpjnzLAXfNnbTwrzJTW//vprMbC35mpWdHua6pAx9/vvvwP4I39MWFgYzp07h7Nnz4r7dOjQAREREaiurm7xqAa9EZLsjRgxAidOnLAYUduhQweMGDEC33zzjbgf8MeoPuvfbkREBFJSUpCYmKiq+4RrzVtEJBtjcBiMba5o/C/YueFarkpMTMS8efNsGhGioqIwb948VVQuiFpCWE/Z3lzNrKwsFBQUKF1Er+PO3D3OJh9ztncyOTkZH330kcVQ0I8++siloaCeZB7EWM/pNn/sarCjB44asYXt5knX3M0d1yln5/I7y9k5/8Lr+vv7i78bV8ri6tQHYZj7qFGjbHJ+1NfXi0uxuXodcva8sE7G1xJCw3Hr1q1t6muRkZHiqknCfkL+mKNHj6JTp04W+0dHR+Po0aO6zB/TUuZLJ/bs2dPit9izZ0+8+OKLFvsJEhMTkZ+fjyVLliAjIwNLliwRG/3VhoE+kZdJTEzEmjVr8NRTTwEAnnrqKeTn56vyAkUkhdFoRG5uLhISErBgwQKLuZoLFixAQkIC8vLynA4OSR6XL19227GdDeCd7Z0E/hgKCkDyUFClXLx4EQDwpz/9ySbIEoagmu/njRz97oXtrvYoSyX1OuXskHN7+9XU1ODo0aPif8JybM5wNig0f10hQZqjMoeEhGDixImYMWMGJk6caDFE/eqrr3bq9axzGwUGBiI0NBSffPKJTeOE0WjEJ598gvDwcJd7s4Xfv7+/v93flpDLQM6pH0JP/aVLlxAbG4vp06fj2WefxfTp0xEbGyv2+Av7AX/0NFvneTp9+jTzxzggfCYBAQGYO3euxW9x7ty54nfbo0cPAJZ5tPz8/DBo0CCMHDkSgwYNUm0jistD94lIu/z8/MSsoH379lXtBYpIih9++AHl5eXIyMiwu8ZtUlISUlNTLZYiI/czH/oqtzZt2ohrw8uxn1YJc3X9/Pzw7rvvYs2aNThz5gw6dOiA++67D4sWLQLg/Nxfb+Rs8rmWknqdcnYovL2GDOsl3pxd3g1oHPbuTEOa9X7JycmYOnUqli9fjvXr1yM+Pl7MC3Hx4kVxTXprzvS428ttJJzbQOP5f+ONN6Jfv344fPgwPvvsMxgMhhY1NgojDRoaGmxyffj6+oqP5UzGKPxOe/fujWPHjllMR4iKikLv3r3xww8/2PyeExMTMXz4cGzbtg2LFy/GU089hTFjxrCO54CQP6a+vh5//etfMXXqVCQkJKCwsBDLly9HfYMBPgBeeOEFAO7No+UuDPSJiEgXhB65mJgYu88L252Z003yMe8pDQwMtBhea/1YqsTERLz33nvN7nfjjTdi06ZNLr+O2glJtvbs2YPMzEyLhHuHDx8WH+sxGZdczp0755HX8eR1SljibeHChZgzZ46kJQCd7aG2t595grTOnTs7lQDSmXnp9nIb+Z8rRdCpA/D394fRaMSnn36KTz/9FEBj4B8QEIDa2lqLNe9d5ePjg3vvvRdjxozBtm3bLJIPyjl1QljB4Mcff8SwYcMwadIkBAUFoba2Fnv37sXu3bsB2P89syPHecJvcfz48XjvvfdskvH5wOSxPFruwkCfiIh0QZirWVpairi4OJvnhdZ7d84Zl8OpU6dQVVVlsexmWFiYZioW1syHvlsH9S0J8oHG5e6cCfRHjRrV4kD/1KlTFt8JANV8L+bJuMwTRAGN5e7bty+TcTXDU/kLPHmdsl7iTUqvs7OBa3NTC5w9jpRAWchtBAC+vzZm629oaEBCQgKuvfZaBAcHo6amBnv37hV7w4XguCXq6+uxdu1arF27tsXHaor577m0tNSiRz86Ohp9+vTh71kGwm/xpptuwmOPPYb3338fJ0+eRKdOndC/f3+kpqZanGtaxECfiIh0Qagc5efnY8GCBRYVUKPRiPz8fERHR6u6cuTpZTc9oUuXLigrKxMf9+nTB507d8Zvv/3W4uzEnloWz/p7WbhwIQCI34vShGRcWVlZGDZsGEaOHIm1a9fi3nvvxfHjx7F7925kZ2ezd68Jri6/JpXU65Svr69Tw/f9/PxkzT/ibG6K5vYzv95aj+AReqmBP4IuyQ2bhsb8Gz169MDChQstPs8777wT06ZNw+HDhyXlJzAnJL4LDg5GSEiIRUb7K664AhcvXkRNTQ1atWrl0vHtsf49//Wvf7Xp0efvueXMf4vp6em46qqrxGXjXT1f1IaBPhER6YJ55Sg9PR1JSUniesr5+fkoLCxUfeXI08tuesK1115rsSSVkBhMLkJG/PXr11sERL6+vpg4caIsy+I1972ogfmyT0IP4Nq1axEdHS0m4/L0sk9aGp0SHh5usYyWu0i9Tvn7+zs18kVYz14ucq1oYd5Tb/0+amtrYYIPfGASe8mFhs2Xl7yEgIAAi3PHXo4JU0DjKAXzxHTmhJEark5bERoOampqbII/86Bf7vuKvd8zAEV/z3pj/lv8+9//bjHFpFevXgqWTD4M9ImIvICWKtwtYV45Sk1NFbdrrXKk9eGC5qyzQLuDdQKwiRMn4uGHH5Y9Y77avxc1JeNS6+iU8PBwXHHFFTh79iwqKyvF7Z5cjUPKdaolWfdbwtm13Jvbr7nrraN50NNnzECD2WoZCxcuhL+/7cgcY+sIoPJnnDlzBnPmzMH9998vNpysXr1aTAYaGxuLzz77zKn3ZK5v377Ytm2bbPtJIfyei4uLUVFRgYiICMTHx6u6sVprhN9iTk6Oxfbz588rVCJ5MdAn0jE1zynVCy0E0GqtcLsLK0fqYt7r5U7mCcC0siyeO6glGZdaR6dUVlZaBPgCOZdHc4az1ylXlrmTg1xz64VRNsHBwQgNDcXp06fF5yIiIlBRUWG3Aa2hvt7m3Gl1zDZQNwX8MWR+z549Fr3f5p+JMJpA6j26Z8+e4r8DAgIsluo0fxwbG+vU8aSqr69HmzZt0KZNGwDATz/9hG7dusma5d/b2Wsg7dWrF1JSUiQdR431QQb6RDql9jmleqCVAFqtFW53Eta4JfW4/vrrcfToUYuKfmRkJHr37o0vvvjCba/LBk9lqX0UhEDOrOnOcuY6FRIS4nBYurm2bds6tZ+z2rVr59TxmttP6PFv3749Vq5ciYMHD4oNG0FBQZg2bZrDv3Xm3DG2bg8A6NChg83UC6PRCPj4ACYT8vPzAUi/RxcUFIj/Ng/yrR9//vnnzR7LFdZLJALSlkkk51g3kEql1vogA30iF6ix1c6aFuaUap2SAbQr56BWKtykLzExMdi1axcOHjyIVatWYcWKFfj111/RpUsXPPTQQ5g8ebLbXpsNnuQsT/foO0uupHhSxcXF4ddff23xfkKv+m+//YbMzEzcf//9SEhIQGlpKfLy8lpe0P9voDl79iwGDhyIAwcOiE/16tULP/74Y4vu0c5OPTJvwJST9RKJ3bt3l7RMIv3BnXV3tXaoMNAnyax7R4QfidTtWqXWVjtHGNy5n6c/Y62dg+TdIiIiADQOmb799tvF7d98841TS+O1BBs8yVlK9Og7w9kAUu5cGP3798dHH33U4v06duwo/nvfvn0WQ+vlbFx57LHHbJbQFOZZt+QebTKZxH8HBAQgMTERffv2xZEjR1BQUCD26juzMoIrrJdIZE++azxVb1JbnZuBPklir3dEyI46I22m09u1HIyotdWOvAfPQdKS3r17o02bNk0O7xXWvXYXtVW+SBnWy7uZz7Fu166dUsVqkvVwcUecycwvRd++fREeHm43n4EgPDy82cBzxIgR2LhxI4KDgxEQECAupwc0/u6dfX/NGTx4MCZMmNDiedbWgoKCxH+vW7cOq1atwt69e9GlSxesW7cO48ePB6DeESHUyFvrTQz0SdL8ResfivAjOXnypKTtevhRseJISuM5SIByU4mcfV2j0YjLly8DAIYOHYouXbqgtrYWQUFB+PXXX7Fnzx6Lyj+plxamrTWlqTnWWnkPjvj6+sq6coCvry9mzpyJzMxMi/XuAYiPZ86c2WyyQH9/f0yYMAHr1q1DeHg4hg4dij179mDo0KEoKSmRrbxAy+dZ23PkyBHx30JQD9iOSPrhhx9keT1yL2+rNzHQ93Kuzl909EORut1RmbRaiXCF7+VKu//WIybFIlfV1NTgxIkT4uPmsg4bDAavyLqv1DQOKa+7a9cuGI1G3HHHHdi7dy/27NkjPhcdHY077rgD//vf/9xSTpKPlqcM+fr6IiAgwKbX28fHBwEBATAYDLjxxhuxfv16hUromJ+fnzgs3MfHB1dffTXat2+Pc+fOYf/+/eLQcrkDfaAxG/m8efOQk5NjMTWgXbt2mDZtmtPLlSYnJwMANmzYIP7+9+zZI/tKAe4g95QO1oPIkxjoezm1zV90NDVA7ZWI5tjrBQkJCQEAtCotaOpPdYNJsaglrDMPN5V1uKCgALm5uSgvLxe3RUVFiRVTPVFqOKKU1xUyYU+ZMgXTp0+3aYA5f/48A32ov5Fby0NfR40ahY8//hhhYWHo2bMn9u3bh8GDB+Onn35CVVUVJk2apNqh1+bBu8lkQlFRkd39GhoabLbJkTvJ3tJjY8aMkdxwmpycjKlTp2L58uVYv349Jk6ciBtvvBGpqamSjuNpXbp0sQjIBw0aJE41KioqEuvKXbt2tWiMtof1IPI0BvoEQD1DWRxNDVB7JaIpjnpB/P0bKxWXYxJhbBUOoLFHX6+Bv9oalUhbrDMPO8o6XFBQgKysLCQkJCAjIwMxMTEoLS1Ffn4+srKykJ2djaioKA+X3v2UuoY787odOnQAABQWFmLcuHE2y4mZJ+fyVlpq5FZLfUGKv/zlL4iIiMCGDRuwb98+AI2J4fz8/DBp0iQkJyc71TOtBPMe/ab4+/tbTEWQmlOpqXPNeki8q6OjAgMDMWrUKKxfvx6jRo1y6RieZt6jf/HiRezatUt87O/vb3c/R1gPIk9T/5gZ8kpCRUK4EGqZ+YX99/534Pf+d+By7I1oaPj/TK2twhvfa5srxIBfz8TvVgXfr3WvhtxZi+Vw6tQpHD161KKc586dk+34586dszm+Gj8H68zD9obtG41G5ObmIiEhAQsWLEBcXBxat26NuLg4LFiwAAkJCcjLy5N9eCs1bcSIEfDz88OKFStseh0bGhrw5ptv2h3Ca/37PHr0qCrPTTlY3ycux96I+rpaVv5llJycjA8++AATJ04EAEycOBEffPCBOKxcrbp06eLUfp07d7Z47OicMs+dxHOteb/88ov4b+t7h/n1rLnefHNqqgcpRQv1Lz1gjz6Rh8jRC6LU3C49zinTQg9ac6NB5JCRmYkGs14g889Ba3744QeUl5cjIyPDJnD09fVFUlISUlNTNZE0yZ25OzydUM08Gdfdd9+NO++8E/Hx8SguLsaWLVtQWVmJW265BR9//LFFGb1xiKsWe8u1xLpHWe61591h+vTpmDFjRrP7Pfnkk5g5c6bNdjlyJ3mz1q1bA2ic/mU+HUwQHR2NsrIytGnTxtNF0ywt1L/0goE+kUYoVfHVa4VbjdNErBPO1dbW2h3m1+rYZ7K9ZkN9vaRhhO5u9GnJ8YUyx8TE2E3GFxMTAwCorq6Wpazu5K4pPEolVEtOTkZFRQU+/vhjrF69Wtzu6+uLSZMm4aabbrII9Jsa4nrs2DFcvHgRgOcbHr0peSqpQ+vWrdG5c2f89ttvDvfp3LmzmPfHG3jyd3jzzTfj+++/x+nTp22ee+mll/DMM89Y7EfNU2P9S68Y6JNi7CWDceUYWl7qRwql5nYpOafME8mp1NSrYZ1wbs6cOQDcX0Znj+/uRp+WHl+4hmzatAmbN2+2ScY3btw4AEBoaGiLy+pu7srdoWRCtZkzZ+Kuu+7Cu+++i08++QSjRo3Ck08+idDQUIfzo+2dm+ajUDzd8KjXHCqkbvn5+UhKSrIb7Hfu3Bn5+fmqzTHgDp78Hfbv319cTtDX1xfXXnstdu/ejWHDhuGZZ56BwWBAUFAQrrzySo+VSU5KjthUU/1Lrxjo65AWhlmfO3cOqY8/YTNsZ172XKeP4Ymeqaay5StFzUm35OSNQ7usE86pLWmcnI0+9q5T586dk3x88+MEBgaibdu2eOONN2yS8a1evRrLly9Hu3bt0Lt3b5fevycJuTvcdnwFriPBwcHo378//P398cknn2DixIkuNbpIHYUiJ29Jnkrqk5+fj6qqKsycORM//fQTevbsiZdeesmlThKt8+Tv0NfXF3PmzEFmZiaMRiN2794NAOL/gcZGeS0u36rXEZv0Bwb6OiPnj/bcuXM2wyPlSgJ28eJFu8N2hNdzhrt7pjwxP5oc88ahXdYJ59SqpUGio+uU8NtydYTBokWLxOdqa2vt/o2w5jSph6NGn6Yo1uDp5gYYPeJ0B/mEhYVh1qxZePTRRzFr1izdB/mOzh1P/w4TExMxb9485OTkWCSNM1+2VYsjKrgKgLI8MSqZgb7OyPmjtTc8Uu4gV47KmrsqfI4+SznnR1PzOLRLf+T6bdk0Bv1+Fq1+/goAcPz4cYv1maOiovDII4/gjTfe0EQyPm/RXKMPaR9HPWiHJ6bLSaGmcycxMRHDhw/Htm3bsHjxYjz11FMYM2aMYj35co7eZT3L8zyVL4eBvk7Z+9FK7aG3NzzSG4NcKRdAe0uVKT3Un8gT7F1fmqt0yFW5EI7jW/NHY6a9NY07duwIwL3J+NRWUVY7NqjqH6c7aIOjKZVKTpdT27nj5+eHvn37AgD69u0ra5Av5R7qiSH3rtzTtUAtI4yaSzhr3dNvbwlaZzDQ9yKu9NCzlU8ae0uVsWeK1MKdNzglE6QJTAGtxX937twZ999/P4KDg1FTU4O9e/fiueeeA+C+ZHzemFdCLrzX6BenO2iDoymVSk6X86ZzR8o91BND7tVwT3cHpRuLrDWXcBZo/Px9fF1rVGKg70W8qYfeXs+6J1oivekzJtcouVKEO29wSiZIExhCOsAEH/jAhF9++QVLly4Vn+vYsSNat26Nmpoa9OzZ0y2v7415JYjk5E0r6cjJlTwXjnhLo5tS9URHXLmHuvO7UsM93R3kGiVibzlkudj77AOO7nDpWAz0vYy3XMDttYZ5qmdNjs+YUwD0Sak1zAVSbnCuJONU+vrid/EMfNCYbK+ystLiubNnz8JoNAIAfvrpJ7eWQ+nPgcjT5LhnyXl99KYGA+a5aJ690WxK1hMdUdu9Q23lkYNco0QcLYcsF7k+ewb6KqKFZfG0oqmWSC18npwCoE9KrmEOSLvBeSIZp9x86n4X/+3v7496s99QQECA2OJu3QhARC0jxz1Lrutjcw0GetNcngshsPXmFQ/sNWprvZ5IylL7csgCBvoKsBfQ19fXY0baTEmJNeQcqqVHUlrD7LX+K9mDzikArnFnIjQ5zxF3tpLLNRpEi+egT/1l8d9Lly5FbW0tKioqEBERgQEDBuCxxx7DsWPH3JqMj0huWkjwKPV60dR1qqXXR29dMszR56a2OclKcDSaTY891uQZjpZDVkuyPwEDfQ9raohVQ4Pz82E4VEs+jlr/lf4seQOSpqlEaABsKsotObZwfKXPEXvkHA2itXPQp+GP78fX1xeDBg0SHxuNRgQHBwMAfv/9d5u/JVIjNWZCd0TK9cITo9akNvbrdUSlEOSqIWu9I+4OjqSMZlPb3H210Ws2fkeknptq+40x0Pew5oZYOXtj4pJE8tH7Z6m21kV3cZQI7dixY8jMmmtTUZ6XPdflYwMt67FyJy32xMvGbEm93NxcPPbYY4iJiUFpaSny8/Px/fffA/hjeT1vqKSQtqkxE7oc1HSd8sRSZUrSQuZ6NQVHnpi7r+V6mV6z8Tsi9dxU25KQDPQVIvf60eQcdw4XVCspFxk9TAex/h4dVZSFFml7rD8HV84RT/RYOaos6PVcbo6hbTRQ9h0A4LfffkNqaqr4XHR0NKKjo/HbyTJ8+eWXALyjkkKNtFyxBjz/m25qqpJcn6VarlPNrWftTb2XSlFTcOSJuftKB38todds/I5IPTfV1rDGQJ88Qi3JYLwxyZ2zFylXpoMoNYTL3pzV5jhbqbQ3VNaVc8QTPVZariy4gyE0Cka/QPga6tCpUyfcf//9CAoKQm1tLfbs2YPdu3fDB/CqSgo1svdb8bYhqM5qbqqSXq87za1nzYZB91FbcNTSHE/NXUfU1LDhCrU00nmC2s5NqRjok0ukBu5quYipabigpzh7kXJleLoSlSBHc1alDMVvir0RAK6eI+6+GWq9siA7H1/URccj+NdvcPjwYRw4cEB8KigoSPy3ve/FOuhTOuDzramy+28lqC1ZqSvs/VYYxNnX3L3Am6473tZ7SdK4usKD1oNH0g4G+uQSV+estKRS4Gg4tVTe1BLpCimfjxKVIFeG4rtCC+cJKwu2DKGdAABt27ZFRUWFuL1du3a46667sGzZMrt/Zx30KZXwLCwsDAGBQYBV41JAYFCTI1fcNTRdS4kom2Lvt+JtQZzU7P2OroHedt3Rwr2AlOGtKzyQdjDQJ5c4Ctwd9fRLrRhYH0eu4dR6ZW8Iqtxz69U2H1xvlS+lkvfpVVZWFk6cOIGqqiqEhYXhpptuwm+//eZwf/OgT8mEZ5GRkVi96j9iD7qwRm98fHyTZXFXr6qza3Rb/1sr9HYdcaSpVUm8faqCGul5FQA98pbrCGkPA30NUDKIc8RR4C5XZdP6OHIOp1aKOyvE9oagyt0QItd3q/XAwB453pM35o9wp9OnT2Px4sXi4759+zb7N2qprEVGRlpU6Lt3795sBd/dw6m5Rre2OVqVROvZ+5XizvwOel8FQA5qmtpE6qOH6WZyYaCvAVoK4uRar9XRcdRSEXeFOyvEnsg9IFcgocfAQI735I35I9wpKioKc+bMEXvEu3XrhhMnTihdLLdRaji1N83X9gQp+W+kDsUHtH0PVROp+R0c9dDX1tbiyJEj4n5RUVE2HRsAh4Ob8w8IsLk3Nje1SQme6KQjW3qZbiYXBvoaoKUgTq7Kph7nACrV42aPKzcgub4TPQYGsv1+WAmXTVBQELp37w6gsUc8ODhY4RLpkx6v1U1xd0+is9cOR0lJORTfMxzld7C3HF99fT1mpM20XdEmIBAwGdHQ0GBxbCEg4f3Avvnz5qF9+/aSpjYpwROddGTLlcTSesZAXyPcfcFXqrKmlmX3miLbmsEOPmOpFUe5h4l7+gakx8BAj++JiP7QXJJEuXpanR0V5ygpKYfie46zy/H5+wegocFxh01N58EwBf7/sGKTEa2Of+GR8muh/mVP+/bt0adPH/GxM1OblMBRespiQ1kjBvoS/fjjj2LPpxqWYNI6OXpz3T3n2509zvaGoAmVAneWhzegP2i1sqNneszjoAQmeJSPkCSxuLhY7EXs3r27WAeQK9CX2mjIyqy6NHVvdfRdGcK6iNt9fz/rsbLqYTSd2vH3SUpjoC/Rk08+CX//xo9NGCr38pKXcPLkSQCWc6/MH2t1fo67K9xyzOl3983KnUPN7Q1BCwkJwezZs91eHnfegLQ0N00LlR2tBL5ylVML34kWaCnBo6NzR03nfmRkpMV0EPNeRSKBVoI7uXIqEQG29T52hKoDA32JanpcD5/QjgD+mJM1fcYM26FaAYHwAVBfX2e5XaWVLEfcffGXY8iz2+e+u3FYtr0haEqWRy5ampumhcqOWstlTe6knoB+8jgoQUsjdxx9x/zuidxDC3UJZtfXDut6H3OGqAMDfYmMwaHwsbowNlWZUqqSJVcviBYq3ErnF3D2395EzgDD3UPrtVDZcffvUG3XCy18J/YynquR1noXActzR4l7kFxLp3EtdCLXaSW7vp5JqRuY1/uYM8SSktPoGOjLxFFlSqlKllyVIS1UuJXCHqimybUKAD9P9/8OlbpeaLVRzN461wGBQZiXPRcA8z64wtG5o8Q9SOrSafZwLXSiltFKdn09k1o3kBrzeMu9UslpdAz0Nc5RRdlRL4hWK9ZqpKYeKK1raqi/FobWa507z1lPNOJ4+rpmvXyP0HshvE+ep9rmaOk0KQn3HC3xxLXQiZyjlez6eubu+qwW7pWSV8ays7+S0+gY6Gucox+Jo14QLfyotMLdPVDe1CjTZKZijipxO3d+xs404gAtq0QodV1z1HvBxintk2s0nlamThAJvKWXlZrn7vqXmu+VzS2p6uz+wkpaSt0LGOhrnNSKMnubtcPbvhtvqhC7uxFHruPLcRxPNOKo7brGxiki0iqlr59qoMeOFns5Q5ReDUnKvdJeXhx3jvAQllStqqpyavqIo/2bW0nL3RjoK0SuRG6S19z1ogqo1i/UagteSD7u/i7lOr5sc/fd3IjjzuuaVpLuSaX16yPJQ8kkUaROau5l9RSl3re7rsuOcoYIo+vUfj9wlBfH3Vn9IyMjLY7f3PQRe/srjYG+QpjIzf20/ll6U6OMt3F3I45cx/f2xqZz584h9fEnHCbd0zJ73yWDPu8jZ5IotQcL5BxvqntIzXPlbu56HUc5Q4TRdWq/tzvKi8Os/s1joK8QJnJzP36WZE6OeYdyVWTdXZFydHypSWXUVOFrKqmfu1y8eLHJpHty8PRwRIG966OSmYFJGXImiXJ0j+Va6KRWUvNcuZvUeqvkUcDN5JVx9nWV4k1TPOXCQF8halpKSK/4WZI5OW5car35OcPemsRCkhgtaCqpn7u5q3Kh1HBEwP71UcnMwFKpKQ+F1sl1ftsLFrR+3fEEnoPKUVuAK7XeyqW0qTkM9IlIk6T20Msx79DdlQJ3VvjsrUnsapIYJSqmWgpCnaXG4Yha6TGR+ttz1KusdMXeWVrIhG4vWJDzuuNuSjUeaeUcdCd3j/pwdHytB7hqa6jQAq2MMJLresRAnzxC+DF5w4+KPEPqDU2OG7q7KwXuvEnbW5PYVWpbzk7r9Pq+3MnZCm5zSx5ppaKspnJJqSjLed1xN6WSmGrlHHQHqUuYyXV8uUeVSK0/yhVsar2hwtPsjTCS61yTm/V1oMHF4zDQJ7cKCQmxucgGBAYpmuDJ0QXZm26ugHwrPyhFj5mBtVLh00o5HdHKOU6OOVvBFZY8Ki4uFnuUu3fvjnPnzmH27NmKVJSt8004U8lUy/VOS0Pxpf7O3Z3E1FF55DoHtXhdk7qEmVzHl3tUiZRzRUu/Ib2xN8JIrnNNbtbXkYAfPnXpOAz0ySXO9tC3b9/eppIVHx+Pqqqm/87R8eUYvujogqz14EUqra/84DDhnExDXJUYKquV1nmtlNMRh0nDNDA8WilSggh72fs9lWTQnsjISLEnuXv37ujTpw+OHj2qSFkA23wTzqzkoMRvzt53rqWh+EqM+mrqOFpZVtXTpC5hJsfx5Sal/jh/3jxcvHjRbsOjHqlpiVp7I4yUDvLd3QDIQJ8ks26NbK6H3rqSFRkZ6TDQb24EgBw3MkcXZK0HL444GiImdeUHR8dRWy+CmtaQd/dwPq3MNVMbR+e4OyvKclR2Tp06JfZMCcfx1OgoKZ+Nvez9nkoyqAXm+SbcsZKDXOx953IOxXf3vUNtjfdaWVaVpJNSf2zfvj3at28PwLmGRyVWnJGLJ5aotb63am1JWHf/Thnok2TWrZHO9NA7q7kRAHIMX9RrQG9PU0PEpKz80NRx1FaZkGuIqxzHcedwPg7/c52jc99dw6PlqOxYZ+gXjuOplQekBBH2EicqnWTQnawrmkDzFXEt5GVwd+Do7nuH2obEy7XsqdTju5NSy4N6EyVXnHHE2d+Eu5eotXdvVfqzkcrd11kG+iSZdWtkUz30rmhqBICWg3S3Z5V1MMxSjiFiTR1H6nxEd38O7h5+KYXU4XxShsRqaQitVrjr+iJHZcc6Qz9gufKA2n5XWghk5WBviURA+Yq4HNx9v9VKD7Q7y6XlBlsllwf1JmpccUbytBg33Q/s3VvFe6LKRps64u7rLAN90jyllmWRwhOZPh0Ns5QyRMyRpo4jZT6ilis1rpA6nE/KkFgtZbP2No5yjMhR2bF3DCV/V94+faS5BhiptLBCjVy00nDvzgaJphrR3R2otPRcU+PyoHqltoZTtTXS2ft8lC6TWjDQJ1lJvXG09Ebj7gquXMf3RKZPtV147ZXH25LQkHdRapURpUZ36LnhTmqQ1dKKuKvnjrcnkCwqKsLOnTsttvXq1UvW13Bng0RTjejuuofLfZ1SWxCqJlrpVZbKnb8JuZL3qa1OrBQG+jJxe8urh1p2rf/tLHtrlTbVYy11f0fcXcGV6/ieyPSptt4Re+WRa4SBXtXU1Fjc4KKiohQuEUnh6iojcryuEqM75Lz+qm1kgKcrha6eO1LLqbeGgSVLluDEiRMW2/Ry3XRXoKLUdcobeWtw6So5k/eprU6sFAb6MtHysily9MrYW6u4qR5rqfs74u4KLodHkyedOHFCnOMr/C60RK5gTW1BnyP2giYpq4xonRzXR3uNvsAf9yClzgUleoNcOXekJpDUQuAhpWMjLS3Nbo/+Sy+95IaSeZY7AxVvuk4pSeu9yp6+/ro7eZ83UjTQLygowL/+9S98++23KCsrw6ZNm3DXXXeJz5tMJmRlZeGNN95AZWUlhg8fjry8PPTu3Vvcp6KiAk888QQ2b94MX19fjB8/HkuXLrUYglRcXIzU1FR8/fXX6NChA5544gk8++yzsr4XqQnJZDu+DD9CuYZT27txyLm/Vrg72NFKEORN5PpOunXrhtdff118XFtb28Te6iLXMG4tDQfXQqVN7UNH7TX6du/eHfX19ZiRNtNhA4C7aaU3yF45mxr66q6VJeQkpVyDBg3CoEGDLLZxlJjymI2/kVauI/YoeS/mdBD5KBro//7777jqqqswdepU3HPPPTbPv/DCC3jllVfw9ttvIyYmBhkZGRg9ejQOHTqE4OBgAEBSUhLKysqwfft21NfX429/+xseffRRrFmzBgBQXV2NW265BaNGjcKyZctw4MABTJ06FeHh4Xj00Udley9SEpLJdXy5foRNDadmUCmNHEn3HPZwBQTCB1Cs4utuSgUkasoTERwcbNFD6urvUInfrSdWeFAbvQVNSrFu9BV+A/YaANR6LqhFc0NftRB4aL0X1Ns5OgfdnY3/1KlTqKqqkqWBQct133Pnzok94M4u92mPK/dirU4NkvPcURtFA/3bbrsNt912m93nTCYTXn75ZaSnp+POO+8EAPznP40Xiffeew+TJk3C999/jw8//BBff/01/vSnPwEA/v3vf2PMmDF48cUX0alTJ+Tn56Ourg5vvvkmAgMDERcXh/379+Oll15yKdD3vVwFn8Dg//93ZbP7K5WttaUcBZtC0MohXvbJkXRP6OESLjrmxwGg24qvpytzciUkcmeeiOZ+hy3dX06u5F+wV5nSUh4HBk3uZa8BQK3ngiOebsDUw9BXLfyuyDFH56A7s/FbL/UHuN7A4IlVktwpIzMTDfWNHQ3OLvcp171YS/cXgZznjhqpdo5+aWkpysvLMWrUKHFbWFgYhg4disLCQkyaNAmFhYUIDw8Xg3wAGDVqFHx9fbFnzx7cfffdKCwsRGJiIgIDA8V9Ro8ejeeffx7nz59Hu3bt7L5+bW2txbDZ6upqAEDwz1/C39/5j02pbK0tbY10NJxSaOFioG+fXEn3IiMjLf7O/Dhar/g64umARK6ERK7MU3b299lUo4+980rq/s2Vx529Gk1Vpnh9kY83BU32erKU7pVRquLLoa/aUFtbi/LycgCN52y3bt0ULpF8PHkOOlrm0pUGBk+skuRODfX1kpb7lPNerIVRbtbkPHfUSLWBvnDhs/6AIyMjxefKy8vRsWNHi+f9/f0RERFhsU9MTIzNMYTnHAX6ixYtQnZ2ts32mu7D4RPW+PctOZHdVYFuLrGRFI6GU5I+qG1omqOAxJ3rSiuRkEhqb0FTjT4t3V/JaSL2RiSxIZFawl5PltAroxQtj6gg9ysvL7dIwGqeo0Up7rznupscjQueWCXJ3aR8DnLei6U2LKvpXJPj3KmpqcGJEydUtXqSagN9pc2ePRszZ84UH1dXV6Nr164wtgqDTwtPBHcmuHDUEy8M71ZbcEeeJ2djkLtZ/1Y8sSa5u6mpt0DJaSL2RiQRtYS9niyhV0Yp3jSigvUL6aKioiyC+27dutksF+gpci17rCU8Z5W5F8s1dVJtTpw4YTEtXA2rJ6k20BdaQE6dOoXo6Ghx+6lTp3D11VeL+5w+fdri7xoaGlBRUSH+fVRUFE6dOmWxj/C4qVaWoKAgBAUFtfh92NPU3Ho5Ljr2euJPnTrFOfcEoPnGIKnceaO0/q3oYa1ftfUWeOM0EdIvDln3PCVzg2hdUFCQaho5m1r2uKmVHLSI56yy5Jo6qTbWKycByq+epNpAPyYmBlFRUdixY4cY2FdXV2PPnj1ISUkBACQkJKCyshLffvsthgwZAgD49NNPYTQaMXToUHGfOXPmoL6+HgEBjckotm/fjr59+zoctu9u9lrPHAXi7u7p19pQWTUN89EyOZJceWJkgPVvxfxcVeJcYOu/a9S+xBsRuc7V3CBKkCsjuVLcXX5709msk5VZr+SgRa6cs/Yysws90ErVDbRcJ1Fi6qS7Wa+cBCi/3Keigf7Fixfx448/io9LS0uxf/9+REREoFu3bpgxYwYWLFiA3r17i8vrderUCXfddRcA4Morr8Stt96KRx55BMuWLUN9fT0ef/xxTJo0CZ06dQIA3HfffcjOzsZDDz2EWbNm4eDBg1i6dCmWLFmixFt2SO5eVkevodU59944pEztPHHO2uPoXGhuyJc7ltHjOegcueYlO2owkKuyw4ZE9zp37hyOHj2qyyWMvJ3UXCJKcSUjuSNKNGDKWX5nWScrc3UlB7X9/qWcs44ys/sHBCIgIFCRqZBKrnNP0inV4aFooP/NN9/gz3/+s/hYmBM/ZcoUrFy5Es8++yx+//13PProo6isrMT111+PDz/8EMHBweLf5Ofn4/HHH8fIkSPh6+uL8ePH45VXXhGfDwsLw8cff4zU1FQMGTIEV1xxBTIzM11aWs/d9LCUkLs0NaSMlKPEOevoXHDUEuxoLpjUAF1Nc+u1Rq6EZPb+Tq6MwXrMB9EUJXqCzIMUwHIJIyJPkJqRvClKJFZsqvzu/k23dFpMU79/td9HHWVmb3XsMyxatEi2JXalfIfuXGJbrYQAWYsjA5VKxKpooD9ixAiYTCaHz/v4+GDevHmYN2+ew30iIiKwZs2aJl8nPj4en3/+ucvlJHWwN8ynKVoe0kRNkzLky9FcMKkVC7XNrdcSuRKS2WswkCtjsB7zQTiiVE+QGpPl8T7hfeTK46DUigr2yq+F3t2mfv9auZfa++xdWWLXWnNTIe31Bruyzr3Wp9FpedUSpa4Xqp2jT+QqT2WV12sFUY/vS2ojEamTvQYDuTIGN5UPQgkVFRWYO3cuAGDu3LlIS0uT7dj2Rqe42gMllVqS5Wlp9RGA00o8wdG9z9G/1bSiglZ6d9Xy+1eb5qZCyhUUajlQBv4Ilp0JlN1Zl7WXr6G5aShKXS8Y6JPuOEqyIlRkW/rj12u21ubel157N8n7qK0xy3o44tNPP43q6mrx+ZMnT+KZZ56R7fXk6IHSOqVyjEjlak4SkvY7t9sjHhAIH0ByY5AS1xdXendJXZqaCilXb7Bcx1HqHupssOzOnEqO8jWodRoKA33SJXtJVuTqwdFShmEp9LIyA7mf2gJlZ6m1Mcu6smUe5JN97lqKVqhYq+Ucl5qThFwbreFoChAASY1BWhhCT9ojV29wS4+jlZFQ7syp5Chfg9zTUOS6BzHQJ68hZ0+/VjIMS6XllRnkxqGyttQaKDvL1cYsRwmA5DpHxOGI1WfQ6tfCFh2rpdQ+h9PdFU01nuPuXoZKqe9cyj23trbWpoe6W7duFsmZBc3d6+1pagqQlISzWhlCT+QKrYyE8kROJXdOQ7HXYOgTGOTaseQoEJFWSOnp1/pQfG/V0uCLSzk6pqVRH6dOnbKYPwdALKfUxizrHne5VnIQCL0swd9/7NLfy0ntczjdXdHU0jkuF09/56401pSXl4vLyQlef/11h79fe/d6T1DjEHo2WpOcuEKY+9kbkRATE4PevXtLPhYDffJ6eh2K723kCtC5lGPTtDDqw3oOnRAguLqUm3UCILlWcrDmY6pp0d/LQanMwFK4u6KphXNcTo6+c3dNX3Clxz0qKgqvv/66xf7dunWTrUye4OnpIGy0Vp5apgB5ChuVpLN3jtgbkdCxY0eXjs9AXybe9mPWG70OxfcmcgbozNKvbc3NoZPK3rxGV84RLawB7GgOp9R7nNqnANAf7H3n7kxmBUjvcQ8KCrKp+Nobtq9GSo0aZKO1ctQ4BcidmDTUNe6+zgIM9GXRVPIVNgAQeQ4DdDKntqWc1Ng77gxXKiNafa9a464eNHcms/I2zU0Hcfdr857oed42BUjppKFaaES3xxPXWQb6MrCXfKW+vh4z0mZ6TWseERE1TcoawGriSmVEC1MAtMzdPWieSGYlxblz53D06FFJ61ariSvTQdhRpG3eNgXI3UlDm6LV+4snrrMM9GXgKFurnK15vOATaQ9/t2ROriWSPM2VyohW36urpE5VaGkPlKs9aFqdQ5uRmYmG+j8S9al53eqW0soSZgIlelNramosGn2ioqI89toknbvPEa02onsCA303kqM1z9vm+RDpAVdycA82nJBaSa1cylEZldKDZm+lCLUGjvY01Ne7fd1qtdDKEmYCJQKrEydOiElWhc+I1Mvd54i3NSxLwUBf5bxtng+RHnAlB3mxwfMPknuO2TjiEVIz13u6B8reShFNZblXI7Xl3HAnLS1hpkRvardu3fD666+Lj2trG1dYYRJQdWKPu3IY6EvkW1MNn9/P/v+/PVNp8rZ5PuQarVfotV5+a1zJQT5s8PyDs5UkjiqRn8FgwJEjRwAAR44cQc+ePcXnnM1cL/SiK9EDZV2XIJKDEudycHCwRV1YaARhEKlOUs8RrSbXUyMG+hIFH/8C/v5/fGze2KNE6qLW3k5nA3e1lp/UhQ2ejZxNcsdRJfIqKCjAq6++itOnTwMAFi9ejFWrVuGee+5x+Df2EvV6avi1HivK7K2l5jAJqD4o8b3p9frCQF+iV155BefOnbOpNDEYIaWorbdTauCutvITqZmUnhGOKpFHQUEBMjMzbbafPn0ay5Ytc/h39hL1emr4tZYDHEeNxFp+T97InY1NBoMBxcXFqKioQEREBIKDgwFwrrZA60GrEkP99Xp9YaAvUa9evcTla1hpIrVQU2+nK4G7mspPRNoldwXXaDRi3rx5LT6Op2lxTmxz2ebZW6st7vp+CgoKkJubi/LycnGb0KBGjbT+21CiwUav1xcG+kQkOwbuRKQEuStnBw8eRENDg6zH9AQt9mw6mm4iJA1U23vSW14ZudlrbGppQ1xBQQGysrKQkJCAjIwMxMTEoLS0FK+99hrOnTsnU8nVR+q5pteg1Z3Udn2RCwN9IiJyK1aIyVPkruC+//77MpSKnGVvuolALdcRpfPKKDUsW+pQfHuBU0t+j0ajEbm5uUhISMCCBQvg6+sLAIiLi8O0adOQnJzs8rGd5enP3tVzTa9BK0nHQJ+IiNxC6QoxeR+5K7hnzpwR/+3r64s///nP6NevHw4fPoydO3fCaDTK9lpkn9pWkFA6r4xSvbNyvG5LGuJ++OEHlJeXIyMjQwzyBdaP3cXTn73S5xppHwN9IiJyC1ZSyJrWkkQZDAbx3+Hh4dixYwd27NgBAIiIiEBFRYVSRfMacq8gIcc5qOT0NKWGZcuR96ElDXHC/SImJsalv5eDEp+9nOeaWkbFuEoosxbLrhQG+kRE5DbM1yCFDwCToiVwd0VQa3NFzXsKrYN6BvmeI+cKElo7B60pNSxbidetq6vDJ598AgD48ccfAQClpaWIi4vzaDkEWh4S7x8QgFYaHV0XEhJiM6onIDBITI5OjjHQJyIiUgXlAn1PDY/WWpKo4OBg1NbWKl0MkpHWzkFvtWzZMmzYsEEcVbNr1y4AwMKFC7F69WqLRjhOoWne/HnzcPHiRU2Ormvfvr3N6MD4+HhFyy11ZJBSoykY6BMRESlIuOmbfHwBkzIVVrmHRzuitR6xzp07q74S7A1q/o+9s46LYnv/+Gd32V26W0FUShFbAQOxu67FNb5i17W9etWrWNjdXgWxroHd3YqYoGKCYmErqIAg8Pz+4Dfn7mwQAgI679eLl+7s7MyZmTPnPHWe5+tXPH36FE+ePAEAPHnyBPb29qx+ek4oan3wV2TlypXYsmWL2u9iY2PRtWtXjB8/npd1XyBzzMzMWBnCohhdpxwdWNAGiuwaCAs6x4ig6AsICAgICBQA6sIRC5K8DI/+WdDR0SnoJggAePr0Kfr27cs+BwQE4J9//ilyyopA1qSmpmLbtm2Z7hMbG4tBgwaxz+bmguFG4MeS3cigH2VE14Sg6AsICAgI/JTkVeK3/EoApByOaGZm9lPXgi6KPHv2rKCbIADA3t4e//zzj8o2gZ+PkydPZisUv1WrVqhQoQJMTU2hra2NAQMG/IDWCQhkkJPIoII0oguKvoCAgIDAT0lu196qC7nL63A7xXBEooJNxJeXFPXszhxxcXEF3QQBZORKELz3vwYPHjzgfba3t4elpSXevHmDp0+fsu3v3r1D/fr11f5GQEATX79+5S0Bsra2LuAWqaJuqZKxsfF3HUtQ9AUEChjFrLLHjx+Hg4MDZDJZAbdKQKDok9ukW+rKA+Ym3C6ryICf4b3XtB5RS0uK1NRvBdSq70cx4Zeenh4cHR1BRBCJRIiKikJCQkIBtk5A4OdDOarp6dOnPAWf4/Xr1z+qSQKFnJxE3T19+hQBAQEAwOb1woa6pUrz58//rmMJir6AQAGydOlS7Ny5k4Wpbdu2Ddu3b0fHjh3Rv3//Am6dgEDRJi+SbqlLAJRTshsZoKurm6u2FgY0rUfU19fH2LFjC7p5OUZL6z8xKSEhAREREQXYmsKBskfse5PiCQio49OnT9naTyhvKfA9UXfKy4CyqqpSEBEA6pYqCR59AYEixsqVK7F9+3aV7Xp6eizbbL169X50swQEBPKY7EYG/IgMvD8CdesRiypGRkb48uVLlvsV5aUKOW27skdMSIr3a5NfOUwEBLLie6LulJcBZbXsoyAiANQtVcquAUwZQdEXECgAUlNTERISAmNjY0yfPp3nNbK1tUW3bt0QEhKC2rVrF2ArBQQE8orsRAbcu3fvRzdLIAsMDQ3x4sWLTPchiKCjoXRSYS7N971ln5S9TUJSvF8TdVVDpDI59PX1c3VcHR0dfP78Ocv99PT0VLYVZYObwPeRF1F3mZHTCIDChqDoCwgUAKdPn0ZaWhp69+6NsmXLqnzfs2dPzJs3D2fOFI6yWwICAvnPt29Zr2EXBNkfS926dXH37t1M9xGB0KFDB4SEhGD8+PEoUaIEjIyMMq3zXBi8oN9b9klIjCcAqFYN4fpObo1bX79+zdZ+SUlJ7P8FXatcIHMKw3iXFZrm1pxGABQ2BEVfQKAAePv2LQDAy8tL7ffcdm4/AQGBnx8jIyOWiMrQ0BD6+vr4+vUrtLW18enTJ3z+kqDRcyyQP2Q34VdaWhqADI9SZkrwj6jkAGRfsC7Isk8/I8rreQH81DkM1HlTc6voZ9djmpiYyGtHQdYqF1DPjxrvcsPPbiQSFH0BgQLAwsICABAaGooWLVqofB8aGsrbT0BA4OfH1dUVFy5cAJCxHk95TZ7o//91d3fHrVu3BEH2BxAdHZ2t/R49epSt/fK6koMyRUGw/plRXs8LoFDmMCjMCRX19PSypewbGhryPv8Io5UQUZUz8nu8ywt+diORoOgLCBQAPj4+2LFjBwIDA9GkSRPeGv3U1FQEBQVBIpGgTp062LZtW56fP6deh8IsFAgI5AWFoY9nJ+kb8F/JN8H7mv9IpVLe/xWXVyh+VtwvK/JzTWlREKx/ZtRlyy6MOQwKc0JFFxcX5uzIjMqVK/+A1mTws3t985PvGe9+dKj/9xiJiorRR1D0BQQKAC0tLXTo0AFbtmxBhw4d0LNnT3h5eSE0NBRBQUH4+PEjfH19cyQ85oSYmJgceR0Ks1AgIJAX5FUfz43BILv7yeXyHLdL4PvgnolIJIKhoSGvxrehoSE+fPgAIipUhs/8Tk4loJkfkb8gLxSMH5FQ8XuVteyG7iuu0c9vfnavb2GhKEQkFTWjj6DoCwgUEP379wcAbNu2DfPmzWPbxWIxfH190b9//3xJ+nH27FksXbqUt83U1BRPnz7VKKAIWZYFCpr89rjnVR/PjcGgWLFiADKUSnNzc16ODgsLC7x79w5ExPYriuS3FySvj88tnyAinpIPgPf5e0sfCeQPX79+xdOnT394/ev8JCsFIydr47/HIJFdxV1dO7W0pEhNzTrZKJDhiMgOWSXJzGuKUj6LouJtVqYoRCQVNaOPoOgLCBQgZcuWhYWFBS/hk4WFhdpM/HnB2bNnMXHiRBWPYEJCAqZNmwaZTKZWGBKyLAsUNN+jQOdE2MlpH9dkeMiNwYDzUBERvn37ho4dO8LW1haxsbE4evQoiIidu6iRl0rKjzx+dqMnhCiLwsXTp0/Rt29f9lmx/vXPpARlp8JDbsmpl1VdO/X19TF27NhsnS89PT1b+3EJMIsaX758wbJlywAAy5YtQ0BAQK5LEnLk9zj7IygKEUlFyegjKPpFmLS0NNy/fx8AcP/+fZQuXRoSiaSAWyWQXc6ePQt/f394eXlh4sSJKFmyJB4/foxNmzbB398fkydPzlMPRHp6OubPnw8gY21b165d2Tk3btyI0NBQzJ8/HzNmzMizcwoI5BU5UaB/hLCjyfCQG6OYSCRi/4+Li9OYn0Nxv6JCVl6Q3D6T/FKCFKMsLCws8ObNG94537x5AyJC8eLFcfny5Vxdg0DeoW6tvLa29k+nBP0IA/z3eFmV25nT88XFxQHISMzn6OgIIoJIJEJUVBQSEhIAAMWLF/++CypA+vfvj3v37rHPERERaNGiBVxdXbFy5cpcH7+gjEEChRdB0S+icOHXnNAxb948bNiwAX/88Qe8vb0LuHUCWZGeno7ly5fDy8sL06ZNY8m13NzcMG3aNPz9999YsWIFJk6cmGfnvH//PuLi4uDu7o6AgADeOQMCAjB06FDcunWryNUIFcgfCluZqJwo0D9C2NFkeEhLS8PNmzfx4cMHmJqaonz58tk2wLq4uODgwYOwt7fH169fVZRKuVyOp0+fsv2KGvntBckPJYiLniAipKSkoGPHjrCxscHLly95URY/cr2wQNZoGi8EJej7yCsva3aiKSwsLJgTKyEhAREREWr3s7W1/a42FBTKSr4i9+7dQ//+/TFixIhcn6cgjEEChRdB0S+CcOHXyrx58wYTJ07ElClTCtVatKIeeZAfa4MfPnyIV69eYcKECSAi3Lhxg6cYdOnSBYMGDcLDhw/z4hIAgD2DHj16MCWfQywWw8/PDyNHjmT7Cfx85ORdLCplojSR38KOOkXi7NmzWL58OV69esW2WVtbY+DAgdkywLq4uMDY2BhPnz6Fp6cnfv/9d8jlciQnJyMsLAyXLl2CiYlJkXkGPwM/c5TFj6IwVLTgEJSggiGrKCvFPqK4lDEzipJh5uvXr0zJr1y5MiwsLHDkyBE0btwYT58+xd27d3Hv3j0kJiYWcEu/n8L0nhcV1OUSyev7Jij6RYz09HTMnDkTAGBsbIwaNWrg4MGDaNasGS5evIi4uDjMnDmTl9ytIFEWfOfNm4dNmzZlW/AtDORkbXB2X1pugoqNjcXUqVNVFINevXoByJ8ET5wHSuDX4vjx41ixYgVLIDZv3jxs3LgRgwYNUvsuFpUyUYUFxaU4EyZM+K6lOGKxGCNGjIC/vz9u3LiBS5cuse/kcjlEIhGGDx9epAylRR3FKIvk5GSeEmJtbQ2ZTJZnURY/q6AsVG0RyGrpzoMHD1gfya6DQ0dHJ9/am9cOqjVr1gDIqNTx5MkTXL9+HQBw5MgRAICuri4SExMRFBSUy5YXHMJ7nnPU5RLJ6/smKPpFjLt37yIxMREGBgaYMmUKhgwZAgA4ePAgFi9ejPHjx+Pz588aw4N+JJzgW716dTRp0gTBwcHw8/PD3bt382UNen6Rk7XB2X1puSQ206dPV6sYTJ8+HUDGpJBXcIJocHAwKlWqxPPqp6enIzg4mLffz8TPKkBnl7NnzyIgIEDFyGNlZaXxXSwqCRgLw7NNS0vLs6U43t7emDx5skpkgKmpKQYMGABvb29hec0PRDnKwtfXN9+iLH5WQbkoV20pbEuYijKZLd1R7CNHjhzBjh07AAAymQwpKSnsN4qfS5cunS/tPHv2LJYtW8aMelkZxbNDbGwsgAznjYeHB/r06cMSrR48eBA3b97k7VcUyel7XlBzd26W1+U1P8KhIij6RQzOw+Pk5IShQ4fyvhs6dCgqVqyo4gkqCBTXoHft2hUDBw4EAAQHB2P58uWQSCQaBd/CFupPRDh48CCeP3+O4sWLo1+/fhr3ze5Ly12ToaEhpkyZAi2tjFfRzc0NU6ZMQYcOHRAfH8+yyubFfeAE1lu3bmH8+PEqyfhu3br104YF/6wCdHbg3sXq1aurLNsoXrw4pk2bluf5IH4kheHZ3rx5ky3FUbcsJqdLcby9veHp6Yk9e/YgNjYWtra2aN26NWQyWX40/6cnN8raj4yyKMoKcWYUFaOhOor6EqacUlDKl2Ifefz4Mduuo6ODNm3aMKX4yJEjTNE3NTXN83ZoWhr7+vXrXC2N5aIPzM3NMWPGDDZPlC9fHo0aNUKHDh3w/v37fI1SyG9y+p4XxNyd2+V1ec2PGBsFRb+IkZycDAC4fv06xGIxz0MnEolw48YN3n4FBbcGvWXLlpg8eTLvu8mTJ6Nly5a4ePGiiuD7PaH+Hz9+ZNlKV65ciQkTJsDExCRPrmP8+PG4cOEC+3z16lXs3r0bNWvWZAOUItl9aaOjo5GWloaPHz9i4sSJ6NKlC8+j//HjRwDAokWLAPAtyt8bBaEosF6/fh2hoaHsu589LPhnFaDVobx85Pz580wJdXV1Vdk/r/JBFJTnqzA82w8fPgAASpYsqfZ7bnt2l+KoE0Z27NhRpJY85QV51adyq6z9qCiLwqYQF4ZomYLmV1vCVBgMp4rjZHx8vMa8GHm9tFFxaayBgQFq166tsjR21qxZmDt3braOp/j+lCxZEs+ePcO7d++QkpLCe49SUlLYkrqqVavi2bNneXpdhZUfPXfnxfK6ooig6BcxSpUqhfDwcACAlpYWL6RJ8bPifgUBtwZ99erVKvWF4+Li2HolbonB/fv3ERsbi8mTJ+co1F9ZEb9+/Tratm2rURHPCdyxpVIpOnTogGbNmuHgwYMICQnBhQsXMH78eHTv3v27js3dn/HjxyMwMBCDBg1i3xkbG6v9TVxcHCZOnIj+/ft/1zmBXzcsuLAJ0PmJ8vKRjRs3Asg7JVQTUVFReeL5yqlyURieLedZevz4Mdzc3FS+5zxU2VmK8ysKI5qiuPLKm5oXypq3tzdq1qxZICGfBaVwFwalr6ApDOPLj6QwGE45GcjJyQnx8fG86iOWlpYwMjLCw4cPNcpK3wu3NFZXVxefP39mSxgPHjyI5cuXY8yYMTlaGqv4/pw9e5Ztb9q0KRo0aIAOHTogJCQEx48fZ9/lxElV1JeV/Mh3qyAqXRUWBEW/CCOXy3khTYcOHWKKfkEnXDMwMGD/11SzHQAbSOfNmweJRAJnZ2d07949W6H+ykq+IrlVxFNSUpiSf+DAARYy27dvX/j5+aF58+a4cOECfH19v+v43Bp9W1tbbNq0iQmPxsbGmDp1KtuvcePGOHLkCDN4hIWFMcXte8lLgVXw+BQ+lAW1+/fvY968eXj8+DFcXV1VnntOlFBNaHoX165dixkzZuToWEVRuShfvjysra2xadMmnhABZAgYmzZtgo2NDZycnDI9Tm6EkaL6LmYWxVW9evU88abmlUApkUhQqVKlXB8npxTUO1EYlD6BH0thMGyYm5sDyIgMVV6uFBcXxxR/br+8gluW4+fnh4oVK/K+s7e3h5+fH5YsWZLtpbGK7w83DwMZ8vmxY8dw7Ngxld/kxHjxqy0ryQ2Kla7yYnldUUJQ9IsY0dHR7P+fP3/WGNL06NGjfGtDdgTK9PR0ABkK/9SpU3lr0Bs1asQU/YYNG+LYsWNMob1//z7Gjh3LO9bkyZPRqlUrXqg/p4gDgIeHBzw9PaGtrY2vX7/i0qVLCAsLy5Uivn37dgBAhw4dAAAhISG8tbLt27fH5s2bWcKYnOLk5MRTDDjh8dq1a4iLi2MZWLmMrMHBwVi5ciUSExNx69at7zqnInklsBZFpexnR1tbG6VLl2YKva2tLaytrbF48WLExcXxsoZbWVnB2Ng4W0qoJjIzuIWGhubY4FYUlQuJRIKBAwfC398ff//9t8pSnNDQUEyePDlLY1puhJGi+C5ev34dq1atgpeXF/z8/DBz5kz89ddfLKph8uTJv9RSBU0U1DtRGJS+n4X8NsQVVUOfOsqXLw9jY2PExcVp3MfExATly5fP1vGyWw2JW/JqZ2entt9zkVTZXRqr+P6ULl0amzZtgpGREd69e8dC9YEMg4WZmRk+ffqUo3k4r5aVaOo7CQkJLBLh7NmzKFasGPT09HJ8/LwiN32ci6LN78jGwoig6BcASUlJ+PfffwEA//77L8aMGZPtBByKofp5sd/3kB2BkhNEv3z5ggkTJqB69eqQy+VISkriDUycRZNTaAHV2qhxcXFYvXo1gP8MGIGBgQAyQmZjYmIQFhbG9reysoKpqSk+fPjAFPacwlmM4+Pj0aRJE2a4AIAVK1agSZMmALJf71UZsVjMFIPx48ez+3Pq1CkAQGJiIvr374/KlSuz33AW5ZEjR37XOfODoqiU/eyoW9+tq6uLV69ewcTEBCNHjoSXlxdCQ0MRFBSE+/fvw9fX97siOhQNbprIqcGtqCoXistiFJfi2NjYMIU1q2UxuRFGiuK7GBISAi8vL4wdOxZbt24FADx//hxdu3ZFWloaVqxYgZo1a/6UeUNyQlF9JzLjR9SPLkzktyGuKBr6skPlypXh4eGhUukiJ1Gr2a2G5OjoiPDwcKxZswYeHh4qkVmc3MntlxMUjcGenp5M5ktOTsbly5dx6dKlbBmDFcmrcUFd33n16hUWLVrEDBIbN27EoUOHMHTo0AIzvuamj3NRtHmxvK6oISj6Pxhl79fp06dx+vTpbK8pt7e3x927dyEWi2Fqaop3796x78zNzfHhwwekp6ez/fKDnAiUPj4+OHv2LC/xGwDm7dJEu3btULp0ad7ADgC7d+8GAJZ08MOHD/Dy8oKvry/z6F++fJmdL7NzZIalpSXu3LmDAwcOqHyXnp7OlhxYWVll6z5//foVMTExOH/+PIAMZez3339Hp06dEBISonJ/fHx8vjsaQfm8+bmG62cUQH8E+eV9Ube+Ozo6GqNGjQKQETLIhQ8CGUqoi4sLzpw5gzp16uT4fJoiipQJCQnJ8bGLIrldFpMbYaQovovv37+Hm5sbunfvzhIabty4ERs3bkSbNm0QFhaGmzdv5lu4fFHxZP2M/Ij60YWJ/DbEFUVDnyZu3ryJuLg49OnTB/v27eOFytvY2KBPnz5YvXp1tseG7Hq+69Wrh507dyI6Ohrjxo1Dt27dmKy6YcMGPHr0CGKxGHXr1v0uJ5KiMVhR5suJMTg/UL4/nEJdvXp1XhnAU6dOFWiemNyU75PJZLCyssr18rqiiKDo/0DyYk05t/Y9PT0dcXFx6Ny5M0sSt23bNl7IfH4hlUqRkJDABFmpVKqyD1eL/dSpU5DJZKxMHAcnsA4ZMgRNmjTBwYMHsXTpUva9Yki8tbU1U+KHDh0KNzc3LFiwAHfv3oWJiQmioqJ4g6aFhQVMTEzw8ePH7xbO2rRpg9OnTwPIEKqbNGnCBrvDhw8zj1qrVq3Yfpmxe/duVhkAyBBmd+/ejYSEBJ519+HDh9i1axczAPn4+LDfKNa6zy5FZQ3XzxR2mB3ywvui7BF7/PgxgoKCVNZ3p6amIjk5Ge7u7nj79i3mzZuHuLg4poTeu3fvu9emZdeQ9r0Gt6JIbpbFKC/p+RWEEXUJW6VSKTPqcgaA/KCoeLJ+Rn61bPb5bYgrioY+TXDvfNu2beHr66tiOE1OTsbq1auzPTZk995oaWmhY8eO2LJlC/Oyc3BjcceOHdXKvNmlIJN6akLx/qSlpWHixInw8vLC5MmTcfv2bbx9+xZWVlaYNm0a/P39sXz5cvTo0QNAwZVgzA6K4/uMGTPQv39/rFq1KlfL64oigqL/g8irEFdFBT41NRX//vsvWwagab+85OzZs1i2bJnKOt9BgwahevXqPOuZSCQCEUFXVxdDhgyBl5cXtmzZwvPutWjRAjKZTCVcv0OHDvD19UVoaCgCAwPx9etXABkTgLOzM2rXro27d++yMnSKvH37lv2/TJky3xXZcO7cOfb/T58+afRcZvVMgYx7tmrVKpQvXx7NmjWDra0tnj9/jkWLFoGI0LhxY6bQp6Wl4dSpU4iLi8P06dNhamoKR0dHXq17AwMDfP78OVvXUdiEKU0KfU4VX01ZuvOqPflNXnhflD1iXNK7iRMn8hREThjiln2IxWLUr1+ffZ+btWmKvzExMUGvXr3YsoDAwED2fqrrr0U9Y3B+oLikpygII3kVfl2pUiV4eHgwg65iFFdeZ9ZW5Hs8WYKynzf8TIqpQN6iXMVE2XDKGY65/fISrqqRsswnEong6+uL/v37q3jdczoOFlRSz+xw8+ZNVhq7W7duKvXmW7RogYsXLzJ5ozBH4qiTs2xtbXO1vK4oIij6P4jsZkrftGlTpt8nJCSw/3Pre9R9Vtzve1EWxJ8+fYpp06apLZfHlX3jvNazZs1i3ycmJmqsO7pr1y6Ym5vj5cuXADIMBCkpKQgJCWEGAWtraxQvXhzPnz9nEQtmZma84xgbG8PCwgJv377lJXD59u0ba39OBNCIiIhs7adunVZaWhovi766LNppaWnMy7pq1SrUrl0bEokEEokEI0aMwMSJE5GSkoIhQ4aw43K17rt06cKLDsiMwiZMaVLoc6L4ZpalO6dCeEGta8yL56J8zy5fvow1a9aorO/mhCGRSARA1UPKGUySkpIAZP2uKI4LimzatAm6uroAMgx49erVQ7NmzQCAJeNUpKhEm/xo8mKt/48iL8KvdXR08OjRI573zNLSEjo6OkhKSuLlR8lrcurJKuo5A361yCmBokl2q5hkNxkfwJfLsvKi9+/fHz179sSePXt4SZiVKwBw/EzLUDj5YPXq1ahRo4ZKiVeuNHbv3r1RvXp1AIU3EkednFUYIyryG0HR/0EoJovLzX76+voA1NcXNTY2hqGhIR4+fMj2yw3Kgjh3TE3l8jZv3owVK1ZAIpFg9+7dOHjwIPz8/HDo0CGNSetWrFjB+8wlEezWrRscHBxgamqKcuXKoV+/fgD+W5uqmLEUyDA2qMvQum/fPtb+nAy8XKKXEiVKYPny5Vi9ejWeP3+O4sWLo0+fPhg4cKBaZUddIjQAaNmyZaZeVsW1Zt7e3hg/frxKzgau1n1RrqGtSaHPruLLrUGvXr06mjRpguDgYFZ68HvWjhXldY3K94wz7imv7+aEprVr1wLge0HS09PZds7ImNW7ojguKEbitGrVCu7u7jAzM8P79+951SE4I4MihS3apDBRVISRvHiGSUlJ0NbWVkkSyRmebt68iWrVquVZmzWRXU9WfuYMyG9+1oRthYmcKJQC6smrKiYc6uQya2vrTJ0DMpmMVV3KCnt7e6xcuRIPHz5EfHw8jIyMUKxYsWz9trDBRVC5u7urLfE6dOhQ3Lp1C2XKlCmyY0dhjqjIDwRF/weR3QyhWe1nYmICAIiKioKnpyd+//13lcydQN6EOyoKcXfv3sWCBQvg7u6OgIAA3ssfEBDAXv7ExERUqVKFedzLly+Pbt26sYnvw4cPWLZsWZbnNjU1hZeXFx4/foyJEyeybPufP3/GiRMnWHb6rHB1dcWIESPY9WSXYsWKITo6Gq9fv4ZcLsewYcPYd6mpqcxwwe0HqE+EFhISgrVr12L16tWws7Njk0pWXlZbW1sAQM2aNZGcnIzixYujX79+0NHRKTTevO8hO/kdNKFYY/x///sfC7HjSg9KJBKNNcY1UdgiHnKDJi+IRCJB//79MWnSJMjlckgkEiQmJjKh6ebNm2orPGhCcVxYsmQJU+hTU1NZkkxlrK2teUtqgJ/r3ucHRUEYyYtnWLx4caSmpqokiVSO4spvsuvJys+cAflNUTZs5jd5sZToexRKAfVkJ7IpO6iTy7h3Oq8Sy12+fFnluX9vlKGAQF4jKPqFlEmTJmHp0qUqa5C4ZE1GRkZ4/PixSuZOZ2fnHNfi1ISiEMetWe/Ro4fa+s6cZzo8PBxVqlRBxYoVsWHDBqxduxaLFi1iAmtKSgoLO09LS8OAAQNYtQBFA8CiRYuwaNEiAOAtFVC3BCKzZHmpqanfJYiWLl0aZ8+exdevX9GhQwc0bNgQNjY2ePnyJY4dO8ZyBnD7KSqhikoWF1rm7u7OC/vMysvKeV24HABXr17Fvn370KFDB9SrVy/H11MYyK0QpFhj3MHBQUVgzazG+K9AZl6Qo0ePAsgIk1ZcDmJjY4MpU6bkSBhRHBdq1arF89xrwsXFJVv7/QiE8OXChVwux9q1a3H79m1mAFQXxZXfZNeTlZ85A/Kb/DauFeV3K7dLibKjUOZknM2re1mUn0luI5s0yWXcOz127FgsXrwYffr0AfB99yevn3tBw0XG3r59W200xe3bt3n7CRR+BEW/kBIbG4vffvsNpqam2LlzJ9uumKzJ09MTnTp1ynUtzpxMBESkNjRNmYoVK8LY2Bi3bt3C+PHjWaj/kSNHWAZ+LS0tlClTBo6OjoiOjlbJOcChra2N5ORkyOVyzJ07F6VLl0aPHj2YV10sFvMSp1hbW+Pz588gIrZGP6coKt4fP37UmIyPi7BQVEIVDSGcQg8AL1++ZGGfmXlZAwICEBsbCz09PTRv3pwZMI4dO4YtW7YUSY9SXkyGijXG1QmsuUkq97OQmRdkypQpeR4O3rx5c5XlN+qoVavWd5Ujyg+E8OXCRXR0NCZMmMBqZcfExGDr1q0siis/Em4J5A9F+d3KzTKUrBTKv//+O8f5HfLqXhblZwLkLrJJk1wGZMiNPj4+CAsL++7Ecnn93AtDglpuvO3duzf27dunIkf07t0bq1evFsblIoSg6BdyPnz4gN9++w0zZ85k2/K6FqemiUBRoefW5y9atAjJyckqWfc5r3vFihUBgJdU7vr16yp14oGMfAOK3kVjY2Om6Ddp0gTly5dHUlISm3zHjh0Ld3d3ABleHq4NX758weDBg6Gjo4Pk5GRcunSJeY01JU/JCicnJxgbG2dqtTQxMWGRE4pKqCKKXlYgYx2oi4tLpl5WIMPLpa+vzzMwWFlZQU9PD8ePH/+uayoo8moyzE2N8V+JrLwgeRkOfujQIY3fcVU3AODixYt5ds7cIoQvFz4uXbrES8aniLm5+Q9pg+DJyj1F+d3KTbRDVgolF22Wk/wOeXUvi/IzyS2a5DIODw8PAN+fWC6vn3thSFDLOaciIyOxYcMGlUgrf3//HCdCFChYBEW/CPDhwweV8nPe3t7w9PRUmxU0p6Fa6iYCdWHWIpEIT58+hbGxMS9xUmBgIF6/fg09PT2m6HNtnDJliko5PgDo06eP2vqoW7ZswerVq3H48GEcPnyYt79iTXlFZS41NRVLlixRe215ofR5eHigePHiLKrg+fPnCAsL4+VTyEwJ9fb2ZlbQtWvXsnB9dV7WW7duYffu3UhOTkbp0qUxceJEnrBZmBSm7JJXk2FhqDFeVMIgf9T67tjYWABA69atsX//fhatA2Q82+bNm2Pv3r0q6/MLEiE3QOGBKxWqqYKMiYnJDxMoBU9W7vlV362sFEpue06i8fLqXv6qzwTI2jnAVXtyc3P7rnuk+NzVRbpqeu6aEjYWhgS1is4pf39/dOnSheXL8vf3L3QlXgWyRlD0iwjK5enUKeI7duzAwIEDYW1trdZDr0lJUZ4I1IVZR0dHY/jw4UhNTcWXL194iZM4b766xGrK3kVjY2PMmTMHkZGREIlEPGUkPT0dkZGRsLa2xp9//om4uDjExMRgw4YNaNu2Le+4HTt2xLVr17K8bx07dsxyH3U8fPgQcXFx6NOnD/bt28erhmBjY4M+ffpg9erVbD14Vkqo8nVp8rJy65irVq2q1vs9cuRIlvBMMbRL8XNhq0meV0JQYagxXtTDIPMaLmmkk5MTDh06pGJ4PHLkCADAwsKiIJspUEjhjKWVKlViofvJyckICwvDpUuXsp3ENi9Q9GQFBwdj3759rC+3bNkSU6ZMETxZP4Cc1iQvKBTlKS5nz/3799UaWPOz7ruAZrLrHPjed5ozJOzatQv79u1TW6kD4D/3s2fPqji/rKysMGjQIHh7excKeSKvEiEKFA4ERb8QUqxYMZibm6NTp04YN24cAPAGhazWO48fP15tqFZ2lJS0tDS1YdapqalITU2Fvb09Xrx4wfuNqakpWrRogdWrV6v1yip7F7NS1vz9/dl5OY/848eP4erqyjMYaGlpITU1FUBGeKe5uTk+f/6M2NhYEBG0tLRQtWpVlfubHa8sp5y2bdtWbeRBcnIyVq9ezdaDZ1cJrVKlikp7FK27nOfT2dlZrffb0tKSfVYM7VL8XNhqkmc35D47QlBB1xj/lcMg1dG6dWusXLkSgYGBaNKkCa8cUWpqKoKCgiCRSFCnTh2NeS4Efl2+fPnCjKmKofuKxtQlS5ZAJBJlWcs6t3CerIkTJ6J169a8CIM1a9YgOTkZU6ZMETxZ+UxRqUmuKE9xSYLXrl2LChUq5LlCKfB95LdzgFviuXr1ahV5fOPGjVizZg0vKuns2bOYOHEiL8E0kLEcaOLEiTlOjJufFJUSrwJZIyj6hZAXL17gxYsXiIiIUPkuO+udAwMDsXHjRpUXslixYhg5cmSmdT65WsLKYdact3Xo0KEYOXIkBg0aBFNTUxXFNzuhaZkpa506dcLKlSt5llGJRIKAgACkp6fztiu27927d3j37h3vPAYGBmrPnx2Dh7Jyqmy8ULce/HusoOoiMwBgz5496NmzJ7S0/ntFU1NTmTDco0cPeHl5AfhP2SzokC9N5LVVvSAnIE1hkEUlpD+v4WoNb9myBR06dEDPnj15tdA/fvwIX1/fHJVR1IRQn/r7KOx9U5Mxdfny5QCA3bt3s31XrlyJDh06sNKa+QFX8jS72wXylsIQvpwdlNt5/fp1rFq1qsCizQTUU9DeaS4qKS0tDfPnzwcAVK5cmSWo5owCoaGhmD9/fo4SNuY3RaHEq0DWCIp+EUEsFiM9Pf271zurUyi5Op+KSlNMTAwA1TBr5brvpqamqF+/PvueU3w/fPiAEydOZCmIq1PW4uPjMXnyZBXLqGIW+lGjRsHLywtbt25lHkJtbW0WOgcAlpaWaNWqFdasWaM2wiA7XtnvXQ+eEyVUXWTGkSNHsGjRIiQkJKB169bo378/T3HiIg3Kly+vonDmhccjP7K+5odVvbBNQL9ySD+ndIWEhPCW9EgkEvj6+qJ///65jrIQ6lN/P4W9b6ozpq5cuRI7duwAkLH8qlOnTiwfzJYtWwAgz8uMKkazTZ48WW0SqpxmThfIOUVlTblyO52dnWFrayuEOxdC8ss5oLzEU/m5c1FJN2/eRHp6OuLi4uDu7o6AgACeky4gIICV7+RKVCtSGLLxCxRdBEU/D/jy5QurAb9s2TIEBASwLPUcnKL+vZibm+PNmzfftd45s1D/iRMnqs0uv2vXLnTp0oV9zqru++LFiyGRSNh9ALIWxBWVtbS0NJb0Q1GxdnV1RXp6OvT09JCUlKSSq8DJyQmfP39WWfuenJyMNWvWqI0wyI4gkRvlNDtKqKYlEq1atcLWrVvx8eNHJCQkqChOtra2IKJ8CwHMr6yvBW1Vzyl5kdAyL9tS2Nes9u/fHz179lSbHDS3/Cx1ijX1qfz2uOdF38yvPmhmZqZiTE1JSUFISAikUilMTU3Rr18/SCQStGjRgi0PCQkJQe3atXN1bmUUo9mkUqnKGP49mdMFfi2EcOfCS344B7K7xFPRidajRw+1Tjo/Pz+MHDlSraJfGLLxF2YKe9RaQSMo+rmkf//+uHfvHvscERGBFi1awNXVFStXrmTbpVKp2hrx2cXMzAxv3rzJ8XpnTQqlm5sbGjVqhIsXLyIpKQlLlixB6dKlER0djVGjRmH16tUoVqwYy3SfWd33xYsX4/79+3BxccGQIUO+SxDXtGSA2z5q1CjMnTuXLRn48OEDli1bhtatW2Pu3LkQi8VqIwxykvxGebCoXbt2vq0H13S9yuX4vL29YWhoCLlcjhcvXiAsLCxfQwCVl3c4OTnlmdJalISgnHpB8zOkv6isWeXC+JXJjTcis/Hre+tTFxSa+lRO+1pO+1ROPKSaFPr86oMdOnRQCXcODAxEWloa0tLSMGjQIN5z1dLSQs+ePTFv3jycOXMmV+dWhjMK52Xm9IJCEHwLjsIWbfar8SP7fnaXeJqamjJF/3sSjBaV5SwFRWGPWitoBEU/FwQEBODJkycQiUTw8PDApUuX4OnpibCwMNy7dw/9+vVjWTcNDAxypehzCfByut5Zk0KZlpaGlStXwt3dHbdu3UJqaip0dXXh7u6OsWPHYtKkSZgxYwZMTU3h6OiYad13iUQCFxcXrFix4rsFcU1CFredW4/OLRlIS0vDjh07cO7cOQAZ6+MUwyy/J/mNusEiv5TTzIRKb29vjBs3DgEBATh79izbnt/e7x8RHp1TISghIYHdg7Nnz6JYsWLQ09PLk7ZkRl556PNiAirqk3xOvRGKa/E/fPiQ5/WpCwpNfSqnfS0/hRpNCn1+9cHKlSurNaYCwJ9//ql23OHmgrwu2cgZhb8naWhOlYv8VkYEwVfgV+VH9v2cyOPp6enYsGEDgoODUalSJZV9g4ODAYBXopojr5azFJQBML/Hx7yS1/Lz/hRkZKag6OcCTsnfvn07du3ahUuXLsHR0RG+vr4YNmwY7t+/j/v37wOASqK47CISiUBEzAqY05ByTQolZwAYPXo0RowYwfNS+Pj4sLVFigq9urrvnGd9yJAhuRLENQlZ3PbQ0FDeZ8UMyQCwYcMG9huZTIZv377l2POtabDIDwt9VkIlV7asTZs2PyTjNBce7enpiU6dOrGQ4suXLxdYePTZs2exaNEivH//HkBGZuNDhw5h6NCh+d6WvJpY82ICKiprVjWREyVRU3LK2NhYte/Jj/Cy5tXkr+k55vT55ucyEU3PKj/7oLIx9datW9i9e7dGzxc3F+R1yUZuedr3JA3NqXKR38qIUB1E4FflR/b9nMjjFStWhLGxMW7duoXx48erJOO7desWTExM1Cr6eUVBGQDze3zMq/mpIIzoP+L+C4p+Lilfvjz69u3LU0a4Uit5ASfsuLi44OrVqwBytt5ZUaFULE+nHEak7KVo27YtVq9ejW7dusHBwUFj3fcTJ04AyH24oyYhi9seGBgIa2trnpClKedBSkpKpufSxI9UqLISKrmcB4oZp3fs2JEvyce48GhnZ2c8evSICdJARn1XZ2fnHx4ezRkeqlevjj59+sDW1haxsbE4depUkVqXXdSV9Lwgu/cgs+SUAQEBkMvlKs/8R9SnLijhSFOVgfzsU/ndXzPzanBzSu3atbFv3z5WslG58kh+lWxUXDaV07wsOVUu8lsZEcYdgYKmoLzHP7rvZ1cel0gkGDFiBPz9/XH9+nWenCWXyyESiTB8+PB8lbEKygBY2MbHgjhvQUZmCop+LlFXAk8RW1tbTJo0CZMmTUJsbGyWx5NKpZg+fTqCgoJw9+5dtt3T05Mp+kD21ztzCuXixYsRFxeH169f875ftGiRWi+FuvJx6shNuKMimQlZRkZGLAfAvXv3ULJkSURHR2PatGkAMrLdNm3alHmhw8LCcOnSpUJXqkSRzK43L3Ie5AQuuuPVq1eoUaMGJk6cyDvnxYsX2X7ZjWzIzSSvaV12+fLl0ahRoyK1Llsge2SVnDI5ORnLly/nPfOsvKx5JWgWhNDxI5bRFIQgnh2vxo8s2ajM9yYNzWmODkERF/hZ0NTHf6XlI9mVxxXHF8Wx3dTUFAMGDMj3sb2gxp2cnreotDMnc2hBjvmCop8HGBkZoXHjxrC1tUV4eDhOnz7NvnNwcICzszPMzc2zpeh/+/YNf/75p8p2db/NTki5RCKBj48PtmzZAhMTE4wcORJeXl64cOECFi1ahKdPn6JTp068ASknWfRzE+6oTGZClq+vL06fPq2yjtPe3h4rV67knbd169aZliopLGi63rzIeZATuGUlHh4eahOejR07FmFhYTlafpKbSV5TXgkg6+UgQhKqokl2klMSEfbu3YvGjRtny8uaV4Lmj56gf1SVgYIQxLPr1fgRJRs1kZd5WX4lZUfg10RTH//Vlo9kd4nnj0hKLIw7P4aicp8FRT8P0NbW1hhC2KRJEwAZScVyQ1aRA5pIS0vD6dOn4eLigvj4eJ7QxJXV2717N2rWrMmS7uXEo5ybcEd1ZDYI9unTh22/dOkSjh07hmHDhuW4VElhQvl68yrnQU7gSivWrl1b7Tlr1aqFsLAwlRKMmZGbST432a+LysArwCe7ySkXLVqERYsWAcjay1oUBc0fWWWgoEpCZvd9/J6SjXlVbzqv8rIUxT4oULgpbMZsTX08PyvRFHXyuzKDMO78GIrKfRYU/Tzg9evXqFatGrp164Zly5axBHwAcO7cOXh7e7N6mzlBLBajXLlyuHnz5ne3jfOUtWzZEnv37uV9J5fL0aBBAxw/fjxXWfTzuka6pkFQcXtuSpUUNhSvK69yHuQEY2NjABl9tVmzZipRGefPn+ftlx1y4wXNzXKQojLwCvDJbnJKrrxmdrwgRTE8OjfRLDklP+9PXiUe0lSyMbPzFqZ600WlD/5KyldeGYMKioIyZudVOHhRNsYXZOb0nFBUxp2iTlG5z4Kin0vkcjmSk5Nx5coVXLlyhW0Xi8VIT09HYmIiAEBfXz9boc8mJibo27cvvn79ikuXLiEsLAxAxkQUHR2d44mJUwjXrFkDLy8vlfXXnGLJJd37Xo/yj66RXrFixe8uVVKYyaucBznB3NwcAHD58mW1URmXL1/m7Zff5GY5SFEZeAX4ZPeZ//bbbz91XoafpZZ7fice0qSsFfVSlAVFUVa+ckphMwbllIIyZudVHynKxviCzJwuIPC9/FKK/rJlyzBnzhy8evUKFSpUwJIlS1C9evVcHdPc3BwrVqzArFmzWHhh7dq1MXPmTAAZynFiYiIqVKjAvNCZUbZsWVSrVg2hoaG8NYinTp0CkPOJifPClitXTm0oKLeWvWLFiqhSpUquPMr5HY6kSGEoVZIf5GXOg5ye08jICI8ePVKJynB2dsanT5/y9JyZkdfLQQQKP8Izz6AgDH35QX4b3DJT1n4lobsoJ5wsKIq6MaigjNl51UeKsjG+qPcdgV+TX0bR37p1K0aMGIGVK1fCw8MDCxcuROPGjXH//n1YWlpm+zhRUVGslB4AvHjxAjNmzFBRNDnOnTuHc+fOZfv4Fy5cwIULF1S2jxgxAq6uruxzfg0uRUXQLOhSJfkVwlUQCo/iOT09PdGpUycWqXL58mVcunTphytZeb0cRKDwIzzzgjH0FUUEgTuDoppwsiD5la41LxHum3APBIomIvoZFjlnAw8PD1SrVg1Lly4FkCE02dnZYfDgwfjrr7+y/P2nT59gZGSEmjVr8ur6Av+F6av7zK0pjYmJwYYNG3LUZrFYjLZt22LHjh2YMGEC6tevn6PfAxlrvqdOnQoAqFGjhoriyJVO446flpaGLl26oFSpUmoFzb///psZMwqDd01dGSobG5s8LVWijgcPHvBCuIC8Df8riOsqqHuZGZpqiQv8vPzqz1wx674mQ9+vYPQQyBrO4MxRGNcLCwgICAjkHk4PjY+Pz7L0uSK/hKKfkpICXV1dbN++HW3atGHbu3fvjri4OOzZs0flN8nJyUhOTmafP336BDs7O1y7dg36+vpIT0/H+PHjIZPJ8OrVK15SOJFIBBsbGxARU4hv3LiB4cOHo0GDBjhx4oRKErlq1arhypUraNOmDUQiEcsw/PDhQwwaNAgLFiz4rrB47rx9+vTBvn37VJS45s2bY82aNbzjFzVBsyAUA2UBC8h7IasgrutXV7IEBAoDhdHoJiAgICAgIFAwfK+i/0uE7r979w5paWmwsrLibbeyssK9e/fU/mbGjBmYPHmyynZHR0d2g4cOHQp/f394eHigWLFiSE5Ohlwux4sXLxAWFsYLd+ZCMhMTE3Ho0CHs27cPsbGxsLa2xs6dOxEVFQVra2sMHjyY/SYvQjW580ZGRmLDhg24ffs2U+LKlSsHf39/leMXtRDaH5kbgONHhHAVxHUVxDkFBAT4/OjkpgICAgICAgI/H7+ERz82NhbFihXDxYsX4eXlxbaPHj0aZ86cYZntFdHk0Ve2pOTE86LJU55Z3fq88KB/r4de8O4KCAgICAgICAgICAgUHELofiZ8T+i+Mpnd4JwoxJoMA3Xq1MHp06fzLVRTCAUVEBAQEBAQEBAQEBAoWgiKfhZ4eHigevXqWLJkCYCMsHh7e3v88ccfOUrGl9MbrA5NhoH89qALHnoBAQEBAQEBAQEBAYGig7BGPwtGjBiB7t27o2rVqqhevToWLlyIhIQE9OjR44e3RdM66PxeHy2svxYQEBAQEBAQEBAQEPj5+WUU/U6dOuHt27eYOHEiXr16hYoVK+Lw4cMqCfoEBAQEBAQEBAQEBAQEBIoyv0zofm7Jy9B9AQEBAQEBAQEBAQEBAYGs+F49VJyPbRIQEBAQEBAQEBAQEBAQEPjBCIq+gICAgICAgICAgICAgMBPhKDoCwgICAgICAgICAgICAj8RAiKvoCAgICAgICAgICAgIDAT4Sg6AsICAgICAgICAgICAgI/EQIir6AgICAgICAgICAgICAwE+EoOgLCAgICAgICAgICAgICPxECIq+gICAgICAgICAgICAgMBPhKDoCwgICAgICAgICAgICAj8RAiKvoCAgICAgICAgICAgIDAT4Sg6AsICAgICAgICAgICAgI/ERoFXQDigpEBAD49OlTAbdEQEBAQEBAQEBAQEBA4FeA0z85fTS7CIp+Nvn8+TMAwM7OroBbIiAgICAgICAgICAgIPAr8fnzZxgZGWV7fxHl1DTwi5Keno7Y2FgYGBjg8+fPsLOzw7Nnz2BoaAggw9KivE3YLmzPj+2FqS3C9p97e2Fqi7D9595emNoibP+5txemtgjbf+7thaktwvaivZ3TP21tbSEWZ3/lveDRzyZisRjFixcHAIhEIgCAoaEh74Fo2iZsF7bnx/bC1BZh+8+9vTC1Rdj+c28vTG0Rtv/c2wtTW4TtP/f2wtQWYXvR3Z4TTz6HkIxPQEBAQEBAQEBAQEBAQOAnQlD0BQQEBAQEBAQEBAQEBAR+IgRF/zuQy+Xw9/eHXC7PdJuwXdieH9sLU1uE7T/39sLUFmH7z729MLVF2P5zby9MbRG2/9zbC1NbhO0/z/acICTjExAQEBAQEBAQEBAQEBD4iRA8+gICAgICAgICAgICAgICPxGCoi8gICAgICAgICAgICAg8BMhKPoCAgICAgICAgICAgICAj8RgqIvICAgICAgICAgICAgIPATISj6P4APHz4UdBMEBPKVhISEgm6CQDZZv349kpOTC7oZAoWItLQ0xMbGFnQzBAQEBAQEBPIQQdHPB968eYPp06ezz7a2tvD19cX69evRqFGjLH9/+fJlpKWlafw+OTkZ27Zty/I4PXv2xOfPnwEAL168yEbLc8bHjx+xZMkSfPr0ibe9atWqWLBgAWbPnq3yXVGAiPDw4UNERkYiNTX1h5xT073s2LEjnjx5ova7zHj06FG2+lpqaiq+fPmSo7Z++vQJx44dw4EDB/D27VsAQPny5XH+/Hm1+8fExGD16tVYtmwZbt++nemxS5UqhXfv3uHQoUNo3759ttv0+PFjPHz4UGX7w4cPERMTk+3jFBTp6enYv39/ro7x8uVL/PHHH2q/i4uLw9WrV3H16lX06NED8fHxKvtIJBK8efMmV23IDcrjZn7z6dOnbP0VFnLaR5KSkrB3717MnTsXc+fOxd69e5GUlKR239u3b8POzi7LY168eFFt3+HI7txUmLl69WpBN0EgG5QqVQrv37/nbfv27Ru6du2arb6c30yZMgWJiYk5/l1ux0FNsgQAxMfHa/zu6dOnUFeEi4jw9OnT725PdsipM+x75NnMxvh58+b9sDE/P2RxgbxF07ur6R0p7Ajl9TJh79692dqvVatWvM8RERGoXLkyU9Y3bNiA4OBgnD59Gunp6fD394efnx/s7e0RGRkJd3d3AMDKlSuRkpKCYcOGYerUqTA2NsaAAQNgbGyM8PBwlCpVCgCwevVq9O3bF25ubgAAZ2dndO7cWUUxkkgkiIiIwKpVqxAYGMg6rkQiydZ1paWlISEhAS1atEDLli3RsmVLODk5YfPmzWjVqhXmz5+PmzdvYvXq1ejcuTMOHjwIAOjVqxdCQkKQmJiIcuXKYeHChfDx8cGIESOydd758+fzPk+ePBmLFy+Gl5cXRCIRDAwM0LBhQ1SpUkVju/fs2YMHDx7gzZs3SEpKwrNnz+Dg4AAtLS2cPHmS7RsfH49p06Zh1KhRsLKywuPHj9GqVSvcuXMHAGBmZoaDBw9CJBJh1KhR2LNnDwwNDdnv69Wrh9TUVNy6dQtOTk7Q19cHAHz+/BlRUVFwd3dXe842bdpg4cKFcHd3R1RUFGbPno2oqChMmTKF7eft7Y0aNWogJiYGpUuXRpMmTTB+/PhM713Pnj0BZEyce/bsQY8ePQBkDFDJyclwcnICAAQFBSEgIABTp05Famoq6tSpg0qVKuHixYt48+aNijA/b948AMCTJ08wf/589r2BgQG2bduGEydOYOHChRg6dCgCAgIgk8kAAKdOnUKLFi2YgqGlpYWgoCB07dpVpe2PHz9GqVKlYGNjgw8fPqBBgwbZVmzq1KmDnj17onv37mxbamoqunXrhv3797PBmXtXhg4dCqlUyvaVSCR4+fIlLC0ts3W+Bw8eIC4uDtWrV2fbTpw4gd69eyMlJQVlypSBt7e3xt9PnDgRABAVFYWgoCAEBQXhzZs38PT0RGRkJExMTCAWZ9hhv3z5gsePH0NPTw+RkZE4cOAA1q9fj/Pnz8PY2Bjv3r1DQEAAVq5ciVKlSiEyMpKdJyYmBu3atcP169fZ8dLT09GgQQOsXr0aDg4ObF+xWIxXr15l+x6ULVsW58+fh6mpKQBg4MCBmDJlCszNzQFkCKwODg4ahd0XL16gWLFi7LPyuKmJevXqZfr9u3fvAADTpk3jbReJRHj//j1iY2ORnp7OnoHi94oQEUQiEdLS0vD161csX74ciYmJqF27NkqWLMn2Gz58OKZOncre/Y8fP6Js2bK8/qUMEWHfvn0ICgrC7t27M70ero8EBwfj7du3+PbtGwCgZMmSKm3mSEhIwLt375Cens7bx9zcHIGBgWjZsiXbJpFIcPz4cTRo0IDd+3379uH9+/fw8/Nj+wUEBODvv/+GWCxG/fr1sXXrVpQoUYI3N71+/Ro2NjZYuHAhHjx4ACDD6Lh48WI4OjoCABYvXoy+fftCW1sbixcvzvTahwwZAiCjz6qbKxWvYcCAARCLxfj8+TNPMRGLxdDT01O5PxKJBM7OzmxbeHg4JkyYgIMHD7L7kJCQgFGjRmHv3r1ISUlB/fr1sWTJElhYWLDfxcXFISoqCgDg6OgIY2Nj9l1KSgrevHmDESNGYNKkSayP2NvbZ3rdeU3Pnj2xaNEiGBgY8LYnJCRg8ODBmD17NgCwdzc7JCQkYOvWrUhKSkKtWrWwfft2nDhxAm/evEF6ejpv30ePHqn8/t27d4iJiYFIJIKDgwPMzMzUnqdt27Zq+/muXbvw22+/oVy5cujcuTNcXFwAAIaGhvj69Suvf2TFgwcPsGfPHvz555+87USEZ8+ewd7eHteuXVMrA3DyVHp6Ohtjuc8ikYi1PatxjUN5HNT07BRlBUVOnz6N169fo1OnTgD+m2tCQ0Px/v17rF+/HhUqVMD48eOxfv16+Pv7s/HiyZMnKkaS9+/fw9LSMsv2lypVCpcvX8aVK1cQGBiI7du3Z3mtR48exZo1a7Bv3z6NRkhFXr16hSFDhmDnzp1o0qQJgP/m9KpVq2r8XXp6OrS0tDSOl4r9VSwWZ3qtWY1ZinDj1+zZs9GhQwfMnz8fgYGBOHbsGKpWrYpZs2YByDCQHjt2DC1atAAA3Lt3j3ccX19flWOfOHECixYtYp/bt2+P3r17o379+pg4cSJmzJiR7XbmhPT0dERFRal9zzOTeRT59OkTNm3ahMDAQLWG1c+fP4OI4ObmhnPnzsHc3Bz6+vpYunQp/ve///HeP3XMmDEDV65cwc6dOwEAo0ePxj///IOyZcti8+bNsLGxYe3//PkzwsPDkZKSghYtWsDCwkKjPKhuu6ZxAQCePXuGzp07Y+bMmWzuUkdW15OWloZbt26hRIkSMDExyXRfdQiKfiYoDtqa4ARBRTQJrAcPHkTz5s3h4OCAZ8+eoUyZMkhNTUVERARkMhkMDAxgbGyM58+fw87ODh8/fsTChQsxbNgwREREwMHBAb///jtCQkJARGjdujWADG9MdHQ0ZDIZzMzM8Ndff+GPP/6ARCKBtrY2KlSogOHDh7OBXywWo0SJEujevTsqVarE2vf27VssXLgQ0dHRcHFxwd69e9GwYUMmsOnq6uLQoUNo0aIFwsPD8dtvv2HevHkoV64cbG1tedebmJiISZMmYfny5UhKSkLJkiWRnp4Oa2tryOVylfsYGxuLDx8+QCwWY+/evfDw8MDJkyfRsWNHvH//HnK5HJUqVQIRISwsjHf/lZ8HN/h07NgRNjY2OHfuHFJSUtCgQQMAwIIFC3i/6d+/P4yMjDBr1iy0b98eN27cQLly5XDu3Dl8/PgRlStXhouLC8qUKYMJEybwfsvdSysrK8THx7PJ59ChQzA1NYWHh4fac06fPh1nz57FgwcP8OTJE9Zm7nq4fkVEmDt3LiZMmAA9PT08efKECYvq4NpTqlQpnDx5Em3atAEAnD9/Hra2tkwg//PPP1G7dm1MmTIFZcqUgZ+fH9LT0zFo0CDY2NhgxIgRkMlkkEgkICL2zL58+QIigo6ODkQiERo0aIBbt27h4cOHuHTpEnr27AmxWIwNGzagUqVKqFWrFszNzbFixQpoa2vj77//xq5du1iYcHJyMrZv347AwECcP38e3759w+TJkzFs2DC1g9/hw4ehr6+PWrVqAQCWLVuG1atXIzIyEpcuXWLGn6SkJDRs2BChoaEQi8UYNGgQAODu3bs4fvw4PD094e3tjTNnzuDNmzeIjo6Gvb09E9oUBdPU1FQsWLAAmzdvZu+ClpYWqlWrhoMHD0IqleLx48dwc3NDUlIS9PT0kJSUBBsbG55CwEFEGDFiBNasWYMLFy6gdu3aSEhIwLNnz9C9e3fMmTMHU6ZMYYLdmDFjcOfOHdy+fRvt27dHamoqiAilS5fG6tWr0bFjR1haWsLExAT29vYYOnQoPDw8sGXLFnTr1g1paWmoVq0axo4dCwD47bffYG1tDSLClStXULx4cdZ3slL009LSEBwcjBMnTmDz5s2oWbMmM+pw/VlZ6VMWBl69eoWAgACe8RH4b9w8evQoUxji4uJw8+ZN9ryPHz+OZ8+eQSwWQyqVQiQSoVOnTrzJb+HChRoFOm6609PTg6WlJc/o+eLFC6xZswa7d+9Gamoqhg4dCgDw8vKCh4cHwsPD2b6K76miMi0SiaCnp8dTfhV5/PgxlixZguXLl7PlEx4eHti4cSNThIGM/hsSEoI1a9bg/PnzqF69Olq1aoXGjRuzPhUUFMQ7NncPuHNw18t5y+7cuYN58+Zh//79OHPmDDw9PQFkPPcTJ07wFP26deuiffv27L25ePEiateuDSJCYGAgZs+ejaZNm2L16tWIiIhg1zpz5kyMHTsWIpGIvb/x8fGQyWRYsGABBg4ciJIlS+Lq1aswMzPjGUzU8ffff+PEiRO4efMmnj9/jsqVKwPI6Gs2NjbQ0tJCcnIy3rx5g1WrVqFXr14wMDBQiVJSNHIpMnz4cEybNg39+/fH1q1b0bZtW+jr6+Off/6BWCzGiBEj8M8//6BLly4Qi8VYu3YtmjZtil27diEmJgaDBg3CkSNHWL8SiURo0qQJRo4ciYkTJ+LixYvsvMpjuyIJCQmYOXOmiqKclpaG9+/fw9DQEG/evOF5k4gIK1euZPt//foV2traADKi6hSj0dq2basioMbFxWHEiBFYu3Ytuz8mJibw9fXF5MmTsXv3btaexMRE3LlzB1++fIGhoSHCw8PRsGFDFkUlFothbGyMXr16wcbGhl1reno6Ll++DJFIxNqZkJCA+/fvIz4+nidj1alTBytWrIBYLMapU6fY/rt27cK9e/egra2NevXqITY2Fo8ePcKbN29QvXp1vHjxAq9fv8a0adPg7OyMsWPH4sOHDyrRSW/fvkVYWBhkMhnq168PiUSCb9++Yfny5Rg2bBhMTEzYu8IpxV5eXkzJ9fLywr179yCVStGmTRssWbIEcrmcN+empqYyh0bbtm2xdu1aZvjh5LWsiIiIQKVKlfDXX3/hzZs3CAoKQqdOnaCjowPgv/deUXZT5N69eyhevDhiY2Px9etX1teaNm0KHx8fVK1aFaNGjcL69etRuXJl+Pn5oUyZMhg5ciRGjRqFOXPmAMgYg06cOAF3d3eULVsWQ4YM4S35kkgkmDp1KrS1tXNkpH/y5AmCgoKwbt06fPz4EU2bNkWNGjWgra2NN2/eICEhAfv378ejR48gkUgwbdo0/PHHH5g0aRJmzJiB1NRU6OjoMCPd3bt38e3bN9SoUUNtFOOzZ8+wY8cOxMXFqXhjRSIRTp06hXfv3mHu3LmIjIzE4MGDERAQwPY5efIk/vjjD1y6dAmGhoa8MSs9PR0vX76EmZkZtLW1kZaWhg8fPiApKQkikQjz58/HH3/8AS0tLcjlciaL9+nTB+Hh4WjXrh2ADBnj9u3bqFixIgDw5hog4/1SbjsRoX379vjnn39gYmKC+vXr4/Tp05BIJNDV1cX169d5c5Di3K04xnz79g2fP3/GqFGj2Lb09HScO3cOSUlJvH3j4+Nx584dpKSkqPVsK45HinDGplOnTiEoKAg7duyATCaDpaUl7O3tER8fj0ePHqFChQoAgCtXriAxMZGNm2KxGKGhoahfv77GuTUhIQFbtmxBYGAgQkNDUaJECcTExCA0NBQNGjTAggULsGXLFty8eRMfP35k91DxOgwNDbFt2zY0bdpUrSykTkbq3LmzWt2A259DnUzCnZt717n7FhYWBhMTE5w/fx5paWmoU6cOLl68CF1dXezfvx8+Pj4qx8oUEshzwsPDSSwWZ7r92LFjZG1tTTKZjExNTWnw4MGkr69P0dHRJBKJ6PXr17RixQry8fFh2+fPn0+mpqa0fv163vH79u1LFhYWpK2tTTY2NiQWi6lp06YEgEJCQig+Pp73d+rUKerZsycZGRlR+fLlacmSJfThwwfq0KEDeXp60saNG6lVq1bk6upKzZs3J5FIRJGRkdSuXTuqW7cua4++vj49efKEXr16pfZ6nzx5QgYGBhQVFUXjx48ne3t70tLSombNmtGOHTvYfjNmzCCpVEpVqlQhPT090tXVpYCAADI2NiaJREJLly6l9PR0tv+jR49o1qxZJJVKafXq1RQTE8P7MzExobVr17L93dzc6Ny5cxqf14ULF8jV1ZXWrVtHUqmURCIR1alTh1asWEEREREkFoupZMmSFBERofLb2bNnU5kyZcjU1JQMDQ3p1q1bRERUqlQptftz3Lx5k2QyGXXo0IHu3LlD+vr6dOvWLYqLi2N/ipw4cYLEYjE5ODjQvHnzaNGiRbw/joEDB5KJiQm5uLiQSCSi9+/fExGRhYUFXb9+ne03fPhwaty4Mfusp6dHxYoVY5/Lli1LZmZmNHToUN51mJmZ0bVr19jnjx8/kkgkovj4eCIi+vr1K40aNYq0tbWpZcuWJJVKqX79+tS2bVtq27YtJSQkkEQioePHj9OAAQPI2NiYqlatSosWLaJXr14RAJoxYwbt2bNH7V+JEiVowoQJ7B7K5XIaO3YsSSQSatmyJWvXxIkTyd7enjZv3kz6+vq8exkeHk66urqkr69Po0ePpgULFpBIJKKpU6fSwoULaeHChWzfxMREqlmzJonFYmrUqBENHTqUhg4dSnK5nEQiEdWuXZuSkpJo6tSpVKFCBWrWrBlpa2tTxYoVycHBgdLS0tixLl++TH379iVDQ0OqVKkSzZ07lyQSCUVGRpKRkRGdP3+eiIi9/xzc+1atWjUaNmwYGyNEIhGVK1eOBg0apPb90dHRoZIlS1JsbCzv+rnf6evrk5mZGVWqVIkqVapEAMjGxoaKFStGxYoVU+ljixYtotq1a5Oenh517NiRAFDfvn1p2LBhNGzYMJJKpRQdHU1ERB8+fKA2bdqwYy5atIjS0tJowoQJpKOjQx4eHrRlyxaV5yISiUgsFlP16tWpdevWVKpUKXJycqI2bdpQmzZtSF9fn5o1a0a2trZkaGhIDg4O1KFDB95xjh8/Th4eHnT8+HH69OkTffr0iY4fP04ymYz8/Pzo/Pnz5ObmRj179uT9jrvPbm5utGfPHrY9KCiITExMSCKRUIkSJahChQpUs2ZNCg8PZ20+efIk+8wdh+Pr16+0ceNGqlu3LkmlUgJABgYGNHHiRJo/fz65uLiQj4+Pxj4CgMRiMYnFYvbcuc/cNm78ff/+PTk4OJBYLCZvb28KDQ0lZfr27UtNmzbl9YeTJ0/yxnBN4wXXNw8cOECOjo68a92/fz9JJBICwOtzIpGI+vXrR1paWnTgwAGV9mhi0KBBrK/Z2dlR06ZN1fa1nj17UqtWrdg91NfXp+nTp9OaNWto9erV1Lx5c2revDmFh4dTo0aNyNLSkqRSKUmlUhKLxVS1alUaNGgQPXv2jIiIihcvTl5eXhQdHU0ODg60bds2OnXqFNnZ2VHZsmVJS0uLHj16RFZWVlS8eHGaPn067dq1i3bt2kUBAQFUvHhxkkql5OHhQQcPHqQbN26o9BFlfH19ycbGho1H3Djk6upK1tbWtHz5ctq1axft3r2bdu/eTQMHDiSxWExWVlZUoUIFKlmyJOno6FDFihWpUqVKpK+vTyKRiACwvyVLljAZ4PHjx+To6EhyuZx0dXVpwYIFtGDBAurTpw/p6emRsbExu/dDhw4lJycnsra2piZNmlCpUqWYbPDq1St68+YNSaVSqlSpUqbPcOjQodSnTx/S1tYmExMTqlOnDh0+fJgOHTpE8+bNI1dXV9LX1yeJRMKuq2LFimRpaUlmZmZUsWJF1p+4PwC865TJZGRmZkZ6enrUrl07mj59Oi1atIiGDBlCOjo6vPElMjKSnJycqEyZMiQSiejJkyes3U2aNKGZM2dSTEwM6erq0s2bNwkAtW3blubNm0fW1tbk7+9PRERXrlyh/v37k4GBAclkMiZPiUQievPmTbb7O0f//v0JABsDAVDTpk3ZGJgVurq65O3tTVKplPr168e2W1tb05UrV5hcNm7cOKpZsyYNHz6chg8fTiKRiIyNjdnnevXqkYODA3l4eFCNGjVIX1+fPDw8yMfHh3x8fMjKyoq6dOnCG9cmT57MZAFFkpOTafPmzVS/fn3S1tamFi1akEQioZs3b9I///zDe+ZmZmYklUqZTMvJsxUqVGD3NyUlhR27QoUKVKxYMRKJRGRvb08VK1Zkf5UqVWL9486dO/Tx40eejKUsZ61du5ZMTEzot99+o2vXrlFERATVqVOHRo0apVGeW7RoEXsuffv2JXt7exo5ciSVK1eOJ4srjn3Kc4SyDH3jxg1q3Lgxe4bK+xMRRUVFkaenJxUrVoyOHj1KS5cuJW1tbSpXrhyVKFGCxGIx1a1blzZt2kRfv35VeReHDRtGrVq1IplMRgDIyMiIjI2NydjYmG1T3HfYsGFkbm5OTk5OKvdy0aJFKu8t9+fm5kbTpk2j0qVLk5mZGZOlFNvi5uZGNWrUYOfR19enTZs2kUgkop07d1K3bt2oa9euau/D+fPnqUePHqSnp0disZhGjhxJ2tra7H0ePXo0devWjYiIKlasSFpaWmxc9vLyogoVKtC6detoy5Yt1LZtW3J0dNT47qrbnpmsf/r0aQoKCiJra2s6ffq0yp+fnx9P3uHecW1tbapTpw4REe3atYtsbW3p/v379Pfff1ONGjXUniszBEU/F6SlpdG+fftUtmdH0SfKECiWLl1KpqamJBaLVRT9O3fukImJCdvu7u5OgYGBKoOCnZ0dnThxgtasWcMUvLFjx6oIhMp/3CRZr1490tXVJW1tbVq8eDERZQiMIpGILl68yNoTHh5OZmZmrD1GRkYUGhqqUdEPDQ0lIyMj9jk9PZ1CQkLY9XI4OzvTypUriYjo7NmzJBKJqHnz5tSsWTP666+/NN7/0aNHU6tWrVS229jY0P3799lnXV1d3iSuyOXLl6lz584EgE0KYrGYIiMj2T56enokk8no0aNHGtuyfft2kkgkZGhoSNWqVSMtLa1MFf1Hjx4RAHr48CEREbuXmggNDSUdHR2SSCRUvHhxcnBwYH8lS5bk7fv161eaMWMGASBdXV3q0KEDyWQyiomJYftUq1aNZs+ezT4XL16ctLW1ece5dOkS9e3bl4yMjKhKlSq0fPlyFSWUKGPS4u5NfHw8/e9//yMdHR3q2rUrAaBOnTqRn58f+fn5sf0lEgkNGzaM7t27xzsW1yc1/XHfExH5+/tTu3btiIiodu3aJJfLKTU1lYgy+tS2bduoXbt21KRJE5X7qaurS8WLF2efRSIRBQQEqCi2jRs3JhMTExo9ejTPoKKtrU2HDx8me3t78vf3p3r16tHff/9NREQvXrygkSNHklgsJmtraxo9ejQ5OztTiRIlaOzYsXT79m12HC0tLYqMjCQHBwe6c+cOa4s6Rd/Q0JAePnxIr169IpFIRBKJhI4dO0bOzs4UHBxMRPz3x8bGRq2BSyQS0ahRo6hHjx6kr69PkyZNokmTJhEAMjQ0ZJO9Yh/j/sRiMRNYNLWTKEPgKVasGAHgCTzNmzfX2M/Dw8MJAK1fv55tK1euHIWFhak9x8WLF6l58+YkFoupWrVqtGLFCoqPjyc3Nze6cOGC2mfu6OhIRBmGVjs7O9733LENDAzYe0mUoYT16dOHXr58STNnzmT3YeTIkXTnzh2N9+Hq1asajVmrVq1i+z948IAkEgkT0JT7CACytbUlf39/unr1KlMWFf8uXbpE06ZNY8bRZcuW8a4tIiKC/YWEhJCBgQH7LBKJyNfXl0QiEev3UqmU/P392Wd7e3uaPXs2u1ZOAVJ8HnXq1KFhw4apzAWccDR+/HgmvGQHMzMz1teKFy9OUVFRKveYiMjV1ZW2b99OJiYmKt8RZYxj9vb2dOzYMZJKpaSrq0v+/v5srl2wYAHvvJzR28DAgMRiMfXv35+kUimNGzeOvn37Rjo6OtSxY0fy9vampKQklXYnJiaSWCxmYxN3D6KiolSM7tyfkZERHTlyROVY+vr6dOPGDZXt9vb2NHPmTPa5ZcuWFBgYqHJ/uPmMGzsV537u87Rp03jHfvnyJUkkEmrdujXbZmVlxd5DRdmAw9bWljfXcyg+Q6KMObty5coa75tMJmMGGw5zc3PefM5RrFgx9sxv3rzJzq9u3JLL5cyYPWrUKBKJROTs7EzNmzen4cOHk1gspn79+jElV1dXlzp16sSU3HHjxpFIJGLz3LZt26hMmTK89ty9e5ekUimTpwCQvr4+mZiYZPqnjLm5OZvjiLLuO9zfo0ePqEuXLgSA6tevTw8ePOAdVy6X09OnT5lcVrNmTZo2bRpT3Lm+wn02MjKiihUrUt++fenBgwcq45quri7p6ellaaRv3rw5GRgYkIuLC/Xt25fevXtHRP/Nfcp9mZNniYgeP37M5Nlq1arR/PnzVe4Xx7x586hatWrsM6csAyBfX1+V/c+ePUtdunQhLy8vev78ORERrV+/nhYsWEASiYT33nDvijru3r3L5hJNbc9sriT6T9HnnqGWlhZ17NiRPUN1Ci5Rhg4yePBgEovFJJVK6d9//2XfnThxgrp06UK6urpkYmJC2traPCcGEZGTkxMNHTqUEhISeNuV31sOXV1d3tzIofwMiTJk4qZNm5Kenh61b9+edu/eTcnJyaSlpUXGxsa847u6uvIMy8q6EDeGc9tfv35Ns2bNIhcXF7K2tqbhw4fTlStXWJ9SNFRXrFiRyRQ6Ojqko6PDu051jivO6KX8rnLGRLlcTnK5nIYPH04SiYR69uzJxo7hw4fz7sOjR49UZGsOa2trnrzDIZfLmeG5T58+NHToUHYsAwMDtcfKDEHR/w569OhB1apVIz09PRKJROzhWlhYkKWlJesQnKeM+3NxcSGxWEwxMTHk7+/PBo8GDRrQ5s2b6c2bN5SWlkYikYhOnTpF+/btIy0tLdLT06MDBw6QXC6nw4cPM+8uh0QiodjYWIqJiSFtbW3S0dGhyMhIZg1TZ0lS/CP6T/FU9ALr6enxXjZuMOJeNh8fHxozZoxGRX/06NFs0j516hTVrVuXZDIZGRkZMUvztGnT2H1o2LAhffjwgWQyGV29epWKFSvGE/I5njx5Qk+ePKHdu3eTlZUV+8z9jR8/nrp168aiAMzMzOjMmTMqx3F3d6cSJUpQly5dmJAgFotJIpFQWFgYm0ANDAzIysqKduzYwbYpc/DgQSpevDglJCRQcHAwSaVSksvlavfl9pfL5XTo0CEiInYv1fHq1SsqXbo0aWlpMYWOs1Zr+lPsa5MmTSItLS2ysLCgz58/0+fPn0kmkzEPMhHR1KlTSSaTqQz4RBkC2Lp168jHx4cJEVeuXGGKAtc/V65cSVZWVuTm5sZTWtevX8+b+HV1dals2bKko6ND3t7e5O/vz54VADp79qza+0BEZGJiwowwNWvWZArT0aNHCQCVLl2aWUlLlChBFhYWLMpCETs7O5JKpeyzSCQiOzs7FQGRu2/KBhVbW1sKCwujbdu2kaOjIxkaGtL+/fvZ93fu3CFDQ0M6c+YM+fn5EQCysLCgffv28aJTuIlpw4YN1L59e0pISNAoFGh6D7W1tenp06dsf+79kclkbLJQhDvOs2fPSC6Xq2zPDEUjmlgs5lm3FQ0+dnZ2tH37dhKLxUzgqVatGm8yVP7jDEPKCp3iNQwbNowJikREMTExJJfLKTg4mI3J2traap9527ZtSUtLi/1OccJXvM9GRkY8IdnBwYGnRD1+/JhkMhn17NmTDAwMCACNHDmSbty4wXsfJBIJde3alfbs2cMz+gFg4y6Hrq4uyWQy6tatGx09epTXRyQSCQ0fPpxcXFzIysqKGRiIiFJTU2nFihVkbW1NDg4OtH79etLW1uYZ9YiIp/ApGsyUvb6K/d7KyoocHBzI3t6eAND58+fZ3LRlyxbm9T1w4AC77uDgYLWKvrGxMRkZGREAnuAklUpJR0dHReGZNWsWaWtrs74ml8t5/YKbK4kyhLezZ8+STCYjIqL58+fzxt39+/eTSCRiUTiKfUNPT0/F2MgxduxYAkBaWlp0/Phxtp2bDzKLEnNxcSEzMzOV+5+V0V2ZMmXK8ARgxTYoCv4ODg686+D68unTp+nUqVMkEonI0NCQzflWVlY0f/58evHihdr2m5qakq2tLa/9r169Yp852YBj6dKlBEBl/lA2uleqVIm2bt2q9pxEGc+ybNmyvG3Gxsa8CBuOPXv2kLGxMRFlGMu4/2u6Hm7e4Awxu3fv5im5NWrU4H329vZmSm7NmjXJ0NCQzdePHz9WiRTjZAAivjy1dOlSCg4OZn+NGzfm/SmPgzKZTEXRz6rvcApIvXr1qEqVKmplCXt7ezpz5gyNHj2avL29SUdHhwYNGkSJiYlERNS6dWvePbS2tqbHjx+zz+bm5vT48WNmpD906BAZGhqy7zUZ6RXHF8WxgZv7lPsyJ89ycPKsrq6uWmWXIzo6mnR1dVWUZU9PT/bcOLZv3046OjrUu3dvksvl7Lht27YliURC3bt3p6ioKIqJiSGZTEanT59mY6ry8+rRowcbo0UiEfXp04d9pyiLZ6boR0ZG8p7h5cuXee3VpOjv3buXLCwsqGbNmmRhYUH169dXeac/ffpEK1eu5EV+cWi6p8rvLUfdunVV7iWR6nhElPEcx40bR58+feJt52QqxePr6Ojw5nluDOccMJMmTSKJRELa2to0YcIEkkqlVLVqVerfvz/PUMv1qc6dO1PlypWpV69epKury2QGR0dHcnBwYPtrclxxRm/F9zY4OJhEIhE5OjqSq6srubq6ko+PD8nlcnJ3d2djR926ddmxvn37Rnv27OE5lV69ekWTJk2iP//8kwwNDXnzGoe9vT0dOXKEUlNTyc7OjsmWt2/fznSc04Sg6GcTTtmpXbs2C3NxdnbmTQ7KSgLnKZs0aRL9/fff9Ntvv1HJkiVJIpGQvb09GRkZUVBQkMq5lK3w6oQzxReWE7hv3rxJxsbGTODOjuD+7Nkzmjp1KpUuXZoA0B9//EHfvn0jIr6C0a9fP+rXrx8bjHr27EktWrQgsVhMNWvW5E1MqamptHjxYtLS0iJfX18qXbo0iUQiMjIyom7durGJ5cKFC+w6g4KCyNXVlYYPH87aL5fL1QoiihOfclir4sRXsmRJatGiBVlZWVGJEiVY+DgHJ1g3adKEeX2VPR/KVl11g2V6ejrVrFmT/Pz86Ny5c9SjRw/S0tIiAwMDdq0cERERFB4eThUrVqS6detS2bJlae3atTRr1izS0tKiv/76i65fv84Ug02bNjGD0vLly9lxFPtWZn9Pnz6lyZMnk5GREWlpadE///xDvr6+LMSNMwzY2QBaonsAAQAASURBVNmRRCIhfX19KleunIrhgIjozJkzvPugaTJXFlIy885zf1ZWVjRkyBACkKkA3bJlS2rcuDFNmTKFpFIps8QfOXKESpYsSWPHjqVmzZqRXC6nfv36MaOVMpMnT+YZNjS9K5wXRJnOnTtTixYt6NKlS+y+ffnyhX2/fft2Kl++PBs3uJCxkiVLkq2tLY0cOZJcXFwIAJUpU4YqVapEBgYGpK+vTwDIzMyMLCwsyMLCgkQiEfXs2ZMAMOFQJBKRrq4u/fPPPyrGFO79KVGihFovoVgsptevX9OhQ4eoRIkSKtszY+7cuTRw4EBKT08nkUhE7u7urI9IJBJyc3NjywBcXV3Zu6Kjo0PVqlVjY6WmPzs7O5oyZQo7n6GhoVpjH0dYWBjp6Oiw6AQPDw/y8vKiJk2a0Js3b5hHOiAggJycnEhLS4u6d+/OljspRm9w983T05PmzZtHRBkTK+dp4Th9+jS7b5wnKzvvhKIxS7mPGxgY0MWLF1mII9dHrl+/TlKplCkp586dYwYGR0dHsrS0JAsLC1q4cCElJycTUYYBU3leUVzaxHlCuM8ikYiuXr3KMw789ddf5OrqSuvXr2fjRWpqqsa5KTPPFyc0zZ49m2QyGU9wMjAwoKlTpzIDJsfNmzdJX1+f9TV7e3uNYf8mJiY0c+ZMsre3522Pioqijh07kkQiYaH+ysYpAwMDtZFaixcvZl5ZmUxG2tra5Orqyvq5SCRifZ0bHxW9q1u2bGFGkXfv3pFIJKKNGzfSgQMH6MCBAyrG9nHjxlGdOnVUFOUjR45Qo0aNeAoXUcZyhRUrVrDPcrmct8+VK1d44c3nzp3jGTY1GQE5/v77bxKLxazPZqWolCtXjnmwFecPW1tbMjc3Z8cxMjJS6xHkaN++vYr3a/DgwWRubk7z58+nc+fO0blz52j+/Plkbm5OAwYMoAMHDlCXLl2oZMmSvPc5OTmZ7t27R9++fVPbfkUB28/Pj2cc4pRiooywcx0dHWrcuDHVqlWLiDL6p6JxipMBOnTooFGe4sjOGKisjKhz2Bw6dIj8/PxIT0+PnJ2d2Vi/fft20tLSoiVLlrAINyKifv36kYODA0kkEmrRogWZmZmRRCJh90UkElGFChXY/tra2mqNYI0aNSIDAwNq0aIFSaXSLI30//77LzVo0ICFau/bt49SU1OZUqbclzUZkA0MDOju3bsqx+cIDQ0lqVSqoizv3LmTyVlXr16liIgIcnFxoWnTplFERATp6+vTqVOnqFatWmRmZqYSmVKqVCnatWuXxufn5uZG2trazBHC6QTcMldOFleMGOQU1tmzZ1OTJk1ILpcTALXzNXcPlBXpvn37klwup7lz51J6ejq9fPmSmjZtSqampsyY9ujRI7aMkXNmKBqR27Ztq9bwpjjPK0aDqbuXERER1KZNGxo/frxK+4yMjKhGjRq0YsUK+vDhAxFlKON//vknOz5Rxhiu6HjiKFGiBDk4OLAlyYqGaC0tLTIyMuItOeX61MePH2nQoEHUqlUr2r59OxuXu3XrRnZ2drxxef/+/XThwgW6cOECM1iLRBlLrbjr41AnJ/r5+bFxQRk/Pz+ysrJi0ayfPn0iOzs7srCwoPLly5NIJKKuXbuq/M7f35+MjIzI1dWV7O3t6evXr0REFBgYSJ6enmrPlRlCMr4suHLlCtasWYMtW7agdOnS6NKlC8aMGYObN2+ibNmy2TrGwIEDsWXLFiQmJqJ169bo1asXGjZsiF69euH+/fu4cOECb/8nT56AiNCuXTuULl2aJUfp0aMHbG1tWaKQEiVKAMhI+FCuXDm8fPkSKSkpSEhIgKurKyIjI1GuXDmW/fn69esAMjIB79q1C4GBgTh37hyaNm2Knj17olWrVujbty90dXUBZCQ669q1K44ePQogI0FHbGwsLxHEo0eP8PTpU0gkEpZV8v79+0hKSoJYLIa1tTW6d++Onj17okaNGjhy5AhLIjNixAjcuXMHR48eRd++ffH69WucOnUKSUlJ6Nq1K4KCgtCvXz/WHi4bf0REBICMbLANGjTAjRs3AGQkttiyZQvmzp0LLS0t/P777wAyyo4dPXoUZcuWRbly5bBlyxYAGQlP/vjjD1y4cAFmZmbw8/ODq6sr+vfvj8DAQF5G8hcvXqBv376wt7dHx44d0bZtWwAZiW9mzJiBe/fuwcbGhrW9QYMG8PX1hYuLC0aOHMkyAnMJBQH1Wb4VqVixIsLDwyESiTB69GjMnDkzk172H8nJydi5cyeCgoJw/vx5tGjRAp07d8bOnTuxf/9+WFtb459//uFVAggODoajoyNLesbx6dMnhIeH4+nTp0hISEDLli3RsWNHXuIwAGjUqBHmz5+PcuXKAfivb2aXY8eOYe3atdi8eTNKliwJX19ftG/fniXf4nj69CkGDhyIZ8+eYciQIejVqxeAjKRaaWlpLCNup06dkJqaih07drDfVqpUid3zR48eISEhAdra2nBwcMDt27fVviuWlpY4dOiQSoWHmJgYNGzYENHR0SAiLF++HAMGDGDfe3t74+PHj3j69CmcnZ3Ro0cPdO7cGcbGxjh58iSCgoKwdetWpKamokaNGqhSpQrLOr127VqVvuHg4IDTp0/ztnH7KPcbmUyGrl274saNG3j27BnatWsHXV1d9v6IxWLcunULnTt3Rt26dbFw4UK2PatkfG3btsWpU6dgamoKqVSqkrCUyw48efJkjBo1Cnp6evD394eBgQFu3rypNvmaYjWO9PR0rFu3DuXLl0f58uWxY8cOlCpVilU34K4hNjYWwcHBmD9/Pj59+oQhQ4agZ8+eKFu2LO7fv4/WrVvj8ePHLLlNamoqpFIpLC0tIZVKkZiYiLi4OGhpabFzp6SkoF69eoiPj8eVK1dgZmaGT58+oWHDhti3bx/bb8yYMbhy5QpKlSqFkJAQODg4oGPHjujcubPK/YiNjUVISAhCQkLw7ds3dOrUCYsXL4ahoSEvEWBcXBwMDQ3Z7799+4bWrVtj586d+Pr1K0aNGoXevXuzBFSvX7+GtbU1AKBr1668pI/Xr19HWFgYmjRpgpIlS/KqmBw4cADdu3fHuHHj2H1Xl0k4KSkJ/fr1w759+9h4Ubt2bTx58oQ95zp16vD6fOvWrdGyZUv07t2b9/5z/Wrjxo3YsmULLl++zL7T0dFBeHg4Gx9/++03ABlZl0+ePAkDAwOYmpoiNTUVCQkJqFOnDvstl1G5fv36uHv3Lpo0acISlQ0cOBCBgYGoW7cuLCwsEBsbixMnTkAsFsPIyIi9O8r3nTu3kZERVq5cicjISHz79g1HjhxBeHg4fHx8UKtWLSxYsAAtW7Zk46C/vz/EYjHvvVXMwq4uGZ/ieARkVFcgIiQmJqocRyQSQUtLi/UZIkJycjL+97//wd3dHVOmTEHXrl3ZfeSyfXMcPXoU3bt3R3R0NJ4+fQpvb2/Mnj2bja/ly5dn9x7IyIh//vx5ODg4wM3NDfv374eDgwM7/7Nnz9C1a1cYGRkByEiOeP36dfj7+7P5lePx48ewtbVlx2nWrBlL7rpz505eFvPXr19j+vTp6N69O9zd3SGVSpGeno7jx4/j3LlzrFywlZUV2rVrhx07diAxMREJCQkwNjbGhw8foKOjA7FYzLK4P3jwAI6OjmjdujXs7e3Rq1cv1KhRA9u2bWOJSDl0dXURHR2N7du3IzIyEjNnzsSePXuwbt06nDt3Dl5eXnBxcUH16tVx8uRJ/Pvvv7h9+zYmTpzI5KBmzZqhZ8+eaN26dbYruWQ2Bi5dulStHGRtbY3Pnz9j8ODB+P3333l9ZsmSJQgMDISenh7ro1FRUSxJpYGBAYKDgzFs2DCMHTsWzZo1g4ODA3r27Al/f38AGckRx4wZg2bNmgHgV4p49uwZRo4ciV27dsHMzIyNa+fOnVORIRT7QXBwMIKDg/H+/XskJibCz88PTk5OmD9/Ppo3bw53d3f8+eefsLa2Zn3t5cuXcHV1xZMnT6CnpwdbW1sA/83RCQkJmDt3LmbMmAGpVIodO3bwkvIpj8nAf3OmWCyGrq4u0tPT0bRpU/z111+oVasWvn79yvYdPHgwTp8+jStXrrBklxxJSUmoXr066tati8WLFzNZnJtXbt68CVdXV5XSv9w1cOXaDAwMoK+vj0OHDqm9d7Vq1UJERARv/ixXrhw2bdrEEthxLFy4EH/99Rdq1KiBU6dOQVdXFyVKlECJEiUQGhoKuVwOe3t7lsj03r17KFGihMo4eOvWLVhaWuLx48cq7RGJRDw5lvu/4nsLZMyp4eHhePbsGc6fPw9LS0u8evUK9evXx9WrV2Fqago3NzeEhYXByMiI6RDc2M4xcuRIhIeH48SJE2zbhQsXEBgYiJCQEDg7O6Nr164YPXo0bt68iTJlyrD9lMdl+v9qOoBqclZFmUp5vOaOpSwjRUdHo0qVKiqy/r1799C9e3dW/czR0RHLli3DmDFj0L17d8jlcpw9exYRERGoUaMGypcvz6vU8+DBA9SvXx8dOnRg49S6detgbGyc7cSe7LoERV8z5cuXx6dPn9C5c2d06dKFlbOTSqW4cOECqlatqjKIpKens8y0isfp1asXunbtyishEx0djcqVK8PV1RWjRo1iQtz9+/cxd+5c3L9/H9euXWMD9cWLF+Hj44M2bdpg1KhRcHV1BRFh1KhRuHjxIu7du8fK9gEZL7yi4s4N4GZmZjAwMED37t3RrVs31mmbN2/OeyE0leE7deoU7/Ply5exadMmJqgcOXIEtWvXxqhRo9CsWTN2j3R0dHD//n3WvurVq6NDhw44cOAARCIRvn79isuXL7MSHadPn4aNjQ1rR4cOHXjnTUxMxOrVq5GWlobjx4/jr7/+woMHDzBixAiMHDmSV45m1apVGDp0KL59+wZDQ0OIRCLEx8dDKpViwYIFcHFxQVBQkEbBGsior+zn54c7d+7wBgqRSITatWtjxIgRaN68ORvkNe3v5OSEuXPnqgzQQIbxYffu3Xjy5Am0tbVhYWGB7t27w8fHh9fXTp48iZo1ayI5OZnX1zijkp2dHXr27IkuXbrkqGQSx7Zt27B27VqcOXMGjRs3Ro8ePdC8eXONfSIlJYVlX1ckNTUVX79+1VgpID09HQcPHmRlZTp37oxKlSrh33//xc2bN7NdkujmzZu8z9HR0ejatStKly6Nbt26oWTJkti2bRs+fvyIu3fv4u3bt+jduzfr+5MmTcKoUaNYO7l3RZ3BQPHaGjduDF1dXaYIzp49G8HBwXj16hU6duyIgQMHonz58mrbHB8fj02bNiEoKAjXr19HuXLlVK4jO/j4+KjN6Prt2zdcv34dKSkpsLKywpgxY0BEuHz5Mvbu3QsbGxtcunSJlcebPHky/vzzTzZeqIMr16iJtWvXAoBGgUe5j1y/fh1169bVeLzY2FhERUXBzc0N5ubmOHnyJJo1a4ZTp06hfPnyCA8Px6JFi9C/f3/e79LT03H06FFWJcHFxQUNGzbkvUOZXUtsbCyeP38OHR0dnD17Frq6unj58iXWr1+POXPmID09HX5+fujZsyczbmUFZ8zavn07TE1NUbVqVVSrVo1nUFSke/fuKn2kZMmSqFu3Lqu8YmNjw4RGDiLCnTt38PbtW+jq6qJx48b49u0bzp07xzLgt2nTBkuXLoWFhUWOyypqYt26dRgwYADmzp2Lvn37smcvkUgQEBCAKVOmYPny5bySfdWrV0eLFi1YVmbumXDGRa507adPn7Bv3z4YGRmhXLlyMDQ0xJQpU3D//n2MGzcO0dHR8Pf3x8SJEyEWiyEWi6GtrQ0zMzM8f/4cJUuWhLGxsUrddXUlyubMmYOjR4+q3NcDBw6gd+/eePnyJYYNG4aTJ0/ixIkTzMhy5swZABnlFUeOHIlKlSph8ODBADKqGOzcuZNVRqhTpw4mT57MOz5nGFDOuA2AzfnKcOMVl5HfysoKIpFIpZxdw4YNERkZidevX7NzAWDl39LS0ti9T0tLw9GjR2FgYMCUtkOHDvHGGFdXV5W2ABmyQWbv1bp169C2bVumMK1YsYJXdio9PR3Pnz9n7wQRISEhATo6OtDS0mL3xtDQED4+PnB2dsbKlSthZGSEiIgISKVSeHp6QkdHB8HBwWjSpAlu3rwJR0dHlQoZHNx2xfsRFhaGESNG4Ny5c5DJZNi8eTN+++03NqdHRkayfdPT0yGVStG9e3eMGTOGvUfGxsZ4+PAh6x+ZldDKbAw8ffo0atSoAZlMBpFIxAz0imOZorKlfE3NmjUDEbEydC4uLtDX14dEIsE///yDwYMH8yo0KD4LDrFSybmkpCRUrVoVDRo0QIsWLbJlpOfgxq3Pnz8jMTEREokEenp6bB6Ki4vj7T9s2DAAGXLxli1b4OXlhRo1ajAHmKWlJT5+/Ii0tDQsWrSIZwwEwCr8KCp/tWvXxowZM1CrVi2UK1cOkydPxogRI7B+/XrMnDmTlVcGMoxPlStXhkQiwR9//MFT5JYtW4a0tDRcv34dVlZWKu+0Jjj5QtMzVFbLRP9fxURxfyJi2eOBDDmccyAkJSXht99+w/v371XGseDg4Gy1EQD8/PxUKpgAwNy5c9UadBQN54ptf/ToEdq1a4eHDx8iKioKqampKF68OBwcHFh2/DNnzqB69epwdXVlbUxLS8Py5csxcuRI/PvvvyolxIGMSlCbN2/G2rVrcenSJdSpUwedO3dGmzZtoKenh+3bt6v079KlSwPIqACkCFeJpmTJkrhy5QqTnRWdqurmSkVZn7tm7hnu3LmTVb/67bffcPnyZVbmOiEhAeHh4ahZs6ba+6bojMsNgqKfCXK5HJ06dUK3bt3QoEEDNkFIJBLY2dnhzp07PKG4Xr16SEtLw5UrV+Do6MhTsFJTUyGRSFQeXmhoKHr06IEHDx7wlEFHR0fMnTtXpYTK4cOHMXbsWJXB0MTEBKtWrWLlOjJDeXBRhrNmZaVkaVLi3rx5o1Zo5CxajRs3xpcvX2BmZsYUViBD6G/cuDHevn0LQLMCo8jnz59hYmKCc+fOoXfv3pg4caJGgfXFixfYtm0bM0g4Ozujffv2PKv++/fvsXHjRmzYsIEpX8eOHcPKlSuRkJCAVq1aQV9fHw8fPgQRwdfXFzY2NrC0tNTY1sTEREydOpWdkyuhkh127dqFMWPGIDw8nNfXJBIJoqKi0KRJE8ydOxcBAQHYsWMH7OzsYG9vr+ItUkbRYqpY03TlypW4e/cuunfvDmtra/To0QNWVlZs3zdv3uDQoUPo1KkTtLW1medo3759zGo7bdo0lCpVCgEBAZg6dSpSU1NRr149bN26lQm6mmqDx8XFYfPmzRgwYACuX7+OefPm8errvnnzBsOHD1fp54pWW8UhTd3wVqZMGQQGBsLLy4tt06Tk3rlzBx4eHnBzc8OIESOYce3u3btYsGAB7ty5g0uXLjEjoFgshr29PVq0aKHW8MGh6GUFMhSboKAg/O9//8Pdu3eRlJSESpUqoVq1arz91BkSFb9TNJoAGUrHuHHjsHXrVjZmiEQidOvWDfPnz4epqSkGDhzIFB5OqHZwcEBiYiIiIyMxd+5cJCQkoE2bNujcubPGa1JEk8CTkpKC8+fP4+7du4iLi4NcLkfJkiXRvn17jBo1Sq2R4ffff8fWrVvh6uoKFxcX7N69G1paWkhNTYWxsbHGEm2cxyevkEqlKFasGLp3745WrVox63tiYiLmz5+P06dPIzU1FY0aNVKpta7Ix48fsXHjRgQFBWk0ZqWlpfE8WuvXr8fKlSvx+vVr9O/fP1sGhq1bt7KSkK9fv0Z8fDx8fHzg5ubGSiPu2rUrWwYejqzqyo8aNQrz58+HgYEBSpcuDSJiUUlDhw5VKTO6b98+/Pbbb+jcuTPq1asHAKx0Y0hICBOQgAxB1s/PD/fu3eO9666urqhSpQo2bdoEAwMDlCpVCq9evcLHjx+RkpICLy8v5uGLiYmBnZ0du7ecwK0J5bns3bt3MDc3x8ePH+Hh4YFXr16hUaNG8Pb2ZuPCv//+CzMzM1ZCEAArKWhqasrqsnM8ePAAa9aswYYNG/Dy5cssn4E6bty4AS8vL7Rs2RKjR4/mOQ1mzZqF3bt3w93dHWvWrIGPjw/++ecfDBw4EAkJCejatSvatm3L2s+Vfrx69apKTfWsuHbtGu7evQsAcHNzU5FflL1ryqiTPXR1dXH37l2VKDFjY2OEhYXBxcUFxsbGCA0NRZkyZWBjYwOZTIYnT57AwMAAERERkEgkiImJQfPmzREZGaly3hEjRuDdu3fYtGkTypQpw0pG7ty5E3///TdP8QMyjDqxsbGQSCS8Guea5CkALJLFwsICBw8eZNEwXbp04c1xEokEq1evZmX5FMtRKsJF12SFuui6uLg4REVFAQArDVy+fHkcP36cnef9+/fo1KkTpFIpOnXqxCI579+/j6VLlyI1NRU3btxg8kFWRvrr169j4sSJvLJ7Hz58wPr16xEcHKzWwKXMkiVLMGrUKKSmprJoEk7Z5Qwv6gweyoaKGTNmsDG4YcOG2Lt3L2JiYjB69GhMmDABgwcPxuvXr5ncV716dQQFBamU0mzcuDH69euHCxcu4OnTp0hJSeG1V9kzrYymZ7h9+3beZ03Omlq1amHt2rWIjo7G1q1bUaFCBXh5eaFr166oUaNGpucuKNLT03HgwAEEBgbi0KFDrGTjmDFjMGfOHDaGAxnGlOTkZDRp0oT3ninzv//9D0CGvBYYGIj169fj/fv3Gsea7DqQAP67Uq9ePRw9epQZBJTx9fVlEUDOzs6oX78+zp07x6K/bW1tMWfOHHTp0gVARmRpuXLleGWGAfUGaEU4w3h2ERT9THjx4gWCg4Oxdu1aJCUl4ffff0eXLl1QpUoVTJo0SeVmixXqqUZFRbFQuKioKJw/fx5dunRhHmSOhIQEVK5cGQMHDoSNjQ2AjM6SmQLO/TtjxgwAgLOzMxo1aqQiqGmyqHLhbxxr1qxRux9nGd23bx/ev3/P88RwHhou9Hj58uVs4D127BjvOJwQuH79eoSFhaF9+/a4du0anjx5wmqlfvr0Cf/++y82btyI8+fPs99qUmyio6Mxbtw47NixAx07dmTKJZBhgR01ahSrF6rcxTN7yXv06AGZTIZVq1YhPDwcK1euxMGDB/H161dYWlri3r172Lt3Lwtnmzx5MogIKSkpLBxRHZoEyvv372PJkiW4cuUKgIxJvXPnzsyj0a9fPzRu3Jj1Jc47zFkW9+/fj61bt+LixYuIiIjAlClTsjSOABmeV66m6c6dO5mF/9WrVzA2NkZ8fDzS09Mhl8t59cbfvXsHsVgMU1NTnufIx8cHHTp0wNOnT/Hp0yd069YNtWvXxpQpU1CmTBmMHz8eDRs2RNWqVTOtDb5q1SpERkaycE43Nzc0btyYRWdwVt1NmzbxrmfixImYNWsWFi9ezBT40NBQzJs3DwMGDGBKd8mSJdmzAzIssXfv3sXnz5+Zgs7BKblPnz7F/fv3ERsby1MwnJ2dUaNGDVy+fBkxMTHs3bSwsIC9vb3akEFAvaX2+fPn+P3333HhwgXo6uoiKSkJ6enpqFmzJrZs2cKMUdx4MXfuXLRs2RKAZqOJIkTEDGjW1tY8qzRXF3v8+PGwtbXF6NGjYWNjg1evXsHV1RW2trYoXbo0Dh06hMDAQHTr1g0AmGKWFdy1pqSkoEaNGrh9+zaaNm3KM5ocPnwYlStXxtmzZ5kC/ezZMwCAnZ0dtmzZgi1btuDBgwd4+/YtzMzMUK5cOeYNvHTpksp5mzZtyvscGBiIEiVKYO/evbzts2fPxoULF1gdXEdHR+aN27NnD3u2y5YtY79R7AfK44uFhQVq1qyJa9eu4caNG0xwXrp0Kf73v//xxrLr16/zxukHDx4wQYVT+jQZGJTRFDkCZPT72bNno0OHDnj06BE6d+6Ma9euISkpCY8fP8bEiROxatUq1jbu2aampuL+/fsoVaoUdHR08PDhQ7x8+RJWVlYQi8VITk5mBgOOS5cuYfPmzSxc1dnZGS1btkT9+vUBAAcPHuR5WK5fv45jx44hPDwcOjo6KF++PPz9/dn88+bNG9y/fx9ARmRGbGwsi9RwcnJiyqTyeZ2cnPD777/zhDJ1yxTUce7cOaxatQqbNm1CeHg4KlSogA0bNmDSpEk4ffo07Ozs8PHjRwwbNgzr169n/cHY2BgdO3bE6tWr1Z7n/fv3sLS0xOfPn7F161YEBQUhNDQUVatWRbt27VC3bl2mKJctWxbVq1fP9DhpaWms/+3duxe9e/dmteA5TExMkJ6ejsOHD6N69eowNDTE1atXIZVK0b59e1y/fp0XptqwYUMsXboUjo6OvHtva2uLkiVLqo1ifPz4Mfr06YPTp08zBTUuLg5169bFli1bQES4f/8+wsPDYWdnxwy+mqhTpw67rrp162LYsGE8ow+Q8Z5dvHgRTk5OcHZ2xpIlS9C4cWNWbz4pKYkp+qVKlUJERAS8vb0RHx+vcj5ra2scOXIEFSpUYL8Ri8X4999/MXnyZFy7dk2jYe3kyZNISUlh51Xk5cuXWLRoEW+5CufRvnDhAhwcHGBgYMCb40JDQ+Hr64tJkybxxsDsMnv2bAwePJi1h4s+lcvliImJQb9+/XDs2DHeM2/SpAnq1q2LP/74gyfHPH78GAMGDMCxY8d4Cm7Dhg2xfPlylXrmR44cwbFjx/Dhwwf8/fffKFWqFO7du4e//voL+/btQ+PGjXHw4EHeb65duwZ/f3/s379f47JGIMO4kpCQAHt7exw7doy95+bm5mjatKmK55qjbNmyaN68OYYMGcK80ESE6dOnY8aMGUhMTAQRQSKRYOzYsZg6dSo+f/4MNzc3fP36FTY2Nrhz5w727NkDLy8v5ihycnLCkSNH8L///Q+NGjXCsWPH0KhRI0RERODNmzfMWdekSRPe8pTM4BwnZ8+eRY0aNdR6yBXvR9OmTVGzZk2cPXsWISEhaNWqFWbOnImrV6+qGAs4lMfTzMZCdftyMis3TpUpUwaDBw9mkQ6ZPUNlIiMj2Xjl4uKCR48e8cbwQ4cOQVdXF3K5XK3ThjuP8pj3+++/Izw8HBs2bICPjw927dqF169fY9q0aZg8eTKePXuGu3fv4uvXr3BwcMDIkSNZRAkn97158waxsbG4desWL9JCJpPh8OHDvCXMADB06FAEBgbiwIEDqFOnDlJTU9GgQQN4eXlhxowZOHfuHHx8fPD8+XOm6x07dgwDBgxAVFQU711XNpB++/YNjx8/hpaWFkqXLp1zJ0aOV/X/onClKnR0dAgA9e7dWyUrJVdTnavjymX3bdCgAa1evVrjsQMDA6lRo0bsM1cyaf/+/eTp6ck+37hxg8aMGUM6OjpkYWHB9ldMqqaYCMfa2pr3pylhmyJfvnyhCRMmkJubG+np6ZG+vj7p6elRs2bNWKIgxSR6ihmDlbPAcn/qklNBIXHLzp07ycnJiWrXrq1SouPLly/k7OxMe/fuZdv69etHMpmMGjdurLb0UJMmTahs2bIqtYf//PNP8vT0JDc3N3Jzc6O2bdtSSEgI77dOTk68hChLly4lW1tb2rBhAzk5OdHw4cNVyv+oa6Ome+nu7k6TJ0+mhIQEljTH09OT3Sfu3ijfS+7+cnBJQR4+fEg2NjYas7Iq8/z5c5Waplu2bKHGjRuTh4cHL/nOvXv3yMvLixo3bsy2OTs7q2SEJfqv7vbVq1fJ2dmZ1d0myihh2KRJExKLxWprg6vLPs1VP1C+LplMplLWiIiofPnyvAzyRBnJsfbt20eVK1fmbU9LS6M7d+5QrVq1SCQSsezfAKhmzZr07Nkzev36NZmYmJCbmxu1atWKpFIpTZ06lbZu3Upbt26ly5cvU5UqVUgul1ObNm3or7/+ojFjxrC6tJ6enrxkWHXr1s30z9TUlAwNDenevXvUsGFDWr16tdr7T5QxXtSvX58lBxWJROTk5EQrVqygV69eUefOnalt27bUqlUr8vT0pNatW9PHjx/Z70X/X65pz5499PXrV3aPHRwc6PTp0yyr/5w5c6h06dIsmdScOXPIw8ODQkJCqEOHDixRmbm5OUscyNXBHTZsGHXq1ImqVatGo0aNokOHDtHChQvJyspKbYKnu3fvkpWVFS1YsID+/vtvMjQ0ZH3C0NCQxo8fz7ufyqgrqaWuNKBi4h6ijOzZXIJV7nwSiYRcXFxYiSVra2uysrIikUhEWlpaNG7cOF5yu+LFi9OyZcvY56tXr5KWlpZK4h51mYmJiBISEigoKIiqVKlCIpGIPDw8aPbs2WRnZ8cquCiPC4pjBfe+cM+d+2vfvj177lpaWiyxKVfmVUdHh548eUJ9+/alP//8k9cmkUhEDg4ONGjQIKpSpQq5u7vTsGHDyNDQkJo1a8aeMXetygnHFNm3bx+rgU70X1Zj7k8sFquMw0QZ72/Xrl3ZvQRAEomEunTpwqt/nZaWprG6iTLqkikpo5iRGwBLBrlkyRKSSCQqZbEA0OvXr+n169e85HXq6jDv3LmTlWEtV64cSSQSOnv2LD179ow3HpmYmLBrVjfHvXjxgrS0tMjNzY1kMhnJZDJyc3OjpUuX0s6dO2nWrFk0a9Ys2rlzJ3358oUMDAxYsj57e3uW+Ior/RQWFkZhYWEseemTJ0+oZs2avHsPZJRKVa49/uXLF9LX1ydHR0dWDYIoI5N4pUqVqESJEuw43Duk/AwVWbNmDe+6ihcvThYWFrRkyRK6ePEiS5Dl6elJM2bMICKi3r17U/Xq1Wnjxo1kYmLCEjMqVgLp27cvG0sPHDjAqwSjo6PDK2W2ceNG0tXVZdculUpp+PDhtHbtWl5bp02bRnK5nCQSCasaxPH06VOysrKi4sWL0/Tp02nXrl20a9cuKl68OJmbm5O1tTU9e/ZMZY4LCQkhKysrNgZy/b5EiRIsyRv3V7t2bapbty7Vq1ePXZNYLKZ169axTN3cuMO1x9bWlkQiEWtPQEAAFS9enLXn6tWrtGHDBtqwYQMrPfb+/XvWRy5fvky+vr4UHx/PS/a3Zs0aEolEJJPJSCwWk4WFBW3YsIGMjY2pWbNm5OfnR2PHjmXXevfuXWrdujWJxWIqV64ce+YSiYTMzc2ZzJyens7K5OH/E/cqlh/Nil27dlHr1q1JKpWSk5MTzZgxg42FycnJFBkZSXZ2drR79272G07u4/qoYgUpRZydnal+/fpkbW1N+vr6tHTpUhKLxaSlpUXa2tpsHlWeixTLJNvb27OqPpqeoToUk8bq6+vT8ePHydfXl06cOKEyz8XFxVH79u2pTZs2Ku9i/fr1qXHjxlSqVCkqVaoUNW/enHbv3s0be7l9a9euzWRWrrKAl5cXaWlp0YABA1TGo9WrV9O2bduobdu2LHlpp06daMeOHWqPrzwulC1blszMzGjo0KFqy1UrHltRpre2tmbjtoGBAdPVpk+fThKJhOzs7Kht27ZUvHhxMjAwYBWSOLnP2dmZJUjs0KED713R1dUlsVhMV65cIaKMygcNGzYkXV1dOnnyJBH9Ny5w87WDgwPp6OhQz549ee3v168fubu7Z0veiY+Pp7Zt26otx5cVgqKfQ+Li4kgqlZKbmxvLOq3Mv//+y6upbmRkpLZEDgenrCnDCWREGXWfq1SpQgYGBuTv788rWTFp0iQaNWoUVa9enbS0tLJU6DXVYX379i1VrFiR5HI5tWjRgikvMpmMvdwpKSlMieMMEEuWLCE7O7ssDRKa4BQbZfbu3Utr167lGUK4cnwAyMDAgMqXL6+SIV4sFpOLiws7TlpaGnXs2JFEIhG5uLhQ69atqXXr1sxoY2lpySZOsVhMnp6e7LOFhQUNHjyYtZGr0amMsrEmOTk5S0WwVKlSNGHCBCLiZ8UeMmQIiUQiOnPmDMnlcjp+/Dj7joPLTHvnzh3S1tZWmz3648ePrAzehg0bNNY0jYyMJG1tbbV99OrVq7wyZOpKd3Hbnzx5wsqWVatWjWbPns1KGA4cOJCXTVkikdCOHTtU6oEbGxvTgAEDWN+pUqUKLzu0ubm52pqkMpmMlwWZMx5du3ZNZf8vX76Qrq4uOTs7M6WTK03GKdaalFyOhQsXkqWlJfn7+1OVKlV4x+eU1sWLF7NtioqTojLM/UkkEurcuTMRZZS24TJTK9//y5cvU6dOnUgkEjGjiUgkoubNm7N99PX1qV27dlS9enWysbEhFxcX8vf357Xl9evXVL9+fVq6dCmvTF9MTAxT9Js2bcpTAO/fv89qp//xxx8kkUjI2NiYTey9e/dm+4aEhJBYLCY9PT0yNjYmsVhMpUqVoqVLl6o8O47FixeTjY0NWVpa0sqVKykiIoKOHTtGDRo0IEtLS+rfvz/bNzQ0lEaOHElVq1bl1Q7ODOUs0pzga21tTVpaWmwy79WrFwHgGWuJMoTdCRMmkEQi4ZXrVFSiOXR0dLLMVB4aGkq9evViSp9IJKIuXbrw9p89ezbNnTuX5s6dSz4+PtS5c2c2FowdO5Zat27NPnPP3c/Pj/z8/HjPXTGTNTevcGOGk5OTivGOM1pbWlpS586dWZUBTdf65MkTevDgAVMAFGnRogUtWbKEfv/9d4qOjubdh6dPn9LYsWOpadOmRJRRRWHo0KG0atUq6tixIzk5OdHhw4dp48aNVLp0adq9eze5uLhQp06d2PE5Q+vKlStpzpw5NGjQICpWrBg5OjryxvK6desyYx73WR0VK1akdevWERHxFP3r16+TSCRSW/+agxN+xUp12b29vcnU1JSkUinZ2tpSeHg4u5+RkZEqhtZFixbRuHHjCAA5OTnxssnPnz+flU/966+/mLL6119/kb6+PptTFKlatSodPnyYiDIql3Tr1o2eP39Oo0ePplKlSqns36hRIwJAhw8fpvj4eKpbty4NHTpU5d4r9gHF8ZGjQYMGJBaL2XHu3btH7dq1I0dHR5XjxMXFkaenJ+nq6vKuS53TQNEoTET0+vVraty4MRkYGJCzszPp6upS//79SVtbm4YOHUoVK1YksVhMV69eJSJVYxMAateuHfuuSpUq1KpVK2rRogW1bNmSBg4cSDKZjDd+cQ6PadOm0Y4dO1jVII6ePXuSt7c3Xbx4kTc+m5ub04MHD8jb25t69eqlMsd17tyZALAxsGvXrlSvXj3S1dVlBrdhw4ZRq1atyNTUlHR0dFi5VWVnQUhICHvfuPbExMSoVMZITEwkT09PsrGxUTE21atXj2e06tOnD/Xq1Yv+/PNPsra2Ztvd3d1p9uzZNHr0aGrUqBGJRCLy8vKiOXPmkEgkYo4FRQNAv379aMCAAaSnp8eeealSpah169asL2/bto1d471796h58+bUoUMHXvsVxxxlIw6nLL9584bmzZtH7u7upKWlRc2bN6cdO3bQhg0bWFk+jrZt29LgwYPZZ0W5jzPM1qpViwBQxYoVafbs2WRqakplypShfv360a1bt8ja2pqmT5+uUjqU62PR0dEajaDKz1Adenp6rM36+vrUqVMn+vPPP+nx48cqTg+ijJKfRkZG7F2Mj4+nQYMGEQCyt7dn48vvv/9OIpGILCwsePsePnyYpFKpSvlLImIOB8X3dsyYMaSlpUUAeHK3s7Mz4f8rlx0+fJgeP35MK1asoHXr1vHGl9u3b5Ofnx/Vq1eP6tWrR0ZGRlSlShVavnw5ffz4Ua1M7+zszIwG3L1RNGw6OzuTRCJhBioHBwc6ceIE9e3bl8qVK8fkPj8/P/L29qbp06erjGtfvnwhMzMzMjY2pnfv3lHx4sVJKpWyEqzK40LJkiWpTp06tGXLFlYSloObF7h3PSIiglauXEnW1tY8eYfj5s2bvEpJ2UVQ9L8DV1dX2rBhA924cYM3GHCsX7+eXFxcWE11kUhEOjo6Gr0OnLKmTHh4OIlEImrQoAHJ5XLq1asXtWnThszMzMjGxoYWLVpEaWlpNGHCBDbRbtmyJcv2K3rfNZWRU5wItLW16cSJE0x54ZQ4jpiYGNLV1SWizA0SmlBUbBTx8fGhpUuXMkMI9wLVq1ePOnXqRObm5uTp6ali0DA3N6d+/fqx48yfP59MTU1p3759vOMPGzaMWrZsSXK5nLy9vWnYsGGkra1N3bp1o169ejFDwMaNG1kbo6OjeYoXJzB6enqSTCZjnx0dHUkmk5GHh4eKQMkpglKpVO11P3jwgABQdHQ062vKcEamEiVKMI8CZzEtW7YsGRoaqkQGlC1blldS6OvXr0zQdHJyUilj9unTJwoODmb14zml2dvbmzZu3Mjbt3Tp0nT48GE6fvw4WVhYkEwmo/Pnz7MShsuWLePVlebOq8ixY8dY2ThNfad9+/bMI83x8OFD0tbWJkdHR1ZirGHDhrRixQrq1q0bK3+liFQq5ZUp4ZRcTrFWp+SampoSEdHJkyfJ0tKSpFIp2djY0MCBA3nH/vLlCzVu3Jh0dXVZJIe1tTXzeg8fPlylzrvi/dfW1mZlhMLCwqh06dJEROx59+nTh9UMJ8pQRtasWcM+c0JEtWrVaO/evbRz506eMMEpffv27aNq1aoxr5elpSWFh4cz5cXMzIy2b9/OfvfgwQMSiURMsebOc/HiRapUqRLJZDKqVq0arVixgipUqED9+vVjE+r06dNJJBJl6om5desWiUQiOnjwINs2cuRI6tOnDx04cIDVbFY0InA1p+fMmaP2mOfPn2elaapVq0aTJ09m33GC7/jx43lRHx07dmTf9erVi22fNWsWJSYmUp8+fcjX15cdm7ufnz59ogEDBhBRhhdBk6I/d+5cKlu2LBUrVoxGjRrFlD4AtHnzZpX9OU6fPk2Ojo7sc/Xq1enYsWMa91d87tx4UalSJXJ1dWVeQs5gzY0dyly8eJF8fX0JAFWrVk1F0eWu9dGjR9SnTx+VyACi/2q8jx49mvr3789rZ61atSggIIAsLCzo5cuXZGBgQF5eXmRubk5SqZSVIVQ0Bp89e5bNNxy//fYbm9esra1581jt2rWZcgSAHBwcqHTp0lS6dGleBAT3J5FImPdbUdGPjo5m4zIXRefu7k4AmJFZX1+flcjU09NjJbiAjHKvvXv3Zp5jItJoaOU8f5wiqugNdHZ2JqlUyitDuW7dOlq3bh27v9xn7q9v377MEHf16lUyNzcnsVhM2traamUGbW1tXplUbv5Td++JMpQOc3NztcdRnC+591nTcbS1talFixa8bTExMbRo0SIyNjbmGcSVjd+KREVFUe/evalatWpUpkwZKlasGO/dV35XuPr1TZo0IZlMRlKplEqVKkVWVlYUFRVFCQkJBIB57LjfcBEChw8fprZt25KJiQk7rqWlJdWqVYsZTTl0dHTo1q1bdObMGbUOHn19fd74zqE4Bn779o3c3NxYJMXmzZt55ZBfv35Ns2bNoqZNm7Lttra2dO7cORXjFEfdunVJKpWqRGVUrVqVfH19mYLLKd1c5BGHrq4uPX78mK5evUpOTk4klUrp/PnzzABAlBEtwxkAOOOGubk5z1hrbGxMd+7coX///ZfMzMzIz8+PunXrxq4rNDSUV5f8eyKGFi9eTHK5nO0jl8uZEYgoo78ryjjR0dFMBleMxrGwsKCbN28SUcb8LJfL6eHDh3Tx4kUyNDRkzhR1tdqjo6OpZcuWFBgYqLKdiwjinqE6ihUrRhcuXGC/K1myJF2+fJl27typ1ninra1NdnZ2KscYOnSoyrsok8l48hqHXC5Xq6twUZGKzJ8/n/T19cnAwEDtcQwMDGjOnDnk5uZGFSpUoBEjRrBxQV1E5Zo1a2jdunXk4+PDyiju3LlT5dh79uwhiUTCdABFw6aWlhav73By371790hbW5vJfdy7oij3KXL8+HGSyWRkYWFBAHjlIRXHBaKM91Zx3lbE0NCQJ+8o/oZ71xU5d+4cGRsbqz1WZgiK/ncwbtw4sre3p1evXql89/LlS7K3t6dx48axmuoikYhKly6tUlOdgzMMKBIVFcWs6pwnpG/fvmRvb08jR46kcuXKsQmkefPmFBoamu32c3VYu3TpQk2bNmWfK1SoQEOHDmWfOTglbvHixVSzZk2mxHFcu3aNjI2NmUFi0KBBmYZHxsbG0pMnT9hnTrEZO3Ys9ejRg23nwsE5Q0h2XyDl2sPu7u68wVSZNWvWsMiMunXrUv369cnCwoKKFStGIpGIYmNjWRuPHj3KFC+i/zy1nTt3JolEwgTKYsWKUd26ddlnZRYvXkwmJiYq9a6JiIKCgliIqKa+xkVxGBkZUe3atZmRY/jw4aSnp0eGhoZUv3595qXkhHS5XE7z5s2jTZs20cyZM5mguXv3bqpevToLRzpz5gzp6ekR/r828pEjR8jAwID9icVi+ueff1h7uLrblSpVIjs7O1Z3m1sqwCn/6mqDX7t2jfUdU1NTWrJkicZntXTpUtLR0SEtLS1eTdUqVaowRbp+/fokk8nI1NSULC0t1dZhd3Bw4E1knJLLKdbKSu7Zs2dJKpWy7wDQnDlzeDVpif6L5OC83MqRHG5ubtSzZ08W7bNixQqKj4/n3X/OuHPlyhXy9PRkNXw5o8no0aPJ2dmZnRMAsyYTEfMQGRsb05MnTyg6Opr09PTY95zS5+bmRhKJhCl8RkZGZGpqyrzLMpmMF4q6f/9+EolETLi2sLBgSuqDBw/IxMSEgoODqVq1agSAp7gkJycTABUDhyKxsbEEgCdourm50f+x95bRUWRd2/BV7d1Jx91JAhGCBQnuGmxwl+AyuLsHGdxdwuAMEGRw1+DBCR4sQIYE12R/P/LUuau6qpLOzP2877fWO9datSAnlapTR/bZvk+ePEm3bt1igkRkZCRTIpw+fZrc3NxkrSZEYnf5nTt3kkajobZt29Lq1avJwcGBatSowaz5PAICAujkyZMSRlylUtGrV6/oxIkTFBAQwJ7Nj6dQ6FOr1QSAPD09ydvbm7y9vVntZJVKRdWqVaNZs2bRnDlzRPN4+PBh9nPfvn0pNTWViLIsVo8fPyaDwcAsVnZ2drR8+XJmsbK0DArnXagI7datG3Ecx362sbGhtm3bSsK4eBw6dIjc3Nxo9erVzIoq9KTi149er6d8+fJJFAZ8jXc+rEdY493BwYExTXPmzKHSpUsTURYNV6vVjIkWKoMTExNFrqlHjhxhFk1+vU6bNo3y5cvHaiLzLtccx1GzZs2Y14PcZWtryxQovHD37t07WrRoEalUKkpMTKRhw4bRsGHDqFevXiyEpXfv3mxMCxcuTEOHDmV9jI2Npbx585Kvry8NHjyY7YPsFK1EWWtdWFOdh729vUhhwHEcmc1msre3JwDk4OAguYR75NOnT3Tp0iV68+aN7Jx7eHiIBH3+/LMcex6VKlUijuNE3h7Pnj0jvV4vUnTz+1npOba2tqLzlcfdu3cl9c1zA17ZJHyPUNC/du0aOTs708SJE1lYUt++fenFixfsHgBM8UREzODBu6zzYTa8xRoAtWrVSkTP+DFYs2YNPX36VNbyajabZceAp4G///47BQYGklqtptGjRzOvM0tB/9q1a+Tq6sradTodPX36VFHQN5vNEmGNKIs/0mq1TMAFQJs3b5bcx7+X9+rj38srAIiy3PB5BQAPy7XM/x0/5yEhIbRo0SKm4L9x4wbp9Xpmaa5VqxbNnz+f/Ww5t7ywnJKSQlOnTqWwsDAymUzUqlUrOnLkCFNG8fvsxIkTpFKp2NxPnz6d/P39Sa1WixSzGo2GoqOjmfv8+PHj2Zz7+/tTgwYNRN8jhDBcTm5dchxH0dHRjJeRU0gGBwdT2bJlmYJUr9fT1q1bKTAwUJaWe3l5SdabjY0N7dq1S7IXPT09RQo6HmXLlpUVNI1GI5UpU0bUVqBAAZo0aZLsvvX19aWxY8eSSqWimjVrkr+/Px07dozRhew8KnnelOM4EX8iRMeOHZlAL1RschxHAwYMYPfxfN/27dspKiqK8X38XklKShLxTrzXw7hx40itVjP3/DFjxrDf+fn5KRpCLeHs7Czi3XgMGzaMbGxs2DNnz55NQ4YMIS8vL2rRooXss7LDv4L+38D79+9ZLEpoaCjNnj2bZs+eTd26dSMbGxtydXWloKAgcnd3pwEDBjABPSfFAI/u3buTTqej0qVLiw5bX19fxgg+evSIOI6jYcOG5dhfSwGaR9u2bUWHsIuLi6zFjRfiYmNjSafTMSGOKEshUbRoUZFCIieEhoaKDhpesLHsD+8OzitCsvMkEIJ3J+aZP95NiHdHswTPQPOWewDk4uIiiqnh+9i9e3dq27Yt+1vexdXOzo4cHR0ZA6c0ljyuX7/O1krPnj1ZTFzPnj3Jzc2N9Ho9LVmyhDZs2EB+fn5kNpupe/fuorVmNpspPDxcZPnmLZFfvnyRvPOvv/6ifPnyMWt/iRIlSK1W0/Xr10VjxltJ+dhE3rrDhwjo9XoKDw+nvHnzUnp6OqWnp9OxY8fIz8+PWcz4/As8KlasSJ06dWJ5LjiOo06dOlGtWrVIrVaztTNy5Ejy9fVV3Cu+vr40fPhw2r9/P02bNo3mzZvH3Kg/fvxIS5YsoX79+pFaraZx48bRx48fZcd/3rx5xHEcU2zUq1eP6tWrR1FRUTRo0CAm5G7dupVq1arFvp0PeQAgUobx4OPQecWAEEKXft7bp3jx4mRjY0P29vZs/IVuqXxIgqOjI9nb25NeryeNRkO2trZMaQJAFF/Iw9bWli5evEjXrl0THdq8MNKlSxfS6XQiAdBkMpFarSaO42jkyJGi57Vu3ZrMZjMT4IsWLUqLFy8mImKKoJiYGLbnLK1tAGTzO/BISUkhjuOoRYsWzApvMpkoKSmJWrVqxZgXGxsbJvQ9efKEKX7klIuWTNbu3bupdOnSZDKZCACVKlVKMo9Go5GePn0qYcR5Rvbp06dkMBjYs/nxGzhwoEiAtre3FwlavGLKwcGBNBoNqdVqsre3ZzTD0qLPg7dYJSQkkNlsztG9k7c2h4aGshAP4cW7ffNo0qQJ/fLLL4rzUq9ePapYsSLFxMSQTqcjb29vGjFihMSTSqPRUN++fSVMpqenJx08eJAJAELY2NjQmjVryMPDg+rWrctytDx58oQ0Gg1VrVqVXr58yQTNly9fUvXq1dm6I8rywGjSpImspenMmTMUEhJCWq2WKTuF3kByiI2NpfDwcDp37hwbX368Lb3h+J+zy5Gyfv16RoeOHTtGbdu2JZPJRAULFiS1Wk2nTp2SKFqJSKLoE3qn/PrrryI3cT6WNTIykpo2bZrt91mDkSNHEgB6+fIlEWWdf/PmzZOMPY9Zs2aRXq9nlvDAwEDSarXk6+tL5cqVY88xmUx04cIFxee0a9eONBqNpL1jx45UoEABqlKlClWpUoV69epFFy5coB49erC8SDyddHR0JAcHB7p79y5T2Ol0Otq4cSM7K4TKJqKsXAVCKzrHcRQXFydyAec4jvr06UPx8fG0ceNG0mg0Iov1pUuXmCdPqVKlyMfHR5TvRzi2vr6+tH79eokb7suXL8nOzo7y58/P5pooy/uuUqVKLHZ//PjxTIHGg/8mjuNo0qRJNHr0aFKr1UzB6OTkRN27d6eJEyfKCvpGo1Gk2OQ9j3jvNaHnkZzhhH9vz549yWw2s/dyHEcTJ05kQovlXrFcy4UKFaJVq1bRgAEDmCX/5s2bor1n6a0otN5bPn/mzJnMS6NQoUI0b948Uc4aW1tbmjVrFgGgwMBASSy1Wq2myMhIat26teh7NRoNnT59mim3MjIyiOM4Cg0NpYoVK9LkyZNpzpw5bByE4Td8H7Obw2bNmlGjRo1IpVLJKiTbtGlDnTp1EuXR4DiOWrduLcqdwKNv376k0+nYXiTKClHImzevZC82atSI3N3dRfe+fPmSwsLCyGw2S3hWo9FIVapUEe0Xg8FAnTt3lng8EhEtWbKE5ST59u0bGQwGOn/+PKMLlh6VJ06cIKPRSMHBweTp6UkajUakFLcEz9Pz4BWbS5cuJT8/P/rtt9/o5MmTVLZsWSpevDj5+/tT3759mReZl5cX7d+/n3bv3k2hoaHsOfwZ7u7uTmq1mhma3N3dWb4FABJDqJy3E1GWnABAstf5kEf+fYGBgRQVFUXDhg2zykvaEv8K+n8T6enplC9fPkkyCbVaTbVq1aIdO3YwbRSvGLAU1viYJYPBQIUKFWKMGL9h+WQQwnZhsj2j0Shxf5aDpQCtBI1GI9rYPD5//kxt2rRh1gJeiOMVEo6OjtS7d2+rx+78+fMi5lrJah0UFETr168nPz8/GjhwoKwngdwGql27NpUtW5ZWr15Nq1evJhsbG5owYQL72RILFy5kSTDGjx9PFy9epNmzZ4tiavg+/vbbb5LkSC9fviR3d3cqXLgws9SqVCqRltoSvPVS6GJmGTMo/H337t3JycmJ/ezo6Ejdu3eXaDR5lyMlHD9+nDiOo9jYWBo2bBh5eXmRnZ0dRUVF0a+//srGyGg0UmxsLK1evZpZLMaPH0+rV6+mXbt2kZOTkyShnqurK8XHxyu+m0d6ejqL6QIg8sp4//49O0x69OjB9kr37t3JbDZTaGioVYROKeSBB59oiVds8LFk/GUwGJiFZvjw4dSsWTNROIildYdH+fLlaf78+YpWk7lz51L58uWZt4+trS1FRUXR0qVL2dgvWrSIWYArV65MLVu2pJYtW1KlSpXIYDBQeHg47dq1S5QctFatWpLkoFFRUTRlyhRauXKlbFydXPzZmzdvaMeOHXTu3DnJ/bt376amTZsyQW7+/PlkMBgoKCiIJXcbMGAAY8omTZokYm74fBg+Pj7sEgqgvEXcbDaTi4sLValShbRaLdnb25OdnR2zZACg6OhoIspaz87OzoqCVnYCmL+/vywjzgv0e/fuFTHifDs/t5bPVppzJVgKfQCoS5cukvt4987x48dTqVKl2Ht5y6CleycveNevX59cXV1zzNly+fJl0uv11KhRI0pISGDKu127dlF4eDiLr+XnVgnu7u6yzFezZs2obt26dOjQIXJ3dxf9rkSJEhQUFMTWNi9MnD17lrRaLdna2pJWqyWtVssEDltbW9G60el0NGLECIlXHI8TJ06Qn58f80gwmUzZJu/LzMykiRMnMo8m3mLfpk0b5u1meWW3zuSSML5//54WL17MlK38xdMjodKVF14BMHfOX3/9lQmEHTt2pI4dOzLhWqfTkZubG/n6+lKhQoVYngDhxYcU8Jdwn86ZM4fc3NyYojcoKIgcHBzY2FkqjnhjxbBhw+jAgQM0d+5cmjt3Lh08eJAKFy7M5pCnE3ySVcvnEGUJHnwoCf9d/v7+LAlbZGQkRUZGkoeHB0uuOWXKFFq1ahWjnyNHjiRXV1emiFEKSeRjYhMTE2nRokXk7OzMfs7uTBZeP3/+ZBbrJUuWUOnSpZnFuk+fPlSgQAFJUsb3799Tvnz5SKVSUcGCBSVnHO/uzNPAYsWKsWSxQUFBFB0dTQ0aNCCDwSAK3eHh7+8vEUZ4DyRe+WLpJfLq1Suys7Mjb29vJriq1Wrq1asXlS9fXqQI5DiOqlSpovhek8lEJpOJvZf3MHFyciInJyeJ4FuuXDkyGAxszsuUKUMqlYq0Wi05OTmRp6cn9evXjwDQtm3bqEOHDkxBe+zYMdJqtbRhwwb2s6USx9bWllQqFVMyf//+nRk4iLLcodPS0qhnz54Svo8o65x0c3MjDw8PWW8cuTGwvPz8/Njl7+9PZrOZEhMTycPDg3bs2MG8EYRj/OrVK9q/f78oD4IckpOTac+ePVSyZEmqWrWq4n12dnak0WjYXuT3I09XPD09ydPTk+zs7EitVosSI/KhVHJ7QGlvqNVqsrGxYYoc/iLKUkbzyvagoCBSq9XMgMF7ieXJk4cCAgKoZs2aZDAYSK1WU3x8PP38+ZMcHR1lk/PxuHbtmqzngTV7mm8vUKAANW7cWMT3EWXtlYIFC1KfPn2I6D+G0Li4OGrevLnIEEqUpdSw9HbgUaFCBTKZTGyvV6lShVxcXET8Dn/9E/xbXu8fgoiQmpoKIoKHh4diTfWMjAy8ePECaWlpyMzMBADo9XpERESgSpUqotIsx44dE/0tX8Zh3LhxGDhwIGxsbAAA06dPx7Vr1xTrSGeH9PR0VgaHB19erUWLFnj48CErncbj1atX8PLyYuXpVCoVDAYDQkNDs31XTqUgPnz4gBIlSuD58+do3bo1K9OxZs0aJCYmwsPDA6VKlcKFCxdYOT4AWLp0KeLi4kTl+ACgXbt2ePr0KSvrVbt2bfj5+WHRokWi+86fP48hQ4bg5MmT8PX1xYULFxTrlX748AGlSpVCcnKyqI937tzBunXr4Ovri3PnzkGtVmPLli1o3749TCYTXr58KVvz3HIsLeveX7t2DaGhoaJa7ESEAwcOsBJulmsMyFpTDx48wMKFC5GSkoKVK1eKfv/s2TMEBgayeq9KNU1V/1O+jy+9IixTBGTVow4MDMTUqVNZqTm5Eo9K4NeOv78//vrrL1Y+Dsgq6fXixQukp6cjMzMTRAQHBwc0a9YM/v7+bP3LoXfv3rCzs0Pr1q2xZ88enD9/ntX55ZGSkoL8+fOjdOnSaNy4MWv/8OED7t27B3t7ewQFBQEAVq9ejStXrsDLywstW7ZEz5494ejoCI7jkC9fPklfrl+/juDgYGi1Wty8eVNUyvHFixeYOnUq5s+fD1dXV7Ru3RodOnRgNVaFePfuHYYNG4ZNmzaxOsEODg5o3rw5Jk2axMpTvXv3Ds2bN8fhw4fx48cPFChQANeuXQOQtT/69esHk8mErl27YuLEiez5u3btQosWLTBz5kx06dIl+8kSIDMzE5mZmdBoNIiOjsahQ4fg4+ODKlWqYM6cOWz+AwICJOszPT1d8ry+ffuKft6xYwcKFy7Mfj506BCMRiPKlCnD2lavXo3IyEi0a9cOGzZswLt37/Do0SMMGjRItH979+6N9evXo379+mye0tPTsXXrVjx8+BBv377FmTNnMGvWLISGhsLb2xtA1tocOnQo1qxZg7x587LSln379sWECRMAZJVzNJlMoj1huaetxYcPH7B+/XpMmTIFjx8/RmhoKDp37oz+/fsDyCqNN3jwYAwcOBCzZ89G//79kZiYiFWrVmHNmjWIi4tD06ZN8fr1a/bMlJQUlChRAm3bthXNuxKaNGmC3bt3i+gCAOh0OgwcOBDjxo3LttQTADRt2hQ/fvwQldoD/lPj3cnJCWFhYay29N27dzFw4ECcPHkSKpUK7dq1Y/Rq+PDh2L59O6udfPjwYVy7dg2dO3eGra2t6PkTJ06Em5sb2rdvj0mTJkn69ezZMwQFBaFVq1ZYtWoVIiMjcerUKdlyaEJ8//4d9+/fx8ePHxEeHi55rxCW9NHa3wFZNGPAgAE4d+4c5s2bp/iObt26Yfz48Rg0aBAqVaqkeF9GRgbevHmD+/fv4+fPn3Bzc0NoaKioLJ5lOUoPDw/Rz/xe5ffnt2/fsHz5clZvnd9nqampuHv3Ljv/+BJxPMaNGyf6ed26dTCbzahXr56k32PGjIGXlxe+ffsmKhV58eJFODo6MpoMZJXUOn36NPLkyYM7d+6InlO4cGHky5cP48aNg6enJziOQ4cOHfD582ds3LiRlQFWqVSsJCr9T8li/mf+HcIx/fLlC7p27Ypdu3bBw8MDS5cuRbly5dhZ2axZM9SsWRMTJ05EYmIiHB0dERUVhZSUFLRu3VpUTnTdunVQqVRQqVSs3B9fmvH9+/eiEnerV6+GRqNBvnz5RGvw/v378PLyQufOnQH8pzQbjzp16sDGxgabNm0CkFVvXqk/69evh7OzM8xmM+7cucPKR6alpUGr1aJTp07o0aMHIiIioNFooFarUbduXQwePFjEC02bNg179uzBmTNnWNlQubNAiJSUFAAQlcF8+fIl/vrrL+h0Ovj7+0Ov1+PYsWN49eoVxo4di2rVqqFBgwYAsso+xsXFoWrVqrLP37lzJ7p27crKlQJAYGAgtm/fjkKFCin2yxLHjx/HypUrsXXrVgQHB+PmzZs4fvw4K7n3+vVrRjd5lC9fHsB/1hoPfr3x9/Nrjz87+DKgHTp0EM2hEk6fPg2NRoMKFSqgTp06svMSHx+PTp06sdJuADB79myrv9/yrOYxZswYWXp07do1GAwG5MuXj7Vx/1NaeNy4cdi1axfevXuH1q1bY8OGDTCZTKhbty5u376Nbdu2YeDAgZg6dSr8/f0RFRWFY8eOYcSIEQCyyjA7OjqiadOmAKRrv2DBgvjw4QNbIzw+fPgAvV4Pf39/VK9eHQ4ODnj79i0uXrwIV1dXVtbu3bt3aNy4MZ49e4aGDRuiRIkSor3i4eGBc+fOwcnJSZEu8KhUqRJq1qyJIUOGSMYoJibGipHPwqpVq6y+1xL/Cvp/E3KCsuWhJgciQs+ePbMV1pSgUqkYoQXkhUFALFinp6djyZIlCAgIQLNmzQBkMWR//PEHPDw88OeffzJixz8/LS0NP3/+FBEEIEsAEwovOX0vf4DNnDkTQJZgvX79eiQnJ6NZs2ai/mzduhVGoxFarRbv378HANjb28PNzQ2vXr2Cp6dnrjYQj9q1a6Nr165o3LgxfvnlFwwcOJAdcI6OjlCpVCAi9OrVS5ER44nIu3fv0KdPH8THx4sOZ6HwderUKaxcuRKrVq2C0WhEvnz5ZOupW47lgAEDYDabc1wPY8aMyfb3AQEBWLp0KdatWydSdvDYt28funXrhsePH0v+9vXr13Bzc0Pt2rWxb98+pKSksPr2dnZ2SExMZEql3Ao1w4cPFykerN0rPXr0QLFixXD58mW4uLhkq9TiOA4PHz6E2WzG6dOn0bJlyxwVM5aMqRy+fPmCzZs3Y+XKlUhISECNGjWwa9cudO/eXVKDdvz48ejXrx97Lj9f0dHROHr0KMqXL4/Dhw/j69evioJT7dq1sXz5cnh6eooUiUr04sOHD4iKikJycjICAwPRsWNHAFmC1LJly/Dz50+EhIQgLCyMjUFSUhKaNm2KDRs2SJ5nOVc8Ll68iM+fP4uYFyXFphC5rvkqwNGjR1GtWjX07dsXgwYNgru7OwICApCZmYl3797h/fv38PDwgMFgEP0dvxaEtWmvXbuGqlWrwt7eHo8fP8b58+fRrFkzPHnyBAEBAYwujxw5Ep8+fYJarYaXlxfbv48fP4aDgwP7+fPnzyLlwocPHzB69GjJnrB2PAGgVq1a2LdvH2OkASA+Ph4A0LhxY2zevBkXL15EoUKF8PXrV0RFReHp06f4/Pkzo7N3797F77//Dm9vb5w/f96qNd6uXTs8fvwYffv2xf379zFkyBA4OjrCx8eHKVblIJzbK1euoHjx4vDx8cHmzZtFe65v3744d+6chBY6OjpiyZIlqFy5sqi2+uPHj2Eymdj+yk7RunjxYuTLlw8XL14UfeuLFy+wevVqrFixAg8fPsSAAQNQoEABtGrVKkelBY8NGzagXr162SoXgX8m6PP48eMHtFrt33qHHE6cOIExY8bgxIkTSE1NzbF2fU7ITvmYkZGB/PnzSxju+fPn4/79+0ygkNvPQNZ5Mm3aNMyZMwcHDhxA5cqV2TMMBgOuX7+OvHnzip5doEAB3L17lymneNjY2CAxMRHBwcGsjVc28cJpvnz5kJycjIcPH2Lx4sU4dOgQPDw8MHLkSJQqVQpAVj37GTNmYNq0afjll18Ux0WlUmHixIlMCB8yZAijC58/f8bu3btx5coVfPnyhY1Z06ZNERsbC0dHR7x58wYAFOm7kqD87ds3vHz5EiaTCQ4ODrh16xaArP0/depUicANZAn7w4cPx6ZNm5gyx7I/hw4dYsqTsLAwaLVaiYAbGxuL6dOn46+//hL1ydnZGcuXL5dV5PxTWBofeDRv3hyfP3/Gzp07WRvPQwJZSkwbGxusXr2atcXFxWHXrl2MN84JL1++xI8fP+Dn58cUsytXrsTFixeh1WolaxCASHA/fvy47HPv3buHHj16oHTp0mjRogVTbDo6OqJWrVo4fPiwZA7lYGdnh6tXr+LWrVvo0KHD/5F5efbsmeh8tMSZM2dQsWJFCd99+/ZtzJgxA/Hx8Th69CjKlCmDa9euoUqVKnj//j1+/vyJ4cOHY8KECWztv3nzBiqVCs7OzgCAr1+/IiUlha3927dvi579xx9/MKMDf1YkJSVBrVYjNDQUd+/eBcdxOHXqlKyhBch5rzg5OUn+Ru5MF+L79++yCiE/Pz9mULAGvLLcWvwr6FuBqVOnWiUo81Bi7P4pchKOTp06BQcHB2zZskXUT47jsGLFCrRr1w4HDx5E06ZNsWnTJmzevBnJyck4cOCAVc/nYSlsKn1vuXLl0KVLF7Rp0wYpKSkICQlB/vz5kZCQgJiYGCxfvlzSnydPnmD9+vV/SxECSBUwPHOUmJiILl264O3bt+x3mZmZUKlUcHFxUbRE8wIDj7CwMNy9exevXr1ifXz58iVWr16N1atX4/3792jdujW+fv3KhOTswI8lT6itZeJ4WI593759ceTIERw+fFjy/tevX6NatWqoVKmSRJMrPMjMZjM+ffqUrVLJUlHBQ4nQWXpZCPv/6tUrrFixIlffnR34OXd2drbKKi4UrJXAf5enpyezpH78+BG1a9dG48aNGZHmvWIsx54Xip2cnHDjxg2mObbE5cuXc83QA1mH0rBhw7B582bJoVSiRAns3LkT9+7dY94XLVu2ZNpwSyjNVVhYGJKSkticu7u7o1WrVsxCpoSclFNKmDJlCrp164ZNmzahT58++PHjB+zs7MBxHN69ewetVotZs2ahe/fuor/7+fMnxo0bh7lz5+Ljx48AAFtbWzg5OaFhw4aYMWMGG2NHR0d06NABO3fuZJY8pcM8J8sUj0ePHol+tnY8eWzcuBHr16/H/fv3AYAJqXLW6rS0NLRu3Rp79+5lbTkxI9acT3/3LKhSpQpOnjwp+SZnZ2csWLAAGo0G9+7dAwDkzZsX1atXZ0I0P9+WCnQA6NGjBwYOHIjp06dL9nNaWhpGjhwp2nOLFy/G/fv3ERISgkKFCmH9+vUS5koOlvRLiS7PnTsXALBgwQKkpqZKlD48evfujVOnTqF48eIiK63ce798+YJy5cop0iNL7xQeQmXE8+fPsWbNGqxatQqfPn1iXkNCrztrlRc8evTogfHjx7Nvk1M+ent7Y+fOnShatKjoby9fvox69erh2bNn7Dl//PGHVfuZ72doaChmzpyJJk2aiJ4dGxuL8ePHY//+/YiIiGBKkjp16qBv374Sxpm3aAp5ACBLqHJ0dMScOXMQHR0t+t2ff/6JUaNG4dKlS6J24XlpLV1ISEgAoCzQyyG7PZHTNy1fvlxWQXHx4kV8+vSJKX6z64+QnxIKuJcuXULRokURHh6O8PBwq7z6chKCgOzXZp48eXDx4kUm7PGQU+LwXnf8nrcURoW0QM4zz1I5rUSrQ0NDkZmZidTUVDx8+FAyjpZno9wYyM0hb4hasWJFtkomHkKe4cuXL9i3bx/u37+vOC+WexrI8gooVqyYhE7J3Qso00bhHG7fvl3CdwP/UfA2atSIPZ/vg4eHB6KiokT379mzB+Hh4SJDT3bPrlu3Lt6/f49Vq1Yxj9p3796hU6dOKFu2LDp37gx7e3uULFkSJ0+eVBzX3OwVQHmd3Lt3Dx06dMCZM2dE7bxnR0ZGBooVK4aQkBCJ4VYOubXu/yvoW4E8efJg3bp1KF26dLaCMg8lxk4JSoxXbtuV+hkdHY3SpUvjxIkT6NOnD75+/YolS5YgKSkJUVFRjGn6u1D6XkdHR5w7dw4hISGYO3cuNm3ahNOnT0Ov18Pd3R3Jycn/qD/WKGCEBPDz58/Yv38/YzRz624OABcuXMDnz59RoUIFAP+x1FavXh0dOnRA7dq1rbYWCfF3hDtAOvZpaWkoXrw4Xr9+LeueJ3Q5EkJIoMxmMzp27GiVBciS0VcidEpo27Ytnj59iqNHj1p1f/ny5REQEIC4uDjW9uPHD3Ts2BHOzs6MUZwwYUK2jKkQ1oy95XdlF/IgVJDw4N0GMzMz8ebNG0Xhd8yYMTn2Jye6MGXKFAC5YyitwYsXL/Djxw/4+/sD+PtrFpBneCy/S8hIPH/+HJs3bxYxL40bNxaFfPDo3r07tm3bhvHjx4usc927d0fz5s2xfv16Ud+fPHmCfPnyMev/f3vclGA5njyEQh8gb7ESok6dOjCZTJg/fz6AnPtvSTPkvNMs+5MTgy6ENYymHLJTdgp/Z7mf8+TJI/nex48fQ61Wi7wR8ufPL3luTgy90hrnGc4PHz4gIyNDdvw4jsO5c+dw9+5dAFmWJUtrpNx7c7uv7OzsMGnSJPz55584fvw4atSogZiYGNSuXVvWG8MapbJwzq2532Aw4MaNGyIrOpDlXh4REYGvX7/mej/z9//++++YNWsWhg4ditKlSwPIEghiY2NhNpuRkpICIRvL/3/VqlUoUKCAyEviy5cvePHihUTZ5OLigsuXLzOGnsft27cRGRnJrPE85M65/5aBR/gca8bekq+xVKBZQumMzo1B6/r161ixYgXWr18vChnKDkrvze1aq1q1qiS01FJY5teA2WxGu3btWDglfx5MmzYNiYmJqFq1qihUjIfl+WzJ9/HgvUf8/f2z9cbJaQxyO4eWNPnv0AzLcVYae6V2pXda3i/3bTVq1GDnwd81csk9mz9r8ubNi4MHD0qs9Tdv3kT16tXx/Plz2NjYQKfTZStv5JaflTvThw8fjhUrViA0NBRDhw5l4URCFCpU6B+NQ07IvUTy/yBSUlLg6+sLANi9ezeaNm2K6tWrIyAgQKJ5ArJiy+WgdBA8f/6cMZn/pF2pn05OTrhy5QqALNdtPmbz06dP+Pz5M0qXLi3rTmIZo68Epe/99OkTRo4ciS1btuDQoUPMbcjBwQGvXr2S9IeIZDeU0rhNnjwZZcqUQbNmzXDw4EEcPHgQe/fuxebNmzFo0CAcOHBARIBNJpMkZie3KF68uOjnffv2wdPTEwkJCTh16pSEaefxT9yXAeUxCA8PF1khunbtiocPH8JoNGLdunX48OEDgKwxb9myJSZNmiRr5YuLi8Pnz58BAP7+/hgwYABbS7kBHysuRHaChFBgF0Lpe0+dOiVZp1qtFjt27MDHjx8xa9YsSS4GjuOs8q7IDpbfpVKpULduXdStW1fE6PAMwqFDh/Dx40dFbXx2Vu6cmAal/f/s2TM8ffpUUZiwBtnNlZeX199+riXatGkjOUAtv0vIvHt7e6Nfv35WPXvt2rUYPXo0unbtytoKFiyIIUOGyArLSUlJcHNzs3rcciP4/p3xtBybIUOGoFSpUmjSpAmzWAH/cdE9dOgQzpw5Y1X/p06diujoaKu90+T6Y4lnz54BABPSjEZjrugsP57Z2RyEv7Pcz3JhSNZ6JFhCjn7JwdJrwxIfPnxAjx494O3tLYq7bdasGRYsWCCx9Anf++XLF3Tv3t0qi/u2bdtAROjTpw/8/PzQr18/uLu74/Hjx1iwYIHk/t69e2c7zjyEc27N/WazGa1bt5bE/u/du5cxrrndz/z9o0aNgtlsxowZMzBs2DAAWXvH0dER3t7emDlzJlq0aMHi63kmukOHDuxZwt/JreOwsDBMnjwZy5cvZxa179+/Y/LkyRLhHxCflzyU6LISrOEHrRn7W7duwdnZ2eo9p7TGreGneBQoUACzZ8/Gb7/9JnmOEn1Uem9u11qDBg2Qmpoqaqtfvz5OnTqFy5cvo0aNGgD+IyzXq1ePrREe9erVw/r167F06VKrPM4s+T4eUVFR+PPPP1GkSBFRWKkSlMagXr16snmxlGBJk5csWSLJRWQJ4bzIjbPS2OfWFmx5f058tzXPV1pTSmv/3bt3eP36tUTQf/PmDQvr4DguR1qvNF9Ke1fuTH/+/DlSU1OxZMmSbPOZCcfh0aNH+PnzpyRc6d69e9BqtVaFmwjxr6BvBRwdHfH06VP4+vrmKJhmx9jxjLgllATl3LZrNBp069YNe/bsEfWzWrVq2LBhA6pVq4a//voLtWrVAgD07NkTmZmZKFeunKyWyRJyizu777W3t8f58+dx8uRJHDx4kCWyKleuHHbs2CHpz5UrVyQWAUD5AP348SPTxikpYG7cuJHtNwHyROTp06e4du0azGYzypcvz/ILhIeHi5KX8YfE9u3b8e7dO9SvXz/H9wHSsRw+fLisAM5DbgzS09OxePFirFu3DgDY4bxv3z4WBsH/Licrn7u7OxPshWNGRHj69Cn8/Pys+q61a9ciICCAKTx4QcLOzg4HDhyQHJjfv3/Hxo0b0bZt2xy/l4dlsi8gK5GPpVtUdhCOvzXaeCWhjHfh5MGvBz4+/O+4ree0ZpX2f26VJsHBwXj//j1TVAiFvt27d8PGxibbBEPlypXLNqFZdhYuuQNU6buyg9CFlsfXr18xdOhQDB48WHRv1apVsWvXLvZejuOQnJyMIUOGoFGjRlb3X0nw7dWrF5ydnTF27FgAuR9PHpZjU6RIEWzatAlNmjTB1q1bRW6ojo6O2Lhxo2wMp1z/Fy5cyPIy5MTMK/UHAIYNG4b9+/fjwYMHLDzCbDZjwIABGDFihGzcphKzxo9nbjyrcvrWvxsuYrnP9+7dy5I05gadOnXClStXsHv3bpFXSZ8+fdC1a1ds3LhR8b1msxn29vZWu9bzf89xHNavX694D8dxkhh6JVir8OCRN29eJCQkYMyYMSy+/vDhw5gxY0auEn7J7WeO49CvXz/069ePKa7NZjNMJhMOHDiAkJAQUSK3v4M+ffqgX79+8PHxYYkAr127Bo7jsGvXLsn9coKfEv1SWve55QeVoESPlN6rdJZZw09ZPl/oeZRTf5Tem9u11rNnT9n2169fg4gkdP/s2bNYvHixqC0wMBAbNmzA+fPnRe03btxAdHQ0kpOTAUCW7+OT3QJZNL958+b48eMHLly4IOEjhEklAeUxkFNeANYrTVq2bCn7XCFyUtjmFjnxrDmB/zZroNR3pfayZcuiZcuWWLBgAdurFy5cwMCBA5nxpVSpUiw/hhKU5uv58+dITk5GUlJSjmf6mjVrcOvWLdn5VUL79u3RoUMHiaCfkJCA5cuXSxK254i/m67//yX07NmT/P39qWrVquTs7EwfPnwgIqIWLVqIypQ0adKEVCoVeXl5sTJBOUFYz/OftBMRhYSEkMFgkPRz7dq15OXlRb1792Y1sImy6tQPGTLEqn4SEUVGRorKdOX0vUePHiUHBwdSqVQUExPD2gcPHkwRERGS/sycOZOWL19udX88PT3p9OnTRESUL18+2rx5MxERLVu2TFSvef78+VSoUCFq0aKFpBwdUVYpNsuyWGXLliVPT09SqVSstm2pUqXIxcWFxo0bZ3UflWBtyUMeU6ZMoY0bN7Kf+bEHQPv27SMiot69e7PyXHfv3pUtL5KcnExPnz5lPyckJFCfPn1YORdLpKamypYMGzZsGLVv315Uq/j48ePk4eFBCxYsICKiAwcOkIODA+3fv584jqMKFSpY/XxL8LXIVSoVOTg4iGom29nZsXKUjRo1otjYWEm5KEu0adOGKlasKPuujIwMyXfxlyXk1s7fwbBhwygmJoYuXrzI6tNeunRJct/foQtKa83Z2ZnVCxbOVd26dcloNIrKUwnrFFuL7MbYmv4nJyfL1gMWQm78Bw4cSPXq1ZPUpm3SpAkFBgaSg4MDqdVq8vX1Ja1WS+XLl2d1zoVQGrfnz5/T48ePJe1arZY4jiOi/53xnDlzJjVr1oymTp1KU6dOpW3btsn2m4ccvcb/lCm7evWqVfRCCREREaTVamnhwoWsJNmCBQvI1dWVhg8fLvs3SnuFH09r5lsJ2dHTCxcuyO7dnPb5q1ev6MSJE3TixAl6+PAhjRw5kkqVKkVBQUGUJ08e0WUJg8FA8+bNk7Tz9aCtpS/W4OTJk6K1/t++31osXLiQvL292drOkycPrVmzJlfPEK6RkydP0pcvX0S/P3XqFOt7uXLlZMvLHT9+nJU2FuLHjx+KYxwaGkocx9GSJUtYGbClS5ey/fXt2zd6+vQpPXnyRHTxyI7+5uaMsHyONXtCiR7x32TtWlPip+7cuUNms9nq73r+/Dk9fPjwb61xuTn/p/Dz86PmzZuL2jiOox49elC+fPlE7VFRUaRWq4mIFPk+nm4rlUYW/u6f7nPLMbYsuZbdZQmldcJj3bp12Z4n1sLaOczNvlDqu1J7vnz5WFlUvvyzTqejzp07s288d+6cqFR2bvi+s2fPUp48eRTP9KdPn4r47MOHD1OpUqXo6NGjlJqaysopCssqJicns7KOZrOZ7t27J3nvvXv3yN7e3qoxE+LfGH0r8OPHD8ydOxfJyclo3749S6Tl7OyMLl26YPLkyaKY+EmTJkGr1eLQoUOi58TGxuL58+fMpY63+NjY2GDkyJFME5lTu5KbpVI/a9euDTc3N0kCB1dXV7Rt2xYzZsywahysyVVg6caZkZGB9+/fi+K9Bw8eDC8vL0m5jpUrV+LNmzeiLPpKHgPp6ekYOXIkdu/ejbx58+LKlSt4/PgxbG1t4efnB61WiwcPHuD69esoXrw4+vfvj6NHjyI0NFQyDnJxNY6OjoiPj4e/vz/i4+NZfoEDBw6gW7duIhernGJcheBLZlkDPot2eno6ihQpIjv2DRo0QP78+XH+/HmEhIRg4sSJaNKkCe7evYvixYuLss8CWdnH8+TJgxMnTogSJJ49exaDBw/G1KlTRfc/efIE4eHh+PTpk6idz03w/ft3SXwknwRHmH9BpVLBbDazagU8EhMTUalSJVFCFblKESVKlMDFixeZxl7okqXT6TBgwADFZFeWCRV5pKWlYcWKFbh9+zaALPfNAgUKoHv37njy5InEpUzO7VMudi+79aBkJW7atCkOHjyId+/esb9NS0tD/vz5cfToUbi6uv5tuqAEo9GIpKQk+Pr6iuYqLCwMDx48QGJioqynj729PW7duoXk5GRJtmG5rL6ZmZmi8kN8rojKlSujfPnyov5PmzYNwcHBEgtSQkIC1Go1ihUrJmqXG/8GDRrg8OHD0Ov1bCwSExPx/ft3VKlSBampqSy77+zZsxXLMuUWRqMRR44cQalSpaweTz5ngzWW/txCjl6rVCqULl0a3759w5MnTyT0Ij09PcdSUUCWpWPx4sWS+Y6Pj0ePHj3w/PlzSX+UchLkhNevX8v2x9JapgS5OMt27dph27ZtiiEDrVq1wsaNG0V/YzAY0KVLF9nka3369BH9rNVqkZGRIenz77//jvbt27OSbkJwHIfz588zehQeHg5HR8dsXThNJpNVOQB4vH79WnK/5f4E/pOhmi//FB8fj1WrViE8PBxjx46FTqeTnPU83rx5A6PRKCoF9+bNG9F7lUKplGKheQjjWLds2YKxY8di0KBBolj8IkWK4NChQ5KSX3/99Rfc3NxkLZpKa1MuiRY/dyqVChkZGTnS3zlz5qBWrVqiMmOAMj/IcRwOHz4sGYP09HRERkZa7d69a9cu9OzZE8+fP8/xLMuOn9q4cSOmTZsmCT9UGrNz586hZcuWsmcokFUpQ4m+8PdzHIdPnz5hypQpOHz4sGJoqdIaFMLX1xfPnj1DREQEKyN56NAhaLVaDB06lJ0pGRkZaNGiBTw9PfHo0SNRXikh3/fkyRPFd/G4fPky+vTpY9XYZ4cXL17g27dv+PHjB16/fi1JyGpZFlMIuYRtcnudh+V5k5GRge3bt4v4o/Xr1yMqKkpS6WratGm4cOECSwQuB0teVM57h4dcSercgF+bzs7ObL8EBgbCZDJh0qRJWLx4MV69eoWkpCQEBgYiJiYGu3fvxtu3bxXnS7jW5Ep4ZmZm4rfffsOCBQskXm68h5nlucHzywkJCaJxrlKlCo4dOyZJ2nzp0iVUrFiReTZZjVyrBv4fRGxsLK1YsULSrtVqaejQoUQktqaqVCqys7OT3O/n5ydr8bG1taXixYtb3d6xY0eqVq2a6NlpaWmK/XR2dqbu3btL2seMGUMmk4k+ffqU4xikpaWRwWCg5ORkyffevn2bDAYD2dnZMe2Zvb09jRo1inkVEBE9fvyYZs2aRW5ubkxzLESPHj3I1dWV/cxbrc1mM02dOlXS7unpSf3795d4Buh0OpoyZQr7xkaNGhER0aVLl8jd3T3HbyUisrGxoUePHhERUd26ddnzhg4dSlqtVtIXJa8G3lLLo2LFilS2bFmqWLEiVaxYkezs7MhkMlGRIkWoSJEipNVqyWg0MutUTpb7Vq1aEcdxEi+ODRs2UJEiRST90el0FBUVRUREc+bMIU9PT+rXrx8bZ96a0a9fP+rduzdFRUVR6dKlJc8pVKgQNWnShG7dukVpaWmUnp5O6enp5OHhQfv37yeiLK1qQEAAFSlShK0L/juLFClCBQsWJJ1ORyVLlpSMp1qtptWrVxOReO1HR0dTlSpVrJlCIiJas2aNrPXq0KFDZDKZyNfXl2nA/fz8SKVSUcWKFSXfxV+WUPK0UFoPSpbHpk2bUrFixejWrVuszdvbm0JDQ6l58+b/iC4oQcmCYzQaycbGRvZvHjx4QAULFhRZLgDIWqe/fftGo0aNkmi+ARAAUqlUkv7b2dnRli1bJO/9448/qESJEpJ2OS18zZo1qWbNmtS+ffscLyXw45YbLX9uxzMnq4C1EFqshZYEOXrds2dP8vb2Jo1GI6EX+fLls6o/aWlppNfr6e7du5K+3LlzhwwGg2JfMzIyyM7Ojsxms+QSeuk4OjqS2Wym/Pnzi/rD/9+yP9lBzurj6OhIrq6usvu8QYMGlDdvXtq3bx+zuNjY2JCvry81a9Ys23fxmDp1KpUtW5ZevnzJ2l6+fElms5kiIyMl77137x6VK1eOOI5j389xHDk4ONDcuXMlz1+6dCm5ubmRRqNhY6PRaKhVq1aydOrYsWNUrVo1yf01atQgf39/yZzze5ooa88bDAZq0aIFBQUFUcmSJSVn/fjx45k1avLkyWxOPn78SDExMZL3dujQQZbvSElJodatW5Onpyep1Wr2Dv6ytbWlBw8eEBEpWlOFfRfi7t27spZpS5jNZvaO0qVLU/ny5enPP/+kK1eu0NWrV8nLy4tWr15NV69ezZH+EmXxg3Leckr8IABZ77eUlBTSarVW0yOlM3rs2LG0cuVKdp+Qn+LPfUtPy2XLlsmOlRx9DA4Olj1DDx48KLvW+CsiIoL0ej3p9XoqUKAAlSxZkjw9PWnw4ME0a9Ysmj17Ns2ePZtmzpxJNWvWzHYNCvH8+XM6e/YsDR8+nJ09cu/X6XTEcRzzKhXyfU+ePCGDwWD1eaA09s+fP6eBAwda7Rn0d88IuX4uXLiQealansUAqGjRoow3Cw0NJZ1OJ+JNbWxsSKVS0R9//CF5H++pFBYWRs7OzhJaTvQfT4icLiVPiKNHj/4tD4n169czK/64ceMoMDCQfv/9dzIajWyf+/v7k5OTk2S+3r59S8OGDZOsNX4fCjF06FBydXWV9XJr1aoVHTt2THJt3ryZChQoIKH7jo6OVKdOHZE3z8+fP6lRo0ZUs2bNbL9XDv8K+lbA399fVjB1cXEhDw8PIhIzdhzHyTJ2er2euV0IhTW9Xs8UA9a0DxgwgEwmE3uunHAkhE6nI29vbyIiKly4MNu4+fPnJwBka2tLERERrN3Ly0s2JEGlUrHnC7+3c+fOxHGcZIFrtVq2KNPS0sjd3Z18fHwIAI0fP17STx8fHyZEWyPYFCtWTOSaysNkMlG/fv2IiKhMmTK0ZMkSIiJ69OgRGQwGq4hIWFgYtWzZkubOnUsGg4EJbZ6enuTi4iLpi9Ihn124w4ABA6hu3bqicAI/Pz8qV64cTZ8+XfR8k8nExkA49tevXye9Xm91GISlAiMwMJAqVqzICD+vgKhYsSJVr16dunTpQklJSUQkFiJMJpOsa5FlmMvw4cNp7NixxHEcubm50dixY9kVGxtLrq6udOzYMcl4qtVqKleuHBFJQxLs7e1py5YtNH78eBo/fjxt3bqV+vTpI1JS8BfHcdSnTx9auXIl/fXXX6yfYWFhBEBCSDUaDeXNm1fyXTwsXTh9fHzYwWfNepBDWloa2dnZ0fnz50XtBoOBdu7cSfb29v+ILnh4eFDnzp0lzIXZbCaNRiNREoWHh1NQUJBsX+vUqUP169enN2/ekK2tLd26dYspcE6cOCG6NzU1lQBIGB6DwUA3btyg9PR0ydwCYIevEA8fPiRbW1vR+G/fvp18fX1zxQSdP3+epk6dSgMGDGBrpGzZshQdHS0ZNxcXF/L29lZkTC3pSIMGDcjDw8Pq8fxvMYMhISHEcZyEGTGbzXTy5Eki+g/N+P79Ow0ePJi0Wq2EXvj6+kr6wwsFvPDIj41Wq6UWLVpI+vLrr79SVFRUtoymJYPJM96rV68WXbwS7ty5c/To0SN6/PgxDRkyhObNm8cE978TLkekTL/43/HjxiMgIIDi4uJE+ys7FC5cmGxtbUmr1VJQUBAFBQWRVqslABQeHi5SeBLJK/pu3rxJKpWKateuLXl+dHQ0qVQqkTJi3759FBISIquMMJvNTFksvF+v15Ovr69kDdrZ2TG31ilTplD16tWJiKh169akUqmyDdkQCspdunShwMBA+vPPP9l79+zZQ0FBQdStWzcJPa1QoQLlzZuXFi5cSNu3b6cdO3aILqGg//jxY9FVo0YNqlGjBqlUKqpUqZLIjblevXoUEBBANWrUyFFYE77DZDLR7du3RWOpZPDgzybLZ3McR/Hx8ZI5seQHq1evTvHx8cRxHJlMJoqPj2fXtm3bqFGjRqTVaq2mRwaDgdatWyd5b0BAAONnrT2zrBUcLZVEQijRu4kTJ5LJZKLBgwez7x00aBABoF69ekmek51ApRQ2JDcGb968kbSXKFGChgwZQidOnBDxfWfPniVXV9dshW7huleiL82bN5dVXvAKDGuVJunp6XT16lXGmwmxefNm2XORp7XCZzVp0oSF8I0ZM4bxZj4+PpQvXz4Rb/r27VtSqVRUuHBhyTt5JeWUKVNo1apVElqekZFBa9eupblz59KcOXNo2LBh5OTkRK1atWJzPnToUHJ2diZXV1fFvlu79oX7WTgvQUFBdOjQISIS73Oj0SirBFRaa1qtVkJnPT09Zff5jh07yMvLS9JORFSjRg2KioqiO3fusLY7d+5QoUKF2NnBGyWCgoLI1dWVrl+/Lvus7PCvoG8F9Ho9PXz4UNLepk0bAsAYu4IFC1KRIkWI4zgyGAwS6yXHccyaJxTWXF1dGQNhTbu3tzdrtxSOypYtK+mnv78/aTQaIiKRoNWgQQNycHAQtY0dO5YcHBxkY3fDwsJkcwA4ODhQYGCg5L1ms5lZ6JctW0YFCxakjIwM8vDwIE9PT8n9Wq2WfH19icg6hYe3tzfZ2tpKnlO2bFkyGAw0fvx40mq19OzZMyIimj17Nmk0GquIiJAJFVrkeSuIZV+UYlyzO1T1ej3duHFDdL/BYKCDBw+Sp6enVZb7Zs2akZ+fn+S9K1asYNpooYCudJDVrl1bdk4yMjJo3LhxEiEiT548tGfPHsn9379/p+nTp0sUDy1atKBFixZJ7ldimlxdXdncCtf+rl27GCMk1DQbDAaytbUlGxsbioyMpMjISLK1tSUAFBkZyeL6b968SUTiNSVEVFSUyGODR1JSEpUtW1aifRYyNTmth7S0NEUPAI7jRO1EWQfHqlWryGw2/yO6EBgYSDqdTsJczJgxg+rXry+Zq/bt25OXlxetWrWKLl68yA64xMREcnBwoMTERCIisrOzozt37hDHcfTHH39IGICrV68SAAnDk10sKAA6c+aMZPw3btwosfAJhURrvC8mTZpEHMdRaGgoVahQgSm0DAYDRUZGSsbNycmJ3N3drbZM8X3p3bs3bdy4kY2Z0ngaDAbatWuXpJ/ZMYOzZ8+W3P/rr7+Ss7OzhBkxGAxkb28vohmxsbHUpUsXibfPihUrSKvVSuZKiX5FR0eTWq2msLAw6tChA3Xo0IHCwsLI1taWFi1aJMsQWzKaqamptGjRIkpKSpKdL1tbW6v7wwsp2QlxQjpYqVIl2rt3r+SdRES+vr507do1UdvatWupWrVqijTS8p0xMTEUExMjOVsDAgKoVatWojYiklX0EWUpZuXOOIPBIMpDw+PEiROyygij0SjrKWMwGGQ9MMxmMxMiqlatytadm5ubLH0UMrNCBtrZ2ZmOHj0quT8uLo6dxUr0VA7ZxRHzDDHHcdSsWTOR506XLl0oNjaW9u7dm6OFVNj/YsWKSZQ+SvRr48aNEk8n4ZUTPyjnlSC0Nuv1eipTpkyu6ZElslNUyPEwu3btslpwTE9Pp3LlytHWrVslz1ESfgMCAmRzObi4uMgKSNkJVJ6entkKfREREezbLZGWlqaYV2rYsGFkb28vq6jgL+G6UaIv9vb2dOrUKUm7kuU+u/1Qvnx5WcOen5+frLeSyWQSnfNEWXRHrj+8Mt4SERERTJYQQqfTUWhoqGw/5b5NyHNb0/eIiAj65ZdfcuUlIrefDQYDUxIL20uUKEF6vV7Sd+FaE/JBQ4cOJY1GIzrTdTodxcfHM/4oMTGRMjIy6M6dO6TT6UR/z196vV7C9xERXbx4kQwGAw0bNoyio6OpUaNGNG7cOJGxKjf4V9C3AsHBwbR27VpJ+8qVK8nJyYkxyvzBzXEc1ahRQ2K9rFatmmxSv+rVq5NOp7O6XavVUv78+YlITKj9/f1lD/lmzZqRSqWilStXMu33ihUryNnZmWJjYyX3Kx0EN27cIIPBIBEMNBoNTZw4UfY5/OZp0qQJY2qGDRtGACT94TiOunbtSkTWKTx0Op2s58TJkydJpVJRwYIFRVZtFxcXCg4OtpqI/PXXXxKXTzc3N9q9e7ekL3IJa7ILd+Ctl5ZMkKenJ82dO5dsbW2tstw7Ojqy8BEhzpw5Qw4ODhIBPSYmRvEgk0vgoqTRtLOzIxcXF4nw0rt3bzbPQggVD5bfK8c0tWzZUlaxkTdvXrKzs5NomvPnz09OTk4ssUnhwoWpYMGCBIA8PT2pUKFCzMpZsGBBUqlULCRBSHiHDBlCRqNR8l2FCxemokWLilw4r169Sq6urrJeLgMGDBAx0DmFJPj5+ZGDgwM9f/6c/U27du1Ir9eTq6vrP6ILZrNZVlhQCvVRconlD2he6anT6Sg4OJhUKhWzKgsZWV7RZ8nwKCU33bBhAzk4OFCFChVEgh/v8eDi4iIaf97jwdKSm5qaSj169JC4EfIKIkso7VElLb+SZWr06NEsAZtwzJTGU4mJU2IGlaDE+G7dupXs7OxENMPf35969eol8fY5d+4cGQwGyVxlR7/s7Oxo+PDh1LBhQ2rYsCGNGDGCnj9/rjg+coym0WhUTBBVv359icCQXX9sbW0VGUqeqeTpYPPmzSk8PFxWmTVq1CiqWrWqyMstIiKC1Go16fV6UXu+fPlYwiclRlP47G3btsm+12Qy0aZNmyRjUK5cOdJoNBLPI6PRSGXKlJHcn5iYyLz3hJBTXhARFS9enJydnSXtlSpVorZt21JcXJxIAaTVaiXCV2ZmJh05coSd9ZaWMqGXAo/ChQuTSqWS0NPAwEBZxpdHcnKyrKAmtNqNHTtWURmgtDaFysFu3boxa69cEq3OnTuTn58fVaxYUUS//P39ycHBgT176NChNHToUOI4jnr16mU1P+jq6koFChSQ9F1JUFb6prVr11JoaKhkrbm6ujLB2pqke3q9XlagF+5na9Z48eLFaeHChbLPl/uu3377jVQqlSTEQylsyFLRkp3QZ6lwb9y4MXEcR15eXnTp0iVJ0uZHjx6R0WhU9AISPpuIFMfAy8uLtm/fLvlbpTlUUpoQKSdsMxqNsue9nPIhLCyMCaZCFCxYkA4fPixpnzBhAgGgtm3bMms9b/CU4++Uvs1oNNKlS5ckCl6j0SgrcOd27Qv3s3BeIiMjmSxnNBppz549lJiYSM2bNyeTySSZL154J5Ke6ZbKOEvlBcdlJbj+9ddfFb0RlHiAhIQERa/Kv4N/BX0rMHXqVHJ2dpYIpiaTiRo2bCi5v0OHDjRhwgRJu5K187fffqMmTZpY3W5nZ8eEOyGhHjhwIHEcJ+mnk5MTlS9fngwGA2N2TCYTyyJ64cIFiouLo7i4OLp48aKi8NWvXz9Z7X+ePHlk47idnZ3J39+fkpOTyc7OjlnqLly4QCaTSdKfEiVK5EoR4uHhQf7+/pL3xsXFybq4KhELufbPnz+LDhg+v0DdunVzVYFBKdzhzp07pNFoKCAggP744w9mbapZsyZpNBry9PS0ynKv0Who8ODBkvZu3boRAFn3tqFDh0oOsps3b1K/fv0k7sJqtZrc3Nwkz5cjdNkJL6dPnyZHR0cqXrw4ubu7M+FLr9eTSqWyulKERqORrXrg5uZGOp2O/SxUutnY2NDYsWOpa9euZDQaKTY2lnr16kV+fn7022+/SQTZ3AhlSkKrq6srCwGwJiTh2LFjpFarSavVUmBgIAUGBpJGoyEvLy/q0KHDP6ILQku/EEohSdu3bycfHx+Ja+zjx4+pePHijFGJiIig4OBg4jiOwsPDydXVlcaOHUvdunWjXr160ZQpU2jz5s0ShufixYvUv39/atmypcR9/LfffqPAwECyt7dnFncHBwfiOI6OHDki6qeS1aRWrVqUN29eiRuhvb19rpRNUVFRslZTJToiHE/hmAnHc+/evexavHgx5c2b12pmkEjeeqzT6ej333+X3NuvXz+J9UWv19OUKVPYOPDv3LNnD2k0Gslc8UJBYmKiVUJBduMjN18VKlRQ/NY3b95QdHQ0jR07lrZu3Urx8fHk6OhIU6ZMofj4eEl/VCqVhOnr168fubi40IwZM0R0UC5WV0gDbG1tSaVSMTqlUmVlbfbw8BBd7u7uFB4eLstoPn78mJYtW5aty6mQvgAQKfqePXtGxYoVI51OJ3HhtLW1pZIlS0pyAFSvXp0WLlwoWSMDBgygokWL0suXL9k4HD58mAoVKsQ8h4RrcMuWLRQcHEx2dnYixa27u7skU3lGRgapVCoqVKgQEYkzxVeuXJmaNGkiysL9+fNnUqvVotwsPPbv30/Vq1dn4WVEWdnyR44cKVJa29nZ0YgRI+j79+9EJGbmebx+/ZpOnjxJJ0+epNevXxNR9iEblkhLSxPNkTCGmJ8vy9xAkyZNkjxn9erVslnIlfhBubC7tLQ0RXqn9E05rTVr8/oYDAZZ+iLsj5KALdxn/P8t11pQUBBz0ReGlvJhAZahpSaTSZTLiYeLi4tsnLWc0KfkGdSuXTuqXLkyeybP9+3bty9bLyAisYIop7G3VF4ozaGSwiAxMZFsbW0lilOiLC8Unk/PSQGzYMECKlOmjOS79uzZQ/nz56ctW7Yw3nTLli1UoEABGjNmDEVFRZHJZCInJyeqVKkSLV68mCpXrkzHjh2TZJWX+7Z8+fLRoEGDJH338/OTVVTmdu0LIawysmPHDsYHWK7L7OaLSHymt23blgoXLixq27hxI5lMJgoODqYOHTpQ06ZNKTQ0lGxtbWnz5s2y/NTSpUupUKFCdOHCBdbfCxcuUMmSJUV8lpIXirX4V9C3ApmZmTR48GCJYOrg4CDLKJ87d04k9PFQsqA1bNiQJYyzpr1y5crk4OAgIdTr168nNzc3RYH+w4cPdP78ebp+/Tp9/fqVnj59SmXLliWOEyeC8PDwIB8fH8nzXVxcZOOXFy5cSBzHSdw4DQYDc8+rWrWqaBxq1qwp6U9uFSF16tQhW1tbWrlyJV2/fp0pNhwdHWn06NGSEhblypWTTSQiR0SqVavGXM2F+QX0ej01bNhQ0hcnJycmZFkT7rBhwwYqVKgQde/enQm7fOxrqVKlqHv37lZZ7n18fFjOACEcHBxkBfRNmzaxvBJE/znIKlSoIOsurNFoZOPeDh8+THq9XkK4dDqdxNWRiJhWc/r06WQwGGjChAnUsWNHcnJyknUfj46Olk2W5uPjQ506dZK0GwwG2T03ZMgQ5vXx4MEDJpzIMSOWMcP8v48fP6aCBQvKur4qrVmNRkPTpk0jIutCEu7cuUO2trZ04MABmjt3Ls2dO5c6dOiQK3qhRBd69OhBDg4OspYRuZCkBw8eyGrViYj27dvH9tC9e/coJCSEAJCzszOLfcvJms2PraXbHu/18fHjR1qyZAn16NGDBgwYQGvWrKGiRYtK1lV21lF+XIWYOnUq9enTR9IuVNbY29vT2bNnKTExkfr3708GgyFXlim58dywYQNTQllr6ZdjBrNz75TLq2s2myU5TIKDg2nMmDFsr+Sk5BLuCXt7e+YxM2XKFAoNDZV1RyxevDijpzkxmtOmTSMfHx8aOnQonTlzRnT/nDlzyN7eXrE/lvRUpVLJhonIeTvwyezkmK++fftKXO6VLiVGk1eSBAcHk1qtphMnTtDjx4/p119/pQYNGkjeeebMGQoPDxcp+rRaLRUpUoQuXLggceEsUKCAbA4Ao9FIOp1OlpYBYHkCsrv49SCX5+LAgQNkY2MjOetVKpVsaNb169fJy8uLnJ2dqXLlylS5cmVydnYmrVZLcXFxkvsdHByYh4StrS05OjqyJGkmk4mtjcWLF5OHhwd169aNiMSC/qdPnygmJobUajVbN3wCwPLly8sKDEohVc7OzrR8+XJRAq3OnTvT4MGDWW4ZHqGhoSIvuZygxA82atSI5b9ITEykqlWrEgBydHSkwMBAq+mR3Np+/Pgx3bt3j0aMGGF1Xh8hf6S0n3ft2iVSYu7du5ceP36cK3pXo0YNqlSpElWqVImCgoJIpVJRs2bNJHuuffv2pNVqJWsQAK1fvz7bMa9Vqxa9ePFC0TOoTJkyTLmblpZGTk5OzIjQpUsXRaFbaBVPS0sTjXd4eDjlz5+fXba2thLlha2trawFV2nM+D3dpEkT+vnzJ+vD5cuXqWTJkmRra0urVq2y+izmlZu8HCCkHUIFl+XPPI1ISkqiYsWKSUJx+OfLKRIMBgNFRESwPBrBwcGk1WrJz89PMsYzZ87M1dqvVKmSbJLWd+/eUZEiRahq1ark5OREer2eihYtSnFxcbJ7hRfeLdea0WiUGB6IspI2tm7dWuLlpgQhvdPpdKL/C+dCLsw0N/i3vF4u8PHjR9y+fRtGoxF58+aFvb09bt++jTx58ojuu3fvHsLCwhAZGSkqQfXu3TvY2NhIykx4enoCyCo3YU376dOnUbduXbRp00ZURm/WrFmws7NDs2bNRP1UKjtWs2ZNpKenY82aNQgJCQEA3L17F+3atUN6ejpq1Kgher5Wq8WECRMwdOhQ0XMePnyIsLAwDBw4EHfu3AGQVSKiR48eUKlUePnyJQoVKgSVSgUAOH/+POzs7BAaGip6zuTJk+Hu7o4OHTqI2hs1agSO47B161ZR+4oVK7B27VokJCTg69ev4DgORqMRX758YWUsyKL0G5BVdsRgMECj0QAAnj59ivnz52PUqFGsTE+FChWwYsUKBAcH4/z585g3bx6uXLmC1q1b4+jRo5I54Uu8TZ48WVRa6+bNmyhWrBi6dOkiO1cdO3bEp0+f8ODBAwDA9u3b4evrKxkDrVaL/v37S8rfDRkyBNOmTcPKlStRuXJlAMDhw4fRsWNH9O/fX1I6sUyZMjh//jx+/PiB9PR0hIaGQqvV4tmzZxgwYACmT58uuj8qKgpRUVGYO3euqL1Xr164cOECzp07J2rPmzcvxowZg9atW4va3d3dwXEcUlJSYDabcfXqVQQFBaFu3bp4/fo1EhISRPe7uLigadOmWLhwoah91qxZGDJkCNavX4+SJUsCyCrn06lTJxgMBsyYMQORkZEAssr4DBw4EKVLl8batWuxceNGTJ8+HRcvXlQskZOQkICiRYuytQEA/v7+OHjwIPr164f58+eLSjnNmDEDbm5u6Nmzp+g5Dg4OaNmyJRYuXCgqe9iqVSts2LABVapUYSWM9Ho9DAYD8uXLx0qsAEBAQADWr1+P0qVLi55tDV3Yv38/TCYTgKySWn/99Rc0Gg0CAgJY32/dugUPDw88fvwYO3fuRK1ataDVatGvXz+sX78ey5Ytkx0jy5Jqb9++haOjI9tzOZUfKlOmDObOnYuiRYuKSjMlJCSgefPmePTokeRvjhw5gpEjRyI2NpaNv1wJQ+5/ytzw/wqRmZmJ2rVrIykpCeHh4WwcMjMz8eDBA1SuXBnz5s0Dx3GyZaGEzwey6IhwLdStWxddu3bF8OHDRX+jUqng6+uLJ0+eiMYmLS0NkZGRePToEaKjo0Wld/j7hPN1584d6PV6nDlzRlSm79SpU2jWrBn8/PxQqlQpAMDZs2dx+/ZtbNy4kZWoBLLKIE2ZMgUfPnzA/fv38ezZM5w+fRqTJ09G586dJev4x48fWL16NZ4/f441a9YgJSUFbm5ujJbzEI4Xx3EICwvDoEGD0KFDh2zH0/Lv+H/pf0qY9ezZE6NGjYK7uzvrj1wJ2VmzZmHp0qWYNWsWatasyZ5pMBhw7do1SWmzu3fvonDhwvjy5Ytsv5Rw8eJFUfm7QYMGYfDgwaJ3AkDVqlURGRmJadOmwWw2IzExEYGBgVi4cCGmTp0q2SM/f/7E6dOn8f37d9EZqlT6cdy4cbLtixYtgrOzMypVqgRbW1twHIehQ4diypQpbDzS09Oz/ca+ffvixYsX4DiO0djz589j/fr1CA8PR506dbBgwQJRP4ODg7FixQosWrQIERERoud9/vwZ69atE93v7e2NCRMmiPYzAKxfvx5AVqlKHt27d0f37t1RsGBBtGvXjrX/+eefaNGiBd69e4fu3btjwoQJcHFxQdeuXXHo0CHMnz8fZcqUwY0bN3DlyhVMmTIF+fPnx9OnTyUl+WrVqoXJkyejbdu2iqWDeSjR5alTp2LUqFFYunSp6NkZGRn4/fffcfLkSav4QS8vLxARXr58CZVKxUpwkaD0HI/s6BEPyzKUSnyWq6srunfvjvHjx+PatWus/dq1a+jQoQOWLl2a4362pL/Cdf7z509cunRJUjoVAK5fv46NGzeKSowNGDBAUl6Mx4sXLyRr8OjRoxg1apRkL8rBy8sLW7duRenSpUXns6OjI75//45Pnz5h+fLl6Ny5M5sDfh4sQTmUWlTaq0Lcvn0bR44cwbRp00Rz+OLFC/Z9lrh37x6aN28OBwcHPHjwQHaNCH/m+y88X1u1aoUXL16gadOmCA0NZX/Hj6vlWN65cweZmZmi8sYVKlRA/vz5oVarMWLECLi7u4tKQL548QIbNmyQ7LmUlBRs3rwZK1asYPfKja9wjVt+o5CnFz67cOHCOHz4sKTE5uvXr+Ht7Y0fP36I2k+cOIHSpUuL+D4ga83u3LkTly5dEq21yZMn4+XLl5JypsISnjt37pR8iyWOHDkCAIrrHAC6deuG8ePHY9CgQTk+Twn/Cvr/AEpCzS+//ILdu3dj6tSpGDlyJEaMGIHHjx9jxYoVGD16tGTj84L4t2/frGofNGgQZs+eLVmscnXos4PRaMSZM2cki+zXX3/F0qVLJTWy3d3dUalSJWzcuFHUvnbtWowZM0axvuv9+/fx4MEDlC9fHkajUZFg5law4QWD69evY926dYiKikJYWJhI+KxUqZLswSS37IV94n+vUqnQqFEj5M+fH2PGjIGvry9ev34tmRNXV1doNBq8fPlSdHD0798fixYtkjCUwrkSjk9YWBjWrVuHMmXKiO739fXF169f8ebNG1F7XFwcevfujW/fvrH5MhgMcHR0RMOGDSUCOq/8uXbtGpYvX84UGB4eHrC1tZXM4fHjx1G7dm34+fnB29sbPj4+SEhIwKNHjzB69Gjkz59fdP+2bduwbds2zJkzR6J4GDx4MKZOnQpPT0/s2bMHkZGR8PHxQVpaGj59+iR6jl6vh6urK6tdykPI+AgPM7n51Ol0aNOmDQIDA7Fjxw48fPgQP378gFqtZve8fftW9DdqtVqWgPPvtRRwlITKJk2aYPv27ahUqZKoJvHvv/+OIUOGoHHjxiJBxdnZGb169cLYsWPZMwwGg6wi0Rq6IKQxly9fxufPn1G2bFnR/adOncLp06exYMECdOzYERcuXEBiYiI6duwouz+BrLF+//49zGYza8vIyMDUqVMxa9YsqNVqEd348eMH0tLSRAeowWDA9evX8fLlS1Ht3ocPHyI8PBw3b97E7NmzRQLV/PnzAUj3qBzzkpiYiKlTpyI2NhYRERHs8B84cCDi4uJQqVIlpngCshhZo9GIU6dOiRjTTZs24e3bt+jevbtoDCzng+8XvwbklG7Dhw+X1EBet24dunXrhg8fPojmKzMzE0+fPpXUp540aRK6desm2dOAPOO7bt06TJgwQXQ+ERHq1q2LP//8k32/wWDAkCFDULFiRQmzM3nyZLi4uCAkJAT+/v7w8/MDx3GYNm2aaGzy5MmTLZ1VYjSF+9uyFnb+/PmRmJiIoKAgUX+EQgovkGzfvh3379/H5cuXRQxlq1atUKBAAQwdOhSPHz9myqw6derg3r17+O233yRjCWTVlN66dSsePHiAQYMG4fPnz6hbty4SExNZffgPHz4gNDQUmZmZGDZsmIjRLFOmDDZu3IjatWuLBH21Wg2NRiPZu0o13k+cOCHbP2E/hbCxsUFiYiKCg4Oz/Tvh8+UY3LJly6JChQqYNGkSUlJSEBISgvz58+PevXvo1asXRo8eLbrf0dERnz9/xs+fP6HT6USCOiClszwdtaQz/BoRjoObmxuOHz8uEXZu376N8uXLS85EFxcXbN26FRUrVmTvEiqPLN9pKZy2atUKNjY2WLp0KXbu3InWrVvj1KlT7P7ixYtj+/bt8PHxEQnRwrPJ8tkAMH36dKv4QYPBACLCt2/fEBMTg2/fvmHy5Ml4+PAhfvnlF5EQDojpkZBv4b9px44dovs7d+6M/v37S/hElUoFHx8fJCcni8ZMOC857Wcgq175+fPnUbRoUVH7rl27UL9+fclZ+fPnT5w5c0aylnlYKteEzxWOxYMHDzBy5EiJQLlr1y4AWTwUj7i4OCQmJsLd3R0pKSnsfNbr9cibNy9u3LiBpk2bwtvbmym+KlWqhLt374r6VrZsWcyZMwdFixbFmjVrMHPmTGzevBm//fYb3rx5g/Hjx8t+k6Wy3JKvAMRjbEkXeLx48QLz58/HuXPnoNfrERYWhnbt2skqwXkjhpCemkwmnDx5Ep8+fVIcfyFKlCiBwYMHo3HjxqJ2vV6PkJAQNh+W6ye7b1OSG4QQ1rBXOmsA8TrlOA5Xr15lv8vIyMDy5cuxbds2iSyhVquxd+9eVK9eXdSuRJdVKhVevXqFly9fIiIiAiqVCteuXcPjx4/RokULnD17FoULF87xu/ixUJpfAIiOjsaKFSuYHPS38I/8Af4fh1LsvkqlorZt2xJRlkvZ/fv3iSjL9V0uLs3d3V025kip3cXFRTb7r1LIgBLy5s1LCQkJknZPT0/ZOJmePXuypH579+6lhw8f0ooVK8je3p569eolcWU6fvw4lShRgrn48K51MTEx1L9/f8nzlVxfeZcWS2TnYsxDyX3t1KlTkkv4+9DQUBozZgydOXNGlF9Ap9PJuspbVmDIKdzh3Llz5OvrS5UrVxaNj16vp8aNG0vGZ/DgwbIJDPmEipZhEMeOHZN1sQTAXNCFCRJnz54tm/iGKKsOLV+DNjo6mkaMGJGjG5hl+IizszOdO3eOiLLc4yZPnkxEWcmdnJycJO8UVooQYvjw4eTh4SFbk/TYsWP0559/0ooVK2jFihX04cMHGjVqFHl6ekpCBpydnWn8+PG0adMmmjdvHs2ZM4fmzJlDHMfJxlmuXbuWjEaj5H1arZY2bNgguf/OnTukVqutDklo3749hYSEiLKqKiUB/W/RBaWQJLkcCDxUKmlN6FGjRpG7uztxHCcZY47jJPcHBwfTwoULJa7BcXFx5O7uTjqdjkqUKMHK35UoUYK0Wi1Nnz5dcd6FUHIjhEKeBaVcBYsWLZLNAXL//n3atGmThKY8evSIunbtysYTAHMfjo6OlpT7AkAVK1aUPD81NVXWbTqnGFFLKJ1Pzs7ONGbMGBG9IJKfW39/f/rzzz8l/bFcU0p0Vnht2rSJnYU8jh8/Tl++fJHUQv7x4wfVqFFDUr/bcq5yCj2wdPdv0aIFo4PZubPybvcajYYePHhANWrUIC8vL6pXr57knZbPslxrlrXf+T06Z84cFrs9YsQI0uv1jA4J6ZGc6y7//mXLltHQoUMZ3ShWrJgszSDKcim2vF+lUsmWJeRDJoiyzp5SpUoRUdae8Pb2lpz1EyZMoAkTJkjKavHXzZs3ae/evayU1qRJk2jSpEmye3ndunU0YsQIat68Ob169YrGjRtHFSpUoMuXL7NxmTFjBhUtWpRq1qwpGTOtVkvDhg2TrM0DBw6wrNuWl5ubGwtJAsDWndy64ufcck/MnDlTNreJn58fq1tvDT/o4ODA1ogwvGvt2rWySdaE9IjjOLp48SL7v9J+ENJBfk64/wlxiI+Pp2XLltGyZcto8eLF1KZNG8qTJ49V+5kfM7lwGZVKJZs8OTU1lTiOoxEjRlCLFi0YDYqLi6PIyEjiOI7MZjPL1VK4cGE6cOAAJSYm5io0wMHBgRwcHMjGxobRZr1eLzqfPT09qXnz5pK8UhcvXiRHR0f68eOHqO8Gg4EePnxIx48fJwDUpk0bNgZKNEalUknyYmVHN48fP06//vorValShapUqUK9evWSHXcex48fl/STH/8dO3aI2ooUKUL79u2TPW/evn1Lv/32G+Mfp0+fTjY2NrLlb4sXLy7K32XNebB582b65ZdfqFSpUqwy1vDhw2WrdPz48YOdEdk905I+yo199+7dJc/nOI7lp+Cz5RNl7Q1hyBAffqRSqahcuXKMJ27QoIEkXMryvUr4+fMnbd26ldHQbdu2iZKv/jfwr6D/D6DEKGu1Wnry5AkRZSWMu3TpEhFlHZgcJ02WZzKZyGQyWd0OgAYOHCjpjzWCrxA7duygEiVKSBJBcBxHixcvltx///59UqvVZDAY2GI2mUyKxJZf9E+fPhUxO/v27ZPEjhLlXrARJt2TixW1vFauXMnmQogjR45IMoxu2bKF1awV5hfgyyhawrICAw+NRsOEWiEePHhAKpWKatSoIRqf4OBgGjRokGR81qxZQ/b29rkSyngBXRgvFBYWRnPmzJEcZHx5H8vYMWGt59zAUvEwZMgQJkBv3LiRNBoNBQcHEwCqU6eO5O9zWylCCYGBgaxKgpDJatmyJYsD5atVmEwmAkBGo1GxBrMllNZskyZNZBVCzs7OsgcNP/56vZ7y5ctHRYoUIS8vL1Kr1eTn5/dfoQuWzAWPDx8+kJ2dHZ04cYK+fv1KMTEx9P79e9Ez3r17R+np6cRxHN2/f1+U+yIgIID69etHnp6eojGeM2cOAWCJsHhMnTqVHBwcREw3P7eenp40ZMgQyTcMGTKEihQpQvHx8SwBl7DOtPDKmzcvhYSE0MaNG+no0aNMgHB3d5ct46SkYORj5SyhJIgLx/P8+fNUv359atOmDXGcfLkvjuMkNbqJsjLIm81munDhAk2cOJEmTpxIGzZsEMXEbtiwga5cucISp23ZskVC765evUrt27e3mmZwHCeZK71eT4cOHZIk3nvw4AFptVrq2bMnY3569uxJd+7cyRWjqVKp6Pbt25Lx5Jl/FxcXateuHU2fPp3mzJlDGo2GRo8eTXPmzCGi/zB9J06cIJ1OJ8v8JSQkUM+ePa2Om6xSpQpLFMXTZT5Xg7+/v+jZu3btks1V0qxZM6pevTp9//6dbG1tqXr16lSjRg0CQAEBAdSgQQMymUwUHR1N9erVI41GQ0ajkQICAkSXn58f+fv7s4Rib968oQMHDlCBAgXIwcGB5QDgs0c3atSI7O3tZZPrOTo6ipQXRMTifC1hMpmYUAaARo4cydZIdgKMJR48eMBKycnF+Vri2LFjZDQaqWrVqqTT6ejBgwf0yy+/kF6vJ51Ox8oB8s9Sq9Us94BWq2XPtrGxkSQAbNKkCUVGRsquze7du5OHhwdVrVqVHBwcGP2bO3cu5c+fXzS3Q4cOJUdHR5o2bZpVZ5PJZMoVP6jX62VzrXAcRxEREZLn50SPLGF5ZskpAfhLp9ORj4+PZN8SSfczf17ywrWcYpMvJyjE2rVrmZGEn3OiLEOUk5MTK+H66tUrVoKV76dQuOLblIRAIZKSkqhKlSq0b98+UbsS3xcbG0sAJIpQT09Ppgi1JlmpUl6sMmXKsNKfQuzbt09W8a3X62n69OmSEoLHjx+XpbPCeRZi//79VKRIETIajaIken/++SfZ2dmRr68vm0M/Pz/iOI4WLFggefaECRNIpVLJ5i9YuXKlZM9t3bqVjEYj1a5dm/R6vUgRyidDFJ71a9euZQok4RUbG0vbtm1jz+UV7hzH0ZIlS0Tz/+LFC4miQrhm1Wo1E9h5umwpuFuut8aNG1O7du2offv21KJFCxo0aBBdvnxZdv0dOnSIhg0bRh07dmTlVxs1akR2dnaictEmk4lCQkLo9OnTEkMUf+UW/wr6/wVYCjX58uWTtV5u2LCBjEajhPEaO3asrMJAqd3JyUlWuFDKNq8EpUQQAMhkMjFC5OjoKHr+hw8fKD4+nq5du0Zfv35VJKx8OSwisVXjwYMHsprd7KobyAk2woNVyEhYWvJysujxf2eJmzdvEsdxTLtHlJVUzsHBweoKDG5ubtSsWTNJe1xcHKnVamZN4cdn6tSpLAGRNZb73ELpIKtSpQoFBwezrOmjR49m/+/WrRslJiaSnZ0dHTt2jBITE6l+/fqy9c6txdmzZ2nGjBnUrl072TnPrlJEWloaTZ8+nTp27EgdO3akmTNnytbhJlJmsjw8PEiv17O5lavBXK9ePWrXrh116dKFevXqxb5dePXt21d2PahUKlYqUgidTifrLdO7d29Sq9WipENjxoyhMmXKiOpN/x26MHv2bNLr9dkyF8IDUKVSSQS+nPaVSqWiiRMnsjFu0KABVa9eXaTx5q+6deuKMmgL51av17P63ZaadZ6RP3LkCLPmWGOx4rFy5Upq2rSpxGtFSVnDcZxspYu7d++SjY2N1VYWy3JfQuZCztLv4+PDrFdyjKylVVHJisDPWU40I7v+2NjYkIuLi0TJ1atXLwJAJUuWZAxoqVKl2Fq1ZIj58bScF47j6OzZsxKm+O7du8RxnETw1Wg05OLiIjnn4uLiyMPDQ1aI461Bjo6OLCu2nDKLh52dHZtLni7nzZuXduzYIVGkL168mAIDAyXPSE1NpaJFi5KDgwOp1WqmEAdAjRo1kq3xzvfNGkRGRrJkq/w6UBLWhGuE/6bq1auzOZdTbOp0OsqTJw+dOHGC9Ho9XblyhYiyEmC6u7vLnvcPHjygLVu20Pjx42n8+PG0detWql27NtWvX5/evHlDRqORbty4QSdPnqSIiAhatWqVhJ4WLFiQBgwYIBr79u3bU+3atclkMonGrXz58uTm5kYNGjRgbXfu3KHIyEhydHSUJAD09vZWXJsvX74kjuNkE9RZepUIDTz8GJtMJmrRooWs4tHLy4slZrWGHxw9ejT99ttvkr5wHEczZ84kIrEQtHDhQjIajRQfH0+2tra0du1aio+PpypVqsh6m2XniTpixAjJ/dbuZ+EZqtFo2M9+fn4UEBBAHJdVLtdyren1egoJCRHNORGx0rJEWQJcZmYmEZGick3Jw0BoDRbiwoUL7L08Xrx4QRcuXKDLly+L+L6EhARZRWjPnj3J29ubeW7x1SIqVKggaxCqUaMGRUVF0Z07d1jbnTt3qFSpUlSuXDnJmRIWFqao+FayHFuef3LCLH8JzxbLMx2ApKxnUFAQmUwmSflbJc8mnh5Zrp/ChQvTggULmLFFKOjzc84rd/j/y32v0lmvpPxycnIS8a3CNavVaql9+/ZMeO/SpYui4N63b1/ZsqFKGDt2LKlUKipRogTVr1+ffvnlF/rll1/I3d2d3NzcRJ6cqampFBERITJECc/A3Mh4PP6N0f9fwNChQ2FnZ4fhw4dj06ZNaN26NQICApCcnIx+/fph5MiRssnyLJP9KbXPmTMH06ZNw2+//SaKBR08eDAGDBiAYcOGWdXPNWvWyLb/+eef+PPPP9GsWTMWF+fo6Jjr55vNZly+fBl58+YVxSlevHgRNWrUwF9//SW6n4gwdOhQzJ07VxRvPnjwYHz+/FnSPmTIEBYrKIytvXLlCgYOHIhBgwaJklN169YNq1evFiX0AbLibUwmEz5+/ChqT0pKQmRkJP744w+WX4CPx7Tsi06nw549eyT5BX799VcsWrQIy5cvl8zVhw8fcOPGDdH45MmTB+3bt0dcXByL27L8ViVcu3ZNFC+khNTUVDg6OiomSFSpVKKkW5wgvhEQx1dZxtspQSkW9MePH2jXrh22b98uO7eWa//69euoUaMGjEYjSpQoAQC4cOECvnz5ggMHDrBEfDxCQkIQFxeHqKgolC1bFnXq1MHQoUNhNpuh0+kka3DcuHEYOHAgbGxsFMdBCP5ng8Eg6v/379+RlJQkiecOCAjA8+fPJfk1sstz8U/pQrdu3eDh4YGDBw+Kkm7GxMTAzs4O+/btQ7Vq1fDq1SsWa9isWTNRnG1KSgqICPv27cO2bdvg5OTEfte2bVssWLAAderUYWN89+5dPHr0CMePH5c8S6fTISAgAC1atMCbN29E3+Xr64uZM2eiSZMmkvEnmfhaQBrjVr58eYwePVqSyKxIkSJ48OABiEiU5O7Vq1d49eoVli1bhsqVK6Nr16548+YNLl++jJCQEFHioYyMDCQkJOD169coXrw4y6Vx+vRpJCYmYteuXahWrZqkj0LExMQAyKK/TZs2lYzN0aNHYWdnh3Xr1sFgMAAAixW3tbVFXFwcnj17Bm9vb3AcJ4pflINlrH9u+nPr1i3cuHEDkydPRv369QFkranOnTujQoUKLJkQjzFjxmD8+PF4/fo1XF1dAQANGzYEAMTHx4PjONSrV4/lUXn58iWMRiPMZjMby4yMDFy7dg0hISHYt2+f6PnTpk1TPPvevn2LlJQUpKSkiOhgeno6KlasCIPBgK1bt8LHxwdFihTB4cOHWRy3EG5ubti/fz+KFCnC6PL169cxZMgQpKWl4dWrVwCyYoeLFy+OVatWoX379qJn8LGdJ06cQGJiIj5+/IjIyEicPn2a0RclCOmsEsxmMzIyMvD582fY2Nhg37598PPzw7Nnz1C5cmUkJSWJ7i9QoAB2796N8uXLw2w2o0aNGjCbzVizZg04jkPbtm3ZvTqdDpmZmdiyZQs+fPiAdu3aYeXKlQCA4cOH486dO9i2bZvo+Tdv3kS9evVYPD+QdX5++fIFmzdvZgl1T58+jdKlSyvuZ+G5IuQZHj9+jNDQUHz9+pXdGxQUhK1bt0pyDF26dAkNGzbEyJEjRTkr+Nj7V69esbXJIykpCcWKFcP79++tSqIFAF++fEGLFi1w9OhRlCxZUpKXQO6bcsMP8hDun5o1a0Kv12P79u2Ijo6GRqNh/eUUYugtz2glPkuJx1D9TzxydvuZR0ZGBk6cOIGiRYvi0KFDAHKmd6tXr8aZM2dQtGhR0ZznyZMHz58/l+SKOn/+PFq2bIn79++L2pXy6yjFWV+9ehXly5cXJUMMCwtDUlIS7t69y/ImtWrVSjL+PH78+IHTp0/DbDbjzZs3uHHjBgIDA6FSqTBjxgz069dP9E6lvFjz589Hr169UKJECdGZcv78eVn6kpSUhAIFCuD169esrVWrVkhPT8fp06dRokQJeHt7A8jaD0SEp0+fwsPDQ5RgLzU1FR4eHqhTp44orr969epYvnw52rRpI3rviRMnULFiRdjZ2bFvuHr1KpycnPD777/Dy8sLlsiTJ49kz5lMJuzevRu//PILiAilS5eGjY0N4uPjAYCdNUD254Hl2hSOT2RkJGbOnInXr1+zPbBlyxZ8/PgRV69ehb29PQAgPT0dhQsXRmRkpISu5RZ3797FvHnzREkle/XqhYoVK2LatGmS8bSxscG5c+dQoEABUbuHhwfevn2Lr1+/yuZvyC3+FfT/D+DcuXM4c+YM8ubNi7p16/7j5+WWUP+feL7cAr9+/TrKly+PCRMmwGw249q1a/D390fz5s2RmZkpyaLPw1rBRqmaQIkSJTB27FhER0cDEB9Mtra2qFKlCoCseSEipKSkwMXFBeXKlWPP+PLlC44dO8Y22r179xAYGIgOHTrA0dER48aNs6oCw4MHDxASEgKtVisZy3PnzqFo0aKy4/P9+3eMGDEix28VwhrBFMhiAoQHmWWCxCdPnrCkW0IFSuvWrZGamoqIiAj88ccfqFOnDlxcXGT7wjOGPHI6hN+9e2fV3JYrVw7BwcFYtmwZUxr8/PkTnTp1wsOHDyXJq5SUbg8fPkS5cuVw7NgxxfFUGgc5ODs7i/ofEREhm6izefPm2LJli0Tx07lzZwwfPhwTJkwQ3Z+eno7IyEirEtYo7dvv37/j/PnzsgxxuXLl8PnzZ7x69QqzZs3CgwcPsG3bNtSoUUN2Dj5//oy9e/eKDp/sFJvFixfH/v37sxVshBg/fjxmzZqFoUOHIjAwEO7u7jhz5gwmT56MTp06YcWKFTh69CicnJwwaNAgjBkzBra2tiJhdsuWLRg7dqwkKdPixYsBgGVwF47boUOHcOnSJXz//h2ZmZlQq9XIzMyUZUx37dqFxo0bS5LiDR06FAcOHMDly5cl37V161aWwZufG34/JCYmiu5VYgaXLVuG3r17SxJ75pTMyloIlVw8lNbUjx8/cOvWLVHSt4YNG+Ljx484ePAgoqOj2fqRYzT55Gb3799HgQIFkD9/fqbU4BVBnTt3houLC75//45Hjx4hKCgIarVa8WwaO3YsXr16xRJsCemgkkKSF0KEOHXqFPLnz4/NmzfDyckJ165dQ+HChfHhwwcAYOvp58+fyMzMhL29vWg/vH37FklJSShcuDD69u0rYjR5WNJHIKuKzKxZs3Dv3j0AWcl+GzduzM4vfj5evnyJevXqITw8HFevXhUJRzNmzMCsWbMkSUzd3NwQGxuLTp06ie5v27YtDh8+jOfPn0v6k5GRgffv38PR0ZG1PX78GC9evMD69etFZ/2pU6fg5+eHNWvWsPvT0tLg7u6OiIgIXL58GX5+fli9ejUqV66MEydOoHr16pLkZiVLlsSCBQvQsGFDUT+3b9+OgQMHsuo0QJawcPz4cRQvXlz0jPPnz6NixYr4/Pkza5MTloXfee3aNfj4+KBNmzbo1q2bZCzkYKlgtBZy/KCw6omlomHOnDkAgKNHj6JMmTKiPWe5V3JS2Aoxd+5cyZn76dMnHD9+HMnJyVi0aBGArIz4YWFhTIGTneBo2R8h5OgLkKWg3Lx5M0qXLi2a82HDhmHWrFk4deoUihUrBiBLudarVy+0bt0at2/fFq3BhQsXygp9ixYtwoABA1gSaX4PzZ8/H76+vti7dy+79+DBgxg6dCiuXLkCjuNw7949TJgwAadOncL9+/cVldadO3dGixYtchx73mjEJwjkERISgtevXyMtLU3UbmdnB2dnZ0nCw82bN2PgwIFITk5mbUKFioODg0hY1ul0ePDgAVasWJGj4hfISiY6aNAg/PLLL6L2HTt2YNKkSejcuTMSExNhNBpRsGBBtGjRQlLtIbs9t3//fpjNZhQuXBinT58WKR7NZjMaNmyI9evXo2HDhrCzs8OlS5ewdetWBAQE5PjsjIwMnD59Gm/fvoWbmxs8PDwYb/v9+3fcv38fRqNRpKhwd3fHwYMHRQkbeSgJ79evXxed6enp6Xj06BFMJhO6du0KIGuvX7hwAQaDgVWaEsLJyQm7d++WGAh5JcS7d+9ymCnr8K+g/7+A7Eo1/DcYMh7WCr7WoHbt2li+fLkos6O1z//jjz/QvHlzFCtWjFnQz507h/Pnz8PW1halSpXCkSNHUK9ePdy8eRN//fUXzpw5I1n0/y0YjUZcvnyZeSMICaDQenHq1CkmxNevX1+k0Tx9+jSALAa9TJky7PDZv38/+vfvj5s3b4reqVSBgbfUXrt2TTKWN27cQJUqVRAZGSkan7dv3+L06dO5Hh9rBNO0tDT07NkTZ8+eZQdZYGAg2rdvj0ePHuHLly8iYYTH27dvrRYGgaws2EJkp3nlLSnWwGg04sqVK5LSjLdu3UKxYsVEzJ0ceCYrMDAQS5YswZcvXyQliZKSkmAymWTHQU6Ik4OS5XHQoEGIiIjA+fPnRYLKly9fmHAixKtXr+Dr6yvpR3aw3LcFChTA77//zjwgeChZRvLkyYOLFy/C2dlZ8R2fP3+WHZ+CBQv+I8UmEWH27NmYMWMGKy3k5eWFQYMGoXfv3kwhxmcwT0lJkawpOQ240MKlxJxbjtuUKVNkGVO+akDevHlF7UlJSShYsKDI6ghkMdQjRoxA+/btsXTpUsTExODBgwe4cOECevbsKcnGny9fPtn5UqvV8PX1xePHj0Xtf/31F1xdXdGjRw8JM8Iz5/8UlmPToEEDNGnSRCQox8TE4N69ezh9+rQsQyzHaCox/0DWGuvVqxfzPEtKSkJgYCB69eoFFxcXREdHw2g0YuTIkVCpVIzpy8jIgNFoBMdx+PDhA+7cucOE4BUrViA5ORn79u1D+fLlZbNT//jxA9++fcPFixfx4cMHeHl54cWLFwgKCsKAAQOg1+sxb948AFn0wJJ+eHt748SJE0hPT0eJEiVEpRAB4Pnz50wRJlT6vH79GoMHDxZ5oU2ZMkXWsu/q6ooCBQpg7969TBmhVqvh7++Pzp07Y+nSpaL7W7dujXXr1uH79++i+3/55ReUL18es2fPVpx7IZTO+rNnz2LWrFno27ev6P6iRYvi+vXr+P79O1q2bIm0tDSMHDkSS5cuxaVLl3Djxg3R/QMHDkRCQgK2bNmCfPny4fLly3j16hUaNmwIFxcXmM1mNmYPHjzAjx8/cOrUKebJdenSJXTp0gXe3t4igTkmJgafP3/Gli1bZJV3b968wc6dO+Hi4iISDIAs2qFE952cnJCUlAQXFxd06NABc+bMEVUkAazjBy2V9HIQWuiV3vtPzugrV64gOjoanz9/xqdPn0TVIWxsbNCkSRPRmGUnOMopNnlYjqXSnJcvX57RbaFSX6VS4efPn6yCxY8fP+Dg4IC3b98iMjJS1B9hmTN+TjmOg6urKypXrowZM2aIeN62bdvi9evXWL58OcLCwkR8X5s2bfDo0SMJrVq7di2WLFmCe/fuoWHDhkhNTcUff/yBIkWKwM/PT3Tvy5cvkZSUhAMHDoiUFyVKlMD8+fPRo0cP0f29e/fGvHnzMGXKFCYMnj59GlOnTkX//v0xatQoydj36tULK1eulFQyksO+fftga2vLKvIsWLAAy5Ytg42NDZKTk9GnTx9RGeMFCxZgypQpogoYfOWJBw8eiKrlvHjxAuHh4di2bZtkz928eRNPnjxBXFwcmjRpgj///BNPnjxBly5d2Jlga2ureNbn5CWyefNm9OrVS7bqwadPn7Bu3TqJoiI+Pl6yZnnhvWTJkiJ6l5CQAJ1Oh06dOrEzPS4uDpmZmRgwYIDoTB8zZgzmzJmDAQMGSOarbdu2uHz5MlasWMHO+4SEBNStWxd+fn64dOlSjnNoDf4V9P8XkFsXov8/QKhJzS2CgoLQqlUryaYaM2YM4uLi0KlTJ5H7Ys+ePf9ZqYgcEBkZiYiICCxfvhw6nQ5AliaP1/xbWtDkmE0PDw/s378fhQoVEo3Nw4cPUbBgQYmbf3YupdmFO7x79w7z58//PzY+SgdZq1atsHnzZkyZMkVUAmjHjh3o2rUrs7gDWULEjh07kJiYmK0wCFhnSZFzyVKCu7s71q5dKymDsn//frRt25a51fJQYrLGjx+PsWPHIiQkRFRq7dmzZ3j06BG6d++OxYsXo0qVKkhJScG9e/cQHR0tcb3iYVkuJyevGF5wOnfuHLy8vNCkSROsWbOGaXL58Tl8+DAOHjwosXzlBvHx8YiNjcWCBQsklpEhQ4ZItPZCPHv2DF5eXoz5fPPmDWJiYkRWEKG7qJC28Yzs69evrWb6hNi0aRMAcU3t0aNHIz09HUFBQTh69CjKli0LnU4nYqj4valUOs3f3x89evTA+PHjFT1SsoMwvEAIOSsLAISGhmLMmDFo0aKFiJaMHj2ahcxYMhevXr3C8ePHRfNVvHhx2dCjefPmoXfv3hJm5MKFC9i4cSMaNWpk9bdlx6ALSz++ePECo0ePRtOmTUWM4JYtW1C8eHFs2rTJai8OJfTp0wenT5/G7NmzUbNmTcb0xcfHY+zYsbhy5QqAnJk+OQujNcosPhyDp8vCUJCc3rlhwwZMmTJFwrgrKX0OHz6MevXqSUqhzZ07F2PGjGFlolQqFVxdXfHt2zc0btxYpIxISUnBjx8/8OjRI2b54sHXLzebzaL7S5YsiS5dumDnzp2SOU9LS0Px4sVF7Tdv3oSTk5OkPJWHhwdUKhVTzvGYOnUqFixYgOTkZCxZsgQTJkzA8+fPYTabMXjwYEmN9x8/fmDJkiU4evQoMjIyoNFomFDXtWtXLFu2jI1ZQkIC3Nzc8PDhQ5GXRY0aNbB69WoJ/xUWFoa7d+/iw4cPkrXJ0wS50sSHDx/G4cOHJZ4ZHMdh06ZNOSoe/zf4weyEIB7WrHEhKlasiHz58mHx4sWwt7dHYmIitFotypUrh9jYWLRs2dKq52Sn2KxcuTI0Go1oTWVmZuLZs2d49+4dm/OMjAxERUWxOvZC8CGZPG+xfPlyBAcHY/Xq1bIKCbn9HxgYiAsXLkjGxt3dHRqNhq3RnPi+RYsWYfTo0ejbty8mTZrEXPddXV0REhIiKssIiMtQCpUXmZmZsLGxYfwqkGVc2bRpE7p16wYbGxuJ4rtixYqScrMvX77ElClT8PPnT8m7ASl9v337Nry8vGBvb481a9agWLFiGDBgACZPngwg+/AhXvG0Y8cOXL58GZMmTUJkZKQknK1p06ZYtGiRxFMsNjYWkydPZsYZvV6PgQMHMq9Ga7xTrly5goiICKxdu1bUbmdnh6tXr1otzyit2SNHjqBUqVKSsXRxcYFarcarV6/YOomIiGBlX/lywABw7949hIWFwWw2o2DBgihYsCCjV1+/fsX+/fvx6NEjEQ2rW7cuPn36hB8/fkgUyQAwc+ZMq76LIddR/f8iR8gl7SD6Tzbl/z9CmBAjtzAajXTv3j1Je1JSEul0OmrZsiWVLFmSldCIi4ujkydP/qP+ZoeEhARyc3MjV1dXltjE1dWV3NzcZMsJysHW1pYlBROOzYULF2TLwf2dUmX/27hz544kK7aLi4skASARkZ+fH0s0JcycHhMTQxzHySbd2rp1KxFlZZIVJq4RQi7J3T9JQtWrVy/y8fGhjRs3UnJyMiUnJ9OGDRvIx8eH+vTpI7lfKZGQsHyUECEhIbR+/XoiItnkZ0oJz5SQUyI0y8Q1wkun01G+fPlo165dVo+PHJSSbup0OlHCTT7pphBms1lEF1q2bEllypShCxcukI2NDR04cIA4jqOgoCBW3YAHnznd1taWfv31V9LpdNS1a1eqWrUq2dvb0/DhwyXv+/z5M0uWp5RoT+7ik9v88ssvFB4eLlspYsWKFTRlyhTZ71LCli1bqEmTJhQVFcWy4np4eJBaraYpU6bQiRMn6MSJEzR58mRycHCg8ePHS55hNBpZ1mdXV1e2/0aOHEkAJGOD/yn9xM+R8Ls1Gg3LMK7ValnGdrmEcKNHj5ZtV8KcOXOynSul5Ie52Q+W41mgQAFycXEhg8FAzs7OorWoUqno7NmzRCSmVffu3ZM9Ry2THvKQo4PCZFhy9EsuQzJ/RUdH04sXL7J9p5OTk2xiMCF9sUw81qpVK8n9fOJHpb6cOnWKFixYQPnz56cyZcooJnjkq4bw90+dOpUOHjyoOOcGg4F0Op3s2uzWrZukn0uXLiWO42jLli309OlTevr0KW3ZsoUKFChAe/bsoXfv3uVq/Tx58oT27NlDmzZtojx58siO2ahRo6hnz5509+5dlvju7t27kr7xOH/+vKQUJw8leqCURIu/qlatSgUKFGBnXPPmzSVzhP8p6yg3t7nlB/n9Y2dnRwaDgZycnFjpOMv38hdR9mc0D3t7e7Yv7O3tWbKxc+fOSZLWWfZHSB/1ej0rSyqcrxo1apBWq1WkL8I553kvOSjxm7169RKVeMsOwkRvQtjY2JBWq5X0nef7LL/XYDBQnjx5qEiRIqL7r1+/Ts7OzkQkHnul8pN8FY4mTZrQsGHDaNiwYZIz5f3796IEokp8Q6lSpWj27NmSeeGTUQrHX61Wk9lspuHDh9OYMWOoUaNGRES0e/ducnFxkSShO3HiBIWGhkrezZ9PluCr5Sjh27dvdPPmTUpISGDVJfgx5hOOOjg4EACys7OT7D/+skSHDh1o0aJFiu+1LPfp7e0tSQJKlFU1S44uGwwGxi/zZ3qtWrVo8uTJEvlg5cqV5OjoSBUrVpS9KlWqRElJSRQfH087d+6ke/fu0YQJE4jjOAoNDaUKFSpI7s8tNPgX/zXwGkaO49C+fXtZ66VlLMb/X+Dv7y/RGlmLihUr4uTJk6LYMQCYPXs2fv78CZPJhCtXrjA3sHfv3iE2NhZ//vnnP+63HEqUKIGHDx9i3bp1LBlPs2bN0LJlS+zduxfTp0/P0XqhUqlQrlw5llyEd5mbNm0aKlWqJHknx3GYOnUqRo0alatwiq9fv+LatWuycZyWVuLcQMnFMjU1FSdPnkShQoVE979+/ZrFyNra2rLYoMOHD0Or1eLs2bOi+8eMGYPBgwejUaNGLFZUTnu6atUqAFmupmPHjoXJZAIA5i0QFhaWK6vq9OnTWfjFz58/AWTFzHbv3h1TpkyR3E8KCdy0Wi3rixDJyclsj7q6uuLgwYMoVKgQ7t27h5IlS0qS9+UEW1tbSQypEPyc58mTBxcuXPhbFuacYK1brhzIwuHryJEjiI+PR7FixaBSqZib5JgxYzB58mTUrl2b3fvXX3+B4zgsXboULVq0wOrVqzF48GBmzX779q3kffXr10fDhg3RrVs3vH37FiEhIdDpdEhNTcXMmTPRvXt3dq+SxSogIADLli2TPDt//vxo3rw5hgwZIpu7whJCLX98fDzT8j948ACVKlXCvHnzmKeOl5cXxo4di969e0uewyfW8ff3h5+fH86dO4dChQoxC9S8efNEY1O/fn18+vSJeY8sX74cQJaFJDIyUmT14d2MN2zYIHlv69atFb0a5LBw4cJs58raxJuAvGfA69ev8fLlS/To0YON59atW5GWloYKFSqgbdu2or3apUsXiRUUyHK9lNvTY8aMkbQp0cGIiAjm7WBJv8aNG4fx48ejWLFiErd7IMtLiM+TIPdOAOjUqRPWr18vcdUU0hej0cji/ps0aYItW7bg999/F93fvn17fP78GYcPH5b05c2bN9izZw9ev36Nb9++4dWrV8jMzMTt27dRoUIFdp9Op0PJkiUREhLC7s/MzGRJ9YoWLSpZgy4uLoiMjJS0582bV5LoDwC6du0KIkLTpk1ZH/k9JgzfyU1cO++l0759e9kxa9OmDUqWLIn58+cjX758OT6Pp8Nya1Or1aJixYoSb5zFixdj9erVip5cQld5juPw7t07FrqTkJDA7jty5Igo10JO/KCcF8GtW7dw6dIldOvWDV++fEH+/PmZldfZ2VkS3y1Edmc0D61Wy6znbm5uSE5ORlhYGOzt7fHo0SM0bdo0x/384MEDfPv2DXXq1AEgnq+kpCTodDrJmuLpi5+fn8TVnYcwtFSJ3yxSpAgLi+3fv7/sc/gcD0SEtm3bQq/Xo2PHjgCy5sTZ2VlktRfyfb6+voiJiRGdB4mJiUhNTUWLFi1Ybg0ALN+B5dhbemPxaNu2LQtZ43NXeXl5oVevXmjWrBkAiEJC7t27hxMnTohiynlvn6VLl8qeW4mJiahbt65o/Ddv3oxmzZrh3bt3uHr1KgtrzZ8/Pz59+iQJy/j1118REhKCkydPIk+ePDh//jz++usvlC9fXkK7AKBDhw6YPXu21aEcSmfu4cOH0aFDB8yaNUvyjq1bt0rWZkpKCuLi4liiO162SU1NxYoVK/Dy5UtRDisiwsyZMzF9+nTRmi1durTEywrI4uuCg4Oxc+dO2NnZYcmSJahXrx6GDh2Kr1+/srHgvdxiY2NzzP3Br2eO4zBjxgysXLlSkoTx7+JfQf+/CN7tlohgNpsl7nwlS5ZE586d/291L1tYxsrlBGH8W7169TBkyBBcunRJ5Ma5dOlStGnTBsuWLWOJUICsRB8TJ07873RcATY2NujSpYuoTYmInDp1CpmZmXB3d2fter0eCQkJsLGxwffv3zF48GBRfgEl5CTYCbFv3z60bdsWqampkt/93UQ/PAYPHoxhw4ZJwiny5s2LUaNG4ddff2XvyczMhEajYXGOQUFBLIN9SkoKbG1tJc8XChHWCE1XrlxBXFwcunXrhvT0dJQsWRJarVZWgMsOOp0Oc+bMweTJk9mhHRQUJBHac1K6/fz5U9alUUkoe/ToEb5//47hw4fLunCuWLHCqv4rwTLZDpDlwi0XQ5xbKDEXfwefPn1iwtfPnz/RuXNncByHlStX4uzZs2zceUYWQI5MuhCXL19mh/nWrVvh4eGBK1eu4I8//sCAAQPw9OlTNv6VKlXCoEGDwHEcxo0bx0IMUlJSZENfXF1dJS7H2SEnwffgwYPseyzjcoWoXLkydu7ciSJFiiAmJgb9+vXD1q1b8ezZMzRt2lQyNtOnT0fJkiVZ1mp+/pTi2Z8+fYqbN29KYvpPnTolSjCaE5SEUKW54mEZ3qFEZ+UYzXXr1qFjx47Q6XQSpmbFihXYs2cPevXqBeA/bqTLly9nQrslLBnKmzdvwsXFBd++fRO5OwoVlZb0KyfhznKu+XeePHlSRLPfvn2LQ4cOiVw1tVotRowYgd9//x0cx2HAgAEoWLAgPnz4gG/fviEiIoKdoQkJCbh58yaqVKmCgwcPit7JKyN+/PgBT09PREREAAA0Gg2Cg4OZglV4f5MmTSTKi48fPzLaKJzzT58+4fz58wCyBIhdu3YhT548aNOmDcaOHYtff/1VdNbb29sjJiZGlAAsOyxcuBDnz5+Hl5eXiJ7y7xSGZmm1WowcORJ+fn4wmUw4fPgwChUqhPv37+Pr169o2bKl6Blnz55FsWLFcPLkSdE7+ZCf79+/S9bmrVu38OXLF7Rv314kGLx//14kwFnC3d2dKZjz5MmDtWvXsnNFGN5RsWJFq/lBJUXTzZs3UbhwYbZ//vjjDwQGBsLR0REVK1ZkCkE5WHNGFylSBBcuXEDevHlRoUIFjB49GqmpqZg4cSJ+/vwp4o+U9jPfnzdv3gCA6Ax98eKF7Fp7+vQpNmzYIFJgAln73WAwIDg4GIcPH8auXbvg4eGhyG9u2bIF9evXR9OmTbFv3z7JNxcrVkyUfHf//v0AwBLjabVaeHp6IjMzE7Vq1ZLwfba2tpLz4MSJEyhQoIAkadq+fftYHLvS2AuVFxzHoV+/fujXr5/oTKlQoQKCgoIkiqyEhAQsX74co0aNkiiElJR3Wq0WdnZ2ovEvW7Ysbt68iYsXL+Lnz58sXC4pKQk+Pj64deuWSIA+fvw4Jk6cCBcXF6hUKqhUKpQtWxYuLi4YMWKEJLzj6tWrMBqNEgWJMEeNELGxsahZs6aiMggQnzdKZ83Vq1dhZ2eH48eP4/jx4+z5r169AsdxeP36tUhRUbVqVSxYsAAAmOBes2ZNFCpUCCdPnpTQu48fP8LZ2ZmFPfKJK3kIq5gAQM+ePRUFfbkkrJmZmSwE4r+CXPsA/IscMWjQIFGt5kePHtGsWbNo3759/xd7pYyLFy/S2rVrae3atazOeE6wxgUPghqXQneYBw8eSOoR/59AUFAQzZ07V9IfZ2dnqlatmqR90KBBFBUVRU2aNKFatWrRiBEjmMvmfwPBwcHUo0cPSklJ+a89k4eSe9vu3bsJANWsWZN0Oh01btyYwsLCyGQyUf/+/YmIaOPGjaTRaCg4OJg4jqNatWpJnrNy5UqqXr06EVkX9uHs7Ew3btwgIqJly5ZRwYIFKSMjgzZv3kyhoaH/9HMlyClkIDw8nMxmM+XJk4fq1KnD3Fz9/f1Zf+bPn09Go5G5snIcp+jC+U8xZcoU2rhxI/u5cePGxHEceXl5MVfv/waEbsfWIDY2ltLS0tjPxYoVY3TM19eXgoKCmIuZra2tJCzD39+f1YIuWrQoLV68mIiI9u/fLxsqYDQa6cmTJ0RE1KRJExo7diwREfXr148AKI6/0PU2ODiY1q5dK3l2XFxcrmrQKrncHz58mOzt7SX3JyUlsTrKQmRkZIjqu2/cuJF69epFzs7OLJRIaWyU5ktYp3vRokXk6upKPXv2ZHS8Z8+e5Obmlq37oiXy5MmTq7niYen2rOSertFoqE2bNkT0n/EsVqwYbd68WTYc6uTJk2Rra0vdunUjg8FAffr0oWrVqpGNjQ1dvHhRcr+cGzpfi9gyTCQpKYmMRqOkj0TKbvc88ufPT8nJyZJ38vvV0dGR1Go1+fn5Sdw0PTw8KCAggIiI8ubNSyqVihwdHUmj0ZCHh4fkfo1GQyVLlpT0wcPDg+Li4hT7aO39SnPu4eHB3MphEbJk+bM1IRty75Xbzy4uLqTRaMjGxoYiIyMpMjKSNBoN6fV6ioqKIqPRSACoVKlSpNPpSKPRUNOmTalPnz7Ut29f6tu3LwGgLl26SN6ZkpJCAGTXpoODA5nNZlG96oCAALKzsyMHBwerv4uH0F07t/yg0lwp0aOkpCS2f5Rc9K05oy9cuEBHjhwhIqJXr15RjRo1yGw2k16vp8mTJ0ueI7efibLOLn5vCc9QlUpF9evXJyLxWitYsCABEM25ra0t2dvbU1RUFHPdtobfxP+EQmk0GurcubNimFhAQIBiyGB6ejpNnDhRwvfJjf+yZcvI3d2dbGxsyMbGhjZs2EATJ05k/89u7IXtDx8+lA1XsLGxoaNHj0ra7927R3q9XjasRK1WM95MOC8+Pj5kZ2cnGv8nT55QiRIlSK1W0/Lly9nzY2JiyNnZWdZFn+fpAwMD2Xrp06cPAZANZ3Nxcck29EYIlUpFPj4+kr4L17jwvFE6a+SeTZTFhyYmJhIRkZ2dHQtVqVWrFnl4eBARyYYIZifbEP3nTJ87dy59//5d8l4ljBo1imxsbGjo0KHsPB86dCjpdDoqXry41c/JCf8K+v8LqFq1KmOw0tLSyN3dnXx8fMhgMNDChQv/L/fuP3j16hVVqlSJOI5jcZEcx1HlypVlcwzkFnny5KGDBw8SkXgTrlmzhsLCwv7x83MLfpMSiYmIwWBgjLuwfd26daTT6f7X8guYzeZsGcp/glq1atHKlSsl7StXrqRKlSrJHmQ84uPjaerUqRQTE0Pdu3fPUYiwFAbloCTAJScnM6bgn2DBggWy+RCUmKxq1aqJhH/+ateuHbVt25bdzxNwOzs72fH8byEgIIBOnz5NREQHDhwgBwcH2r9/P3Xs2JEpof4bsIbh43MxyF01a9ak6tWrU79+/ahly5bk4uJCAEiv1zNFhZCR7dixI5trIdPn4OBAHTp0kLy7QIECNGfOHEpOTiY7Ozs6c+YMEWUd0DyTktN3TZ06lZydnWnlypUstnDFihUEQDYvQGpqqqyQoiQEFShQgEwmk+T+tWvXUoUKFWT79+XLF0pISKBdu3axA71q1aosdldpbCzni49ftGRE/hvCV27niodlH5UEEjlG8/z581S4cGGytbWl1NRUevfunei6f/8+derUiYoXL05hYWHUqlUrunbtmmw/5Ji+WrVqUd26dSVMn1BRaUm/Bg8eLJtrwdp3EikzmkpKHyUGUakv2Skj5OKm1Wo1hYeHS+5VmnOdTsdia61ZC8ePH8/2soSSMDtr1ixq2LAhvXv3jrW9ffuWGjZsSLNnz6ZPnz5R0aJFyc/Pj2xsbGjHjh3sPn5fcRxHcXFxImXYtm3bqGfPnsRxXI7CshC9e/cmBwcHKl++PP36668SeqgEoTCSW35QaW6tUcQp5Rqw5oxWQm72MxHR3r17RcoRfo2XLFmSRo0aRURSJbq/v79oztPT06lx48Zszs1mM5UvXz7bflrm1zl//jwRZSlxOnbsaPX3njhxQjavlKenp+z4DxkyRCQMe3t7i4RmpbEX0ovy5cvT6tWrJfcYjUaKjIyUtF+8eJGtc0sorZOaNWuyHAY57ek6depQ/fr16c2bN2Rra0u3bt1iitdJkyYREVGLFi2oZs2adOrUKWrTpg25u7uTt7e3aBxmz55tlYIqp74L17hw3HLzbKKstfDw4UMiEisqkpKSRPkdrBHc5c50Ps7empwYRCRSgghRrFgx4jhOYojir9ziX0H/fwH/p62XfxdNmzalYsWKsaQrRFlJKooVK0bNmzf/W88ULvDY2FgKDw+nc+fOkdlsppMnT9Lvv/9Orq6uzLL+fxJeXl60bNkyIlK2XvDtW7duJb1eTzqdjvR6PSMs8+bNk7Vw/x3ExMSIDoR/CmutfP379882QaK13hoAshUKhcyQkgB38eJFcnd3/8ffXrlyZVlr7d9RuskRcLPZTEuWLPnH/VSCwWBgVsLevXszi9Tdu3f/lkVJCdYI+hUrViR7e3symUxMULCxsSE7OztJUphPnz5RVFQU/fbbb0QkHeP58+fnSrDZsmULabVaUqlUIgWH0WjMltETfpdSYkylBEzPnz+XTeKkJAQBoMaNG0vuv3fvnqylf+/eveTi4vK3rALC78opWd4/RW6FUB6Wayo3jGbp0qVJrVYzpQR/5VZJQfQfpi8+Pp7s7Oxo9uzZtGjRInJyciK9Xi+ig0ajkapUqcJoFG9JjIyMZAnFvL29qXDhwiJa1rJlS5H3W24ZTaLsGURLKAmaxYoVo1KlSknuV1ojOp1Odv8ozfns2bPp8+fPrH3Dhg1sLXz79o2IxGe9kpKJvyyhJMx6eXnRzZs3Je03btwgLy8vIiK6dOkSOTs7k6enpyj5nvC9ln3hE5u6u7vnymtFKYFWTkmxLD0Gc8MPKil3rFHECd9rzdmck8KC6O8Jjm3btpWs8e3bt9P27dvZc/m1Zm9vL+u1JjfnlhCuQeFe5DiOeXVxHCd7hn78+JH27NlDixYtojlz5tCcOXMoJiaGtFotderUScL3+fj4ZDv+nz59YueLNWPu7OxMnTp1IqIsBY2cB2alSpVIq9XSz58/WdvPnz+pUaNGpNVqZfeQ0jqxt7en9u3bS8afp+9fvnxhClYnJydmeBBavqdMmcI8ku7du0chISHEcRy5uLjQ4cOHiUiaNDA3nmK5XePZPdve3p4WLFhAQ4YMYWPu5eVFdevWJSKxoqJt27YUFhaWLV0WrjWlM52nP9Ym+7W3t5f15GjYsCFptVpZY5RwDq3Fv4L+/wL+t62X/y3Y2dkxracQCQkJsgyrNRAu8MzMTObGxG8Cg8FAI0eO/Cfd/tvIjfXC1taWTCYTdejQQURYLl++/F8RTImIPn36RNHR0dSuXTuaPn06O2z4K7fIjYBueZC1bt2aChYsSGvWrJG9LJEbYZBIWYCLjY2lmjVr/s0RzBk5MVmvX7+mkydP0smTJ+n169dWC2X/bXh6erKDNV++fLR582YiysoY/t+s1CF0O1bCjBkzqG7duvT27VvW9vbtW6pfvz5Nnz5dcn9OY5wbwYaI6OXLl3T58mWRRrxNmzbUq1cvxT7LWU34igdDhw6lGTNmkEqlokmTJon22MyZM+mXX36hwoULS56pJAQZDAbZ6h0XL14kW1tbSXt2ITo5jY1wvqyxHltrSVBCbueKSDr2uWE03dzcKCAggH7//Xc6evQoHTt2THRlZGTQ3bt36eTJkzlaiXmmT869XO5nAIx+2drakkqlIrVaTQ4ODqKrYsWKVLp0aeZCLPR+MxgMjMG1RnDMiUG0RN68eSkgIIAqVqxIPj4+7PL29iaNRiNRADg6OjJFtFarpQ4dOlC/fv2oRIkSpNfrZS3TvXr1yvWcE4nP+vT0dNH15s0bOnDgAAUGBtLEiRPZ3wwaNIjs7e3Jy8uLhYoJwbsqJyYmiq7ly5eT0WikxMRE2rNnDws1a9asGWVmZoqekZ1btnBtVqpUiQwGA1WtWpX0ej3lz5//bwnCcrC0OubEDwrf1adPH1nlTt++fUWVZXJSDOb2jE5NTaUePXpQWFiYqAKGTqeTFeiVBMdu3boprnGO4yRrzWAwMCuxEEePHiVbW1u6ePEizZgxgwwGgyS0VLgGhUIfHwISEBDAlE158uRhl5eXF1MwqtVqcnV1ZXvQxcVFMpaXL18mNzc3qxWhuR17Ozs71nchNm/eTAAoKCiICXlBQUHk4uJCMTExsgqh7BS279+/F43/pk2bKDo6muzt7UWKOSUX/fv370tkmL/++osqVaok67Xw7t078vT0lJwH4eHhZGNjw4R3ni6ULFlSpLyQG2PheaN01tjY2JBGo6GIiAjSaDRUuHBhcnBwIJPJRBEREUQkVlTY2dmxSkxKdNkyPDC7sFtrq5jx+9sSAwYMoB49euT499aCI7IiS8e/yBUKFiyITp06oUGDBoiIiMC+ffv+v/bOOyyK633791IWWHq3oYDSVQSVxBgVIfYSS9TYYy+xK2pivhijiYmJGmuMPdiNmpjEhgWNGrtoLCCxYgwqFixgAXzeP3h3fjvMDOywu+yynM917XXpMDtz9vTznOfcDxo0aIAzZ86gTZs2uHv3rrGTCKBA7OPw4cOoU6cO73pycjKaNGmCp0+fluiZ6tijal6/fo2rV6/i+fPnCA0NFRV30ydSMVIfPXqEunXrcsJnmzZtwtGjR1G9enUMHjyYE8vZtGkTevXqhSlTpmDKlClwc3PjxVMNDQ3llHV1YcWKFRg6dChsbW3h7u7OU1RWKBS4fv26zu8oTEREBMaOHYs+ffrwysrJyQnPnz/nBCVzc3ORk5MDpVIJlUqFR48e8URQ5syZg4MHD+Knn36Cq6srgILIBf369UOjRo0wfvx4wbvv3r2LjIwMhIeHc8Jd6jjiwcHBev+tAKBSqZCamoqqVauia9euCAsLw9SpU3HlyhWEhYUB+D/le0tLS6hUKnz44Yf44osv4O3tzT1n9OjRSEhIEMRBVSM7rmkhRowYgT/++AMBAQFITk7GzZs34eDggI0bN2LWrFlFxpvXN5UrV0ZiYiKXP2oF4wcPHmDbtm0CkcsFCxagb9++cHJywr///svl8e3bt1GjRg04OTmJRitQyBCcFMt/TZEdTZXxwqxYsQJubm64desWqlSpAktLS+5v6jjLX3zxBd566y3Bd8WiYsyYMQNKpRKHDh3inpWfn49u3bohOzsbu3bt4j3DyckJycnJqF69Ou/67t270bt3b63zRqVSISUlBdWqVYOXl5doRAi58YNLmh4pVWugQHyKiLg2/tZbb+Ho0aMICAjARx99hJSUFC4/u3Tpgrlz58LHx4enzg4UiB716NEDt27dEghaieXPwIED4ePjg6lTp2LRokWIi4tDw4YNcfr0aXTq1IknmCm3/+rWrRuuX7+OhIQETmTr8uXLaNKkCSpUqIALFy4U+06gQGipefPmiI+P5/UvUsTGxuLGjRu4fv26aLSXwvz5559466238Ndff0GpVCI8PBwODg548eIFzpw5g3fffZd3/8OHD5Gamoq8vDzRPD537pzoe2rXri061hematWqsLW1RVpaGo4dO4b33nsPc+fOxddff41///0XDRo04PWnu3btwn///Ydnz55xqtiK/y8Yq1AouGuaafXz80NYWJigT962bZsgPW/evOHEZ5s2bYrevXvj3Llz2LVrFypXriwazUGhUODAgQOSv1GMmTNnYtiwYXBxcdFqPqhN2arT/+2334oKwrZr1473Xrl1vHXr1rh69SoGDBgAb29vLi/evHkDIuJihKvnTWLtGQCGDh2KiIgIrFy5klfHpfoXdVlu27aNEzI+deoUxo4di5cvX+L+/ftQqVR4+fIlJ8K6ceNGeHp68upg4fY/btw4+Pn54cqVK4iMjOQJpC1YsABeXl7o0qUL4uPjcf78eVhbW8PX1xeLFi3C0KFDec9Wz/uysrJ448HTp0+xfv16XLx4ETk5OVwevHz5Enl5ebh3755o3kdHRyMlJQVAgSr/1KlTYWdnhw0bNgjGlIcPH+Kdd97hhO1q166NESNGYNq0aZJzkry8PPTq1YtXLmqhW7XYn2beK/6/8OGiRYtw584dTJ8+HcOHD8fcuXPRo0cPPH78GJ999hmWLl2KM2fOCMS71SK4haOk3L9/H5UqVcLLly9hZWXF1Z+hQ4eiV69emDNnDk6fPs31C3/88QcUCgWmTJnCS/uKFSugUCgEfU3hsebKlSuoXr06tm/fjt69e2PGjBlcOXp5eaFnz55o2bIlT/z50aNHeOutt4rtlwvPl8XGdLF7i2LkyJFISEiAj48PT4Q1JSUF/fv3562V5syZg6dPn6JDhw6y+yO20DcAW7ZsQY8ePZCfn4/Y2FgkJiYCKOj8//zzT8FE0Fi8//77yMrKwoYNG7gwcnfu3EHPnj3h6uqKX375RfYzta3ghkSq07l37x58fHxw5MgRwUCZm5sLHx8f7vrgwYMxfPhwREREoEePHtxvSkhIwNdff43Lly/rnM4KFSpg1KhRmDx5MtdRGQLNBbpKpcLly5fh6+srOpBpGjD++ecfDBs2DHFxcWjRogVvEVF4Majm4sWLaN68ORf2R9/89NNP8PDw4MK4TZw4EUuXLkVoaCg2bNggCAcjNcnq1KkTfvvtN/z++++cuumRI0fQtm1bfPjhh1i/fj3vOUVNxEoyESxMbm4u5s2bh9u3b+Ojjz5CREQEAGDu3LlwdHTEwIEDdXo+AJw5c4Y3uVBHWSiMo6Mjfv/9d0RHRwP4v9+elZWFCxcuwN7eHnl5eQgKCgJQoKyrVCoRGRmJS5cu8Sayb731FoYMGaL1wkaKwMBA5ObmwtfXl7t27tw5PHv2DETEhYtMS0uDpaUl77epy6dp06bYtm0bN/EqjuImptWrV+dU7Q8fPownT54gKSmJU0BX079/fzRs2JAL46SmuEVf4fL64IMPsHXrVkRERKBevXoYNGgQhgwZgsTERHz44Yd49OiRTv2vnEVo06ZNkZycjNzcXK4eaOZ9fn4+srOzkZuby0VYKWqiaWFhIVi416lTB4GBgZg2bZpomDu1UVKN5iIO4C9Ihg4dinv37nH9oNz+y9nZGfv27RNEVDl+/DhatGjBqW4XfmfhxWdxE0Rd8ff3L7aOaKJZ5uo8Lm5KqDayaFPX7OzsoFAokJOTg0mTJiEjIwMJCQmIiorCuXPnBMrSeXl5uHbtGh48eMCFT1UbYKdPn47o6Gikpqbi77//xvz581G/fn3RkGy5ubno0aOHaDivwYMHi4a0VS+WS4qU8SstLQ27du0CEcHHxwedO3fGnDlzZM8Hi+uPxo4dy7u+dOlSdOrUiReydc6cOZJ13NHREUeOHBGE3gXEDZ5i7VmdHrVxRhOp/uX58+cYO3YsEhISuDK3srJClSpV4OLigrVr13KhmZVKJfr27YsaNWpgw4YNvDoo1f5PnjyJnTt3ws3NjXuni4sLTpw4gaCgILi4uODYsWMICQlB5cqVYWFhgdu3b/OenZCQgM8++wwvXrzg5b/mQnnlypVcHzVmzBjExcXh008/5eXBoUOH0Lx5c+Tm5nIRdbKyshAVFYV//vkHrq6ugjHlu+++Q2JiIq5fv44tW7agcuXKWLNmDebOnSvoAwG+8a5wuQAFGy7q/K9atSoSEhIQHR0NJycnnD17FjVq1EBcXBz279+Ps2fP4urVq2jbti3S0tLg7u6OTZs2ISYmBgC4yDp16tRB3759eXUwPz8fu3fvxo8//si1WU0D7+LFi+Hl5YUjR45w/cKPP/4oGoFJnXaVSiUYb8LDw5GdnY3Xr19DoVBgxowZ6NatG+bNm4fBgwfD1dUVR44cQVhYGM6fP4/3338fN2/exO3btwEAPj4+WvXLmvVBakxXo2lwKwqpeeXBgwfxzjvvcJEo1HOY+/fvo3LlysjNzS3yuQL05hvA4CHmfnrixAlKSUkxYqr4pKenU506dcja2pr8/f3J39+frK2tKSIigm7fvl2iZ+oi+qIrxYnxtG3blnPXEnPjlLpmKH0BV1dXg4nxaVLYvU2OQOKpU6coKChIcL+Dg4OoGuyBAwdE3Zf1RWBgIOcq+9dff5FKpaIff/yR2rVrJypSInVkQKVSiaqatmzZ0qDpL45Lly7Rrl27eHV3+/btOj1Truhm7969ydfXl7Zu3Uq3b9+m27dv05YtW8jPz4/q1asncOtftWoV124KH8uwtLTUSx0X02CQe8RALkW55925c4c+/fRTat26NXXu3JmmTZtGDx8+FH2O1BEdGxsbTpxKE6nyqlixIsXFxRGR9uJ9cpAjDlpU3g8cOFDy+AsAXn5u3ryZQkNDadWqVXT69Gmeu7atra3oudWiKOrogWY/KLf/cnBwoOTkZMH1s2fPkoODg9au7/rWZSmMXEFFzTJXC1dq8yHij/WFXe3PnTtHu3btImtrawoPDyciojp16nDiYVevXiV7e3vJ3/Hs2TPuWXXr1qUdO3YI7tmxY4eoUNnZs2epQoUK5OTkxHPLtre3J29vb1lHJ+RQlLt2gwYNqG7dutSkSRPOXVvufFCqP5J6LwAKDw8XuIlL1fF69erRsWPHBNeLOs5WuD0TSdfx4voXzTJ/9uyZVkdLC883tT165OHhwZ2NDggI4CIgjB07lhQKhaiulKenpyD/HRwcRPUFpPqX6OhosrCwENXFev/99wVjyqpVq8jOzk5UM0BKK0qqnojlv729PXespHLlytyRtOvXrwva58OHDwXHZNTtRmwOrVAoSKVS0ZgxYwT1R32/hYUFr1+oVq0aWVlZCdIuNd68/fbbvKPBYkctQ0JCuDnU6dOnydrampycnLhjCk5OTlS7du1iNZg065rYmK55JKOkmhjq+q9QKARHmM6ePctFMpILW+iXc968eUOJiYk0f/58mj9/PrcIlIO+RF90RXPALtzwlUolWVtbU+vWrQWdiFjHWBr6AmPGjBE9m6ZvNCf/cgUSk5OTuTPims8pajGoqVqvbzTPO06cOJEL73Px4kXubF1hxIxuNjY29McffwjuPXXqFFlYWOhNN0Fbrl27RuHh4TwxMnVd1nUCKld0Mzs7m4YNG8aF77GwsCClUknDhg2jihUrcufxNUlKSiIPDw+BYbNTp04GW9hUqlRJNC0XLlygihUrin7n9u3bAoEeqb6pqImplDKzWESO5cuXk5WVFTk4OFC1atW40F0ODg6idVaqvOrWrUtdu3blrhV3flEuchahReW9paWl1hNNqQWXerK2a9curdNf3Pl3Xfqv9u3bU+PGjenOnTvctX///Zdq1apFSqVS64WjlNGnZ8+evJBw6jOrDRo04BbW2iBXUFGu4UFqXFdPrNUTePX/PTw8KDQ0lAYMGEAqlYoePHhARAVG+bCwMK3eaWtry2sLai5fvky2trYCnZUmTZrQoEGDKD8/nyvz9PR0aty4MVWoUEFWSFupaC5iGNrwqA4xqe17q1SpQq6urlrX8ZMnT1JMTAwdPHiQFwHD39+fBg4cqFV7JpKu42+99ZYskWcp41rPnj3J2tpaUAc7duzIhV8svPAs3BbVUXemTZtGAwcOpKioKFq7di01b96cqlSpIjrvE/u9UsYRqf5FoVBQ69atBfefOHGC7O3tBWNK1apVacqUKVx+aKMVJVUuYm29Vq1adPDgQSIiio2NpfHjxxNRgahn5cqVRZ+vyc2bN+nGjRukUCjo1KlTPGPgf//9R3l5eaLz6x49elBkZKSgX7Czs6OAgADBe6TGm6pVq5JKpRLUzffff5+WLl1KRAXn3WvUqEEzZswgDw8Psra2piVLlnAL6CVLlpC3tzdVrVpVUGelFu7NmjUjCwsLzmjg5OTEhWBWKBRa6TKIoTnnExtTVCoVrVixothyETyXiLnul0dyc3NhZ2eHc+fOCVxN5VKcG6cafbg4a4Ofnx9OnTrFc1kDpN0mi3LbMaS+wKhRo5CQkIDw8HCDnPtWo+lyRET46quvMHPmTOTk5AAAbGxs0L59e/Ts2ZP7DhEhIyMDCxcuhI+PD3bt2sVzR8rJycGECROwcuVKzo3IysoKAwYMwLfffgt7e3u9pL0wXl5e2LNnDyIiIhAREYFx48ahd+/euHbtGsLDw/H8+XOtnhMbGwt3d3ckJCTA1tYWAPDixQs0btwYZ86cgb29fanpJgBAu3btYGlpieXLl8PPzw8nT57Ew4cPMX78eHz33XecO19JkHI7PnnyJJo3b46srCzR72VnZ+PatWsACtzU7e3tBW79apKSktC+fXuBG2dOTg66dOkCT09P1KpVS1DHR40aVeLfJTct+/fvR/v27eHv74/U1FTUrFkTN2/eBBEhMjJS0DdJuedt3boVvXv3Rs+ePbFmzRpcvnwZ/v7+WLhwIXbu3ImdO3fy7pc6oiOVN5MmTcLw4cMxe/Zs3nNOnjyJZs2aYe/evVqdXxSjqD5FTlkVlfcxMTG4evWqoD8Vy89bt27x7lEfVVD/bf78+YiLixNNT+3atXn/L+7ogWY/KLf/un37Ntq3b49Lly7Bx8eHu2ZhYYFu3bph1qxZWh1NkdJl+ffff+Hh4YGMjAzeWfY//vgDVlZWoufNpRBzswbEXdOlynzv3r1wdHQUHGEKDg7GrVu3YGFhwRvrFQoFbx6hHutfvnyJzz77DLdv38awYcPQsmVLAMDUqVOhVCoxZcqUYn9PZGQkrK2t0aJFC3zxxRcACsblvn37IjExEU+ePOHprFhYWODEiROoU6cOzy37xIkTeOedd5CWlqb10QlNjYTiMPRxtkqVKiE3NxeZmZlavffUqVOIjo5Gfn6+VnX8n3/+QY8ePQR6MGp9hMKu+FL9o1Qdf/PmDTIzM9G1a1etxoLatWvj6dOn+Ouvv3hHS8PCwpCdnQ2lUsmrgy9evECFChXg6+sLpVJZ5Hzz9OnTGDx4MLKysnD8+HH06dMHf/31FwICArBy5UqEhIQI5n1iv/fUqVOYPHky4uPjUbNmTe435eTk4LPPPsPatWt5eU9EOHToEBo0aMBLz3fffYe4uDgMHDiQN6YolUq88847OHjwYLFHLYsrF7G2npSUBAsLCzRp0gShoaFo164diAi5ubmYM2cORo8ezXvG4sWL8eDBA8THx4vmqxhi8+usrCzRfiEiIgK+vr6CY8NS4426DmdnZ/OuX79+Hc+fP0ft2rWRnZ2N8ePH46+//kJKSgqWLVuGjz76iHf/6NGjMX/+fDg4OPDq7N27d/H69WvY2try6lpOTg58fX1RtWpVTjukbdu2snWrCqPWo/H398egQYN4Rz+USiW8vLx4GkNaI9s0wDAb/Pz8RN2O5GJoS7a+kNq9MLQ7pRQlDd0jF7FdvlevXtGlS5foxIkT9OzZM9HdKG9vbwoKCqLBgwdL7uSMGDGCevXqRb169aLnz5/rLc1SSFmC5ewQERXsPFaqVInc3d0pJiaGYmJiyN3dnSwsLGjUqFE6KZeXBHd3dzp//jwR8cPZ7N+/X1QRXg5FuR3LVfSXuxMqtZvt6+srGg5x9erVPE+LonY25aalfv36FB8fz+XJtWvX6NmzZ9S+fXvRUItSO1OVK1emnj178p5DJL3LInVERypvFAoFF1ZKkwULFoha+VFIQb4kOwlFpUesrIrK++rVq4v2p9pEGZHyyCq82y+2W16ca7BYP/j8+XNuZ6e4/kvM+03OcQciIm9vb/ryyy8F/UtJPJXEkKvqL1XmlpaWol4xo0aNIjs7O63Gen0d4Ttx4gR3/Co2NpZiY2PJ09OTbG1tqXLlyrRz505u93nHjh1kYWHB7RxrumWnpKSQpaWlwcZ6Qx9nK+oI0IgRIyTfq20dr1+/PjVo0IA2btzIi4DRqlUr7siQNulxdHSkNm3aCOq43LHgnXfe4TwxNY+WVq5cmd577z1BHbSysqLJkyfLyVJZiP3eKVOmkI+PD28nVrOPKpz3Up5BDg4O3DEUzTGlcuXKXGhAbY5aSqVz3rx59OGHH3KeTVL5f/PmTdq6dSs3FylMSEgIb4wrPD6LHT2MjY3Vus1Jpb1+/frk5uYmGG8cHBxEw4xK4enpKeod5O7uTiqVSlBnpdY21tbWgrpWEg9DKaTCRZcUtqNfjlmxYgW2bduGNWvW8IRK5GIsYbaiyM7OxqFDh3hiPK9fv8aqVatQv359nkVZ6roaXXYdjUVRqtiFKWqXz9S8NaQswXJ2iNTk5ORg3bp1SE1NBQCEhIRg4sSJOHXqlMHEsqRwdXXF2bNn4efnh+rVq2P58uVo2rQprl27hlq1anHeFyVBn6KbcndC5QpOBgUF4YcffkBMTEyxO5ty0+Lo6Ihz586hevXqkgI9mkjtTN26dQuVK1cWCDZJ7bKMHTsWnp6eAmEmqbyRKq+AgABUqFABx44d4+0elyQChhhyyqqovJ82bRo++ugjwS7xsWPHsHnzZqhUKklvGfUO//3795Gbm4vKlStLpqGw8KbYTpY++sGivN+KE2UqjJubm2j/oi9PJbmq/lJlbmtri5SUFPj5+Qnuf/TokUDgbuzYsVi9ejUeP34MAOjatSu2bNkCZ2dnfPrpp4iLi+Pd//PPPyMnJwd9+/bV6ndlZ2cL+urJkydj69atgl2+evXq4cqVK3j27BkGDRqEv//+G6NGjcKaNWvw4MEDeHt7G8TDqE+fPjh8+DBmz56NqKgoAAUK2nFxcWjUqBF++umnEj8bkO6PMjMz8erVK2zatEmn96pUKiQnJ3PjvBoprw+p9pyeno5KlSpxYmdqSiI+TETYt28fr9zVnhyF55sdO3ZEUlKSpIearojl/3///QeFQgEnJyds3rxZIBhaOBqMlGdQXl4ejh49igYNGvDGlLi4OMyePRvHjh1Ds2bNsHPnTty6dQtjx47F//73P4wcOVKrdAIF5eLs7IwHDx6UWPxZanzetGkTTp8+zYuWAYD7d6tWrXj15/jx47CxsUFERASvzQ0bNgzLli2DnZ2dwBvk8ePHeP36NW+86dOnD27fvo0KFSpo1Z6/+OILpKamYtWqVbCxsQEAvHr1Ck5OThg6dCjmzZvHu19qbdO7d29s376dF5lMroehNly+fFlUULR9+/byHqQ3kwGjzFGnTh1ycHAgGxsbCgwM5HaD1B9tMZYwmxRSYjxKpZIACCya7u7uotelLM1lAblxXKV27Bs3bkz+/v40bNgw7popemvoi9LSTSjMu+++S7/88gsREXXv3p1atmxJR44coT59+sjyVBDDEKKb2u4SyRWcLMnOprZp8fb25qz5mgI9586dExUGk9p9lStoOXLkSHJ2dhbExbaxsaF+/foJ7pcqLwsLC1ENAH3tJJREHFQs76V27iwsLMjV1VUrb5ng4GDZ2hRiu0E1atQgOzs7UiqVOnk7SHm/aeOloIlU/6IvTyW5HgZSZV6jRg1as2aN4LqtrS1VqFBBcL1ChQpcfO3ExERycXGhPXv2kJOTE9WtW1dw/8GDBykwMFDrdBIJhUqVSiUtXLhQcN/GjRvJxsaGiAqELVu0aEGOjo4UGRlJU6dOFa2bHh4eRe5UakNR2iZyvN2kvJqsra0pLi5O0H709d5GjRqJajTJbc9SdVxO//L69WuytLSkCxcuCP4mNd/cuXMnWVpaaqV/4ejoSN7e3lSjRg1yd3fnRE/VHzHExgM7OzvO+05bxDyDpMaU1atXk6enpyytKKlxS53/hfuooj6FkRqfmzRpQkqlkjIzM8nBwYEuX75Mhw8fpqioKJo4caKg/lhZWZG3t7dgfu3q6kru7u6SY0Th8UaqbkJD7E/zo77u4eHBeQd5eHiQUqmk0NBQ6tixI/dRl4VYXevYsSMB4I3pISEh5OTkRG3bttVZt+ratWtUu3ZtgYdbSTWb2EK/HDN16lT6/PPPJT/aYixhNimkxHisra2pR48egk5EqmM0FnIEgKSQe5wiOjqanJycBIYBhUJB9evXF0yIS+KOpA9WrlxJmzdvFlzfvHkzrV69WuvnfPXVV6KiJrGxsWRraytYlBlaTHL37t20detWIiL6559/KCgoiBOzUkcZ0AV9iG6WBLmGE09PTzp79iwRyVPp1gYpgZ7IyEiKjY0V3C81MZUraCl1PKdKlSqShkSx8pI6YqQvQ6u+jFzFTTS14eTJkzRo0CDRNrpixQr6+uuvBdfFJn2urq5kZ2dHVatW5e4riaFy+fLl1Lp1a0FkBbnuyFJGn2HDhlF4eDi1b9+eJ0AYHx9PM2bM0Dqdco+hSZX5N998Q+7u7rRy5UpOXGvFihWkVCpFBd4UCgV17tyZiArc+9ULK6VSKXo86MaNG2Rrayu4LrbIdXR0JJVKJTi6oZ60v3jxgrs/JyeHunTpItqeiaTrptxoLkUh5ziIGFJpsba25kU10fd7pSJguLu708iRI7Vuz1J1PCIigho2bCi4X8qwYWNjQzt37hTcLzXfVB9ZKdwWraysOOOUOj9r1qxJ9vb2FBYWRqtWraLVq1fzPmKI/V4p44gYRRkvihtTCh+1LAqpclG3dc0+SuojZfiysrLiykpzfFb3s0TCo4dWVlaCNmdjY0M3btwQpNHZ2ZmUSmUxOfl/SLXnX3/9lff5+eef6dNPPyWVSkXvvPMOffTRR7xPSEgIWVtbk7e3NwUHB1NoaChv8V64rtna2pK3tzdvPG/UqBFVqlSJZ1gozuAmVfddXV2pWbNmooaTP//8U+v8UcMW+gyd0ZdFWV84OztzHY2zszO3i+fk5CQ6+SqtMHfaoo/zOXJ3+aQMA5aWljR06FDB/cby1ggICKADBw4IrsvdIapWrRodPXpUcD0yMpJsbW0NrpugDWLhbORS1ORCn0gZp6QmfVKGE33tbIpx7do17uzh8+fPaciQIVSrVi3q1KmT6K6d1CJIXxE5xPJm1KhRpFAouJ0STeSeX5RraJVbVlIUN9HUFqk2evz4cfL19RVcF5v06cvbQcr7zcrKiipWrKi1kdjQuixyPQykynzMmDFUr149srW15cZ0lUpFU6ZMER3rVSoV7du3j4gKFqpqY2zFihW5BYAmv/76q6iqt9git1atWuTt7U2tW7cmBwcHunTpEh0+fJhq1qxJHh4eAp0VqTInkq6b+tJI0AdSaenduzepVCqDvVdK1wEaoco0kWrPUvW7cuXKZGVlJahrrq6unJFI07ARHh5O3t7eAuOa1HzTzs6Opk6dqpX+hYODA2cc0Bax31tUeFCxc+5SnkH6jPIkVS5y+ncpY5NaM6Dw+Gxvb8+p5fv7+3NztKtXrxIAQZvz8fERDRvcrl07cnJy0vq3yp27r1u3jtq3by+4LlVn1Yt3OWsbOQa3oox6MTExRKQfzSYr2YcGGGaDv78/Tp06BXd3d971rKwsREZGaq0wrlKpsHjxYnz77bcClW5jYG1tzZ1B8vLyQnp6OkJCQtChQwds2LBBcH/fvn2xadMmwRlaY7F//36dn/H06VOBOi9QcJ5P7KzQ7NmzkZiYyJ3xBQrOjbdu3RrLli1Ds2bNBOf/OnXqpHM65ZKeni44NwoUnNdNT0/X+jl3795FxYoVBdd//vlnhIaGIikpSad06gNddDPUWFtbo2rVqsjPz9dDiqTZunUrbty4IVDjvXDhAiIiIgAUaHZoUvg8IwAsWrSI02DYunUr1zedOXMG3bt31ymNmqr09vb2WLJkSZH35+fnY9asWdizZ49oVIxHjx7pFJFDKm9sbGy4M6mabNiwAYmJibC1tcXBgwd55xdzc3PRo0cPUa0CXdMDiJeVFFL9qVh+rlixAj169ICdnR3vjHxWVhbS09NF26inpycyMjIE11+/fo1u3brxzp/K7QeleP/990XzICUlBV26dNH6zKtUv7Jq1SrR+iP3LLtUHQEKyrDwmdWiytzR0RGZmZlISUmBnZ0dAgICuHOthcf6SZMmYcCAAQgICMDDhw/RqlUrAAXn5ffs2YOkpCQ0btwYAHDo0CGMHj0aH374oSD9t2/fRo0aNQAAv/76Kzp37oydO3di6dKlGDJkCCwsLGBpaYl3330X8+bNw9ixYzFixAiuvXTv3h0tW7bEzJkzkZSUJIg8kJOTI1o3HRwc8PDhQ1StWhWJiYmctoOtrS1evHihVd7rC6m0KBQK5OTkoEmTJgaJ0nPjxg3R61988YVgjghI94/q+lQ4PU2bNkVAQAAAfl178uQJp+OkLvPBgwdj7ty5uH//PipVqoRq1aoJ5pMPHz7k1UEfHx/07t1b0BbF8jMlJQVEJKtsxX7v3LlzAQD9+vXj2pr6XLpCoRCMu1OmTMGnn34q0MVSKBSYMmUK4uLidI7yJFUuv/zyCxwdHWFhYSHav5PGuXqxdjh48GDUqlULMTExyMzM5I3Pbm5uXFSft956C7NmzYJSqcTSpUvh5uYmaHPdu3fHqFGj4OjoyOsXDh48iNevX2tdx+XO3evUqYNBgwZx/7916xZ++eUXfPLJJ2jevLnk98QiEElhb28viAgjhVQ+x8XFITk5GQDg4eGB//77D0FBQahWrRquXLmi1bM1YQv9cszNmzdFFwCvXr3Cv//+K/t5ciq4IYmIiMCpU6cQEBCAJk2aID4+Hg8ePMDBgwfx5s0bQSdy8OBBpKSkSE7o9RXmrjTp2LEj+vXrJyoMJLZAl5oQDxs2DLt27dJ5EaEvvLy88Pfff8PX15d3/fz586KTESl8fHxw9OhRgdHg6NGjnACauSA1udAnUsYpuQYTFxcXLFy4UHB92rRpJUqXJnINm8UtfJVKJUJDQ0ucHqm8UYukPnr0iFdeU6ZMwbRp0yTFrORMRuSkRy5yJppPnz7F33//zS0g1bx69QpEJKuNik365PaDUnz++eei17OysuDp6an1c6SYOXMmfvzxR8F1Ly8vDB48WOuFfnF1pDDalHnhsJyAcKyfO3cufH19cfv2bcyaNYtboDRq1AgZGRmIjY2FlVXBdPPNmzfo06cPvvrqK8FzxRZlv//+O9zc3PDixQt4e3tzk96dO3ciJSWFN3EHCsKyZWRkYMKECfD29uYZO9auXStaN93d3dGyZUu0a9cOaWlpaN26NQDg0qVLgrHG0DRr1gwDBw5EREQELy1nz56FSqWSXKjpSmFxSzX29vZYunQpTpw4IWvhWBipuubl5YVFixYBAM+w0axZM1y7dg2ffPKJZLo066DUok8sP4ODgzFw4EB4enri4cOHgjmfk5OT4H1i48Hbb7/N/V6xTaTCLFy4EFevXpU0Xpw9e1anMUUqnQBQo0YNUdHkFStWYO7cuVyY4YCAAFhZWYkam9Th3bZv3857xrJly7gQd1988QXatm2LRo0awd3dHU2aNBG0ufz8fNjY2CAmJobL+zdv3sDT0xORkZFQKBRa1anijPGac/cXL16gVatWXN+UlZWFqKgoKJVKPHjwAHPmzMGwYcNE89RQaxspo15gYCAuXLgAQGg40SaMbmHYQr8c8ttvv3H/3rNnD5ydnbn/5+fnY//+/aK7pmWFr776itut+fLLL9GnTx8MGzYMRISIiAjBwHTz5k3Y2dkZbACV4qeffoKHhwfatGkDAJg4cSKWLl2K0NBQbNiwQXLg1YYlS5ZgwoQJWi/Qi5oQ9+jRA4sXLzYJbw0pS7DUDpEUgwYNwpgxY5Cbm4uYmBgABYvViRMnaq1SXlbQZnJhKqh3Nrt06cK7LndnU4yiDJt37twRXDeWV4dUeT148ADr1q2T3L0wFUOrNhNN9Rh06NAhDB06FM7Oztw19Rjk4eEhq42KTfqcnZ3h5OSErl27cjtWJTFUShmJcnJy8L///U9nI7G+PJXEvBr0iVQcbWtra0yYMEFwf1xcHOLi4pCWlobz58/Dzs4OtWrVkhzbxBZlS5cuRWJiInx9fVG7dm1u0rtkyRJUqVJF8Ixr167BxcUFkyZNEvxt9erVonXT3d0dz549E+xU6sOTSC5SXk2dOnWSHVmmpDg5OeHcuXPw9/eXvXCUi5Rh47333sOBAwcwdepUrZ4jtehzdnZGfn4+r2wfPXqEBw8eICMjA15eXtwzpHbiAf2MB1KeQfpETjrj4+MxZ84cjBw5Eg0aNABQEE3hu+++Q+vWrdGmTRtemcybN4/n9anm6dOnXGSgGjVqIDU1FY8ePYKrqytiYmJE60+lSpXg6uqK8ePHF9svSCFVN48cOQKgoL0DBeX67NkzvHnzBvPnzwcAbNmyBRUqVEBycjK2bt2K+Ph4yYW+oZCq+23atMG9e/cACA0nmzZtkv0eFl6vHKKeBGi666ixtraGr68vZs+ejbZt2xojeeUGOaHESoq2u3xyQ5UZi9evX6N37974+eefBTtES5YsgVKp1Oo5RITJkydj/vz5XOgSW1tbTJo0STCJLet8/vnnRU4utJ1IAYY1TgEFluwff/wRTZs25V0/dOgQBg8eXCK3NfUCskOHDvjpp59EDZt79+4t0bMNgVR57d69GyqVSi9He4yNNmPQd999hyNHjmjdRgvXGU3evHmDBQsWACiZodLCwgJ3797lLQoAoGHDhjh27JggjJb6t2m7CKpatSoWLlwoCJu0fft2fPzxx1p72EmFctQXsbGxuHHjhtbH+jIyMpCbm4uqVatqdb9Y+NQ9e/ZgxYoVCA8PR7du3dC2bVukpaWBiLB27Vr07NmT94zatWsjNTVVEJKKoT2aId4MjVTIXFdXVwwfPhxffvml4H4xD6yi2n/hthgVFQUrKyuMHj1a4PUBCMPiyUVuvTcWnp6emD9/vsCYtXz5cowYMQItWrTglYm7uzs6dOiAFStW8O7XZXw2BKtXr+aVqYWFBTw9PdGpUyekpqaiatWq6Nq1K8LCwjB16lTcvn0bQUFBOoUxLglywkWrDSclMRSxhX45xs/PD6dOnYKHh4exk1IuUalUXKczadIkZGRkICEhAZcuXUJ0dLSoK72h0dX9t7TQdoeoOJ4/fy56BpUhjqGNU7a2tkhNTRW4y968eRMhISElOi9rLobNUaNGISEhAeHh4WZzxEibMciYbbS0jESTJk3Cpk2bsGrVKp6nUv/+/fHBBx/gu+++0+o5plBHxo0bh+nTp8Pe3h5ubm54/Pgxxo4dK3pvSdPz6NEjvPXWW5g6dSp69erF+9u0adPw9ddfY/fu3ahZs6ZWbtmG9CSSiymkpTQX+lJIGdfu3bsHHx8frQ05YvmpUqkwc+ZMuLi4GCQ/Q0JCkJaWJvAM0Jculr5wcXHhjrlqkpaWhqioKGRlZfGuyx2fNT2ANPsFtYu6FIbqp2rXro2BAweiY8eOqFmzJnbv3o0GDRrgzJkzaNOmDe7evWuQ9xob5rpfjhETX8nKyoKLi0vpJ0aPPHz4EPHx8aJiPEDBJMEUMCUBIDWm4v5bHIGBgQgMDNT5OQ4ODqJnUM0JfU4upMRjGjZsiOjoaJ3Tqi8NBk3U7b+sGDalyis5ORmvXr0q9SNGhkRKAEwTY7bRDh06ACjI38ILAk0jka5Mnz4dN2/e1PosuxT6ElTUheTkZM4rzN/fH/n5+ZywVHHp0XaR6+bmJnn86vvvv4e7uzt3TU1Rbtn60kjQB6aQll69eokaRAxB4TLXPFr62Wef8QywJTlaKpaf9erVQ15eHr766iuD5GdCQoLo7rC+dbF0pXfv3vjhhx8EC+tRo0bhrbfeEtzv4OCA77//Ht9//z3vutT4rCnSq9kviPUHavTRT/3999+i1/v27Yvx48dj7NixiIqK4jayEhMTuX6zNJFr1JM6OlUcbEe/HPPNN9/A19cX3bp1AwB06dIFW7duRcWKFbFz506Eh4cbOYUlo3Xr1rh69SoGDBgg6pZVmoN2UfTs2ROpqamIiIjAhg0bkJ6eDnd3d/z222/49NNPBRO18kppWoJL2pGaMvraGQEKJpt79uxBREQEIiIiMG7cOPTu3RvXrl1DeHg4nj9/rlNa9bWzqS2maNjUZ3mVBbKzs3Ho0CGkp6cLflthlXjAOG20tIxE+vJU0hVDH9GRQs7RHanjV66urqhataost2xDeBKVFFNKS2lQuMw1PbDevHnDK7+SeGCJ5efPP/+MKVOm4MaNGzh+/LjA60Pfmx2menxs5MiRSEhIgI+PDycseOLECVy+fBnt27fnGVTmzJmDHj164Oeff0ZiYmKpjM8lxcLCQtJgoF7yEhEsLCyQn5+PkydPwsnJCcHBwaWZTNlHFeUenVLDdvTLMUuWLMG6desAAHv37sW+ffuwe/dubN68GXFxcUhMTDRyCkvG4cOHceTIEZM3VBgylJg5UZqWYKkwcWURQ4huSonH6EudWl87m2KYumHT3EVSxUhOTkbr1q2Rk5OD7OxsuLm54cGDB1CpVPDy8hJd6BujjZaW95u+PJV05auvvsIPP/wAoECca9GiRdwRnbFjxwqO6GjrNfT06VMcOHAAwcHBopNqOaKECoUC33zzDf73v//xjna4urpi//79CAoK0vr3GsKTqKSUZlrUwmTaINYW9UHhMld7YPn4+CAzMxMvX77U6fli+akeA4iI8xYqKiyeFNrW+9LyDJLLxYsXERkZCQDckU0PDw8QETIyMjjXffXc6vPPP8emTZv0Pj4X1y/IZdu2bZgwYQLi4uJ4IoOzZ8/GrFmzBLv3agHq0kauCGuJ9XmIUW6xtbWl9PR0IiIaNWoUDR48mIiIrly5Qi4uLsZMmk7Uq1ePjh07ZuxkMBhGRaFQkEKhIAsLC+7f6o9SqaTAwED6/fffZT3z8ePH9PHHH1P79u1p165d3PX4+HiaMWOG3tJ+5coV2rx5M/3+++908+ZNvTzT19eXjh49SkREiYmJ5OLiQnv27KEBAwZQs2bN9PIOXTBEeZk6TZo0oUGDBlF+fj45ODjQtWvXKD09nRo3bkxbt241dvI4vv76a9q4cSP3/w8++IAUCgVVqlSJzp07V6Jnjh07lp4/f879u6hPaWNnZ0e3bt0iIqKJEydS7969iYjo4sWL5OHhIbhfoVDQvXv3BNfbtWtHlpaWRESUk5NDAQEBZG1tTVZWVrRlyxbB/T4+PrR9+3YpZvHAAAA5sklEQVTB9V9//ZUqV66sVdobNWpEe/fu1epeNRMnTqRq1arRgQMHKC8vj/Ly8mj//v1UrVo1Gj9+vKxn6UpppsXX15f3sbe3J4VCQa6uruTq6koKhYLs7e3Jz89Pr+/VRE6ZP378WPbzxfJz/fr1VLlyZRo0aBDdvHlT8NEWqXp/9+5dUiqVguu+vr6UmZkp+zeUNsWVSeHxefXq1fTHH39w98XFxZGzszM1aNBAND+7dOlCCxYsICLt+gW51K9fn3bs2CG4vmPHDoqMjBRcX7RoEU2bNk3n98pFH/2dNrCFfjmmYsWK3MQ3MDCQNm/eTEREqamp5OjoaMyk6cTJkycpJiaGDh48SA8ePKAnT57wPqbCypUruTzXZPPmzbR69WojpKjs8eTJE/rll18oJSXF2EkxWcrK5MLQlBXDZnkqL2dnZ0pNTeX+ffnyZSIiOn78OAUFBRkzaTwMYSSKjo7mFi7R0dGSn6ZNm+rrZ2iNp6cnnT17loiI6tSpQwkJCUREdPXqVbK3t+fu2759O23fvp0UCgUlJCRw/9++fTtt27aN7OzsqFq1akREtG7dOqpRowZlZ2fT4sWLqU6dOoL36mORu3nzZgoNDaVVq1bR6dOn6fz587yPGK9evaKuXbuSQqEga2trsra2JktLS+rXrx+9evVKTtbpjLHSsm7dOmrYsCHXHokK5oKNGjWitWvXGuy9UmXu4uJCbdq04e4rqXHNEPlZXL3/+OOPKTAwUKtnlcR4YWjktsPAwEDav38/ERH99ddfpFKp6Mcff6R27dpRx44dBfd7e3tzZahNvyAXW1tbbizR5PLly2Rrayu4HhMTY1BjlhRS+ezu7s7Lt+IMJ8XBFvrlmI8//piqVatG7733Hrm7u9OzZ8+IiGjDhg0UERFh5NSVnLS0NKpXrx5ZWFjwPurdMlMhICCADhw4ILh+8OBBrQeJ8oa+LMFyLdDmRkknF4YwTpXWzmZZNmya4mRQH3h4eFBaWhoRFfSHu3fvJiKilJQUUiqVJtNGy4qRSF/06NGDIiMjacCAAaRSqejBgwdEVLDACQsL4+4rzgtFoVDQypUriYiod+/eNGnSJCIiunXrFs9goEYfi7LC6dBMX3HjvyE8iUpKaafF39+fM+5ocvr0afL19TXYe6XK3MHBgQ4ePEhE+jGuSeWno6MjXbt2TdazSup9ZQjPIEMwb948CgsL436jlZUVWVpaUlhYGI0aNUowLltZWdGAAQOISDsPIM3+VJt+QS4RERHUu3dvXp/x6tUr6t27t0mtbaTqvpOTEzcWamM4KQ52Rr8cM3fuXPj6+uL27duYNWsWHBwcABTEAB0+fLiRU1dyevbsCWtra6xfv15UjMdUkHs+hwH8+eefXGzRX375BUSErKws/PTTT5gxYwY6d+6s1XPknkEty+jzbLohFKFLS4OhU6dO6NGjBwICAvDw4UO0atWKe6c6koApYOpaAvokIiKCC+/UpEkTxMfH48GDB1izZg0sLCxgZ2cHwPht1NXVFbdv34aPjw92796NGTNmACg446vteV456PvMqly01Y8pLqJFYGAg7O3tkZ2djd27d2Pjxo0AgMePH8PW1lbwXqVSiU2bNmH69OklFiXUJpKDFKaikQCUfloyMjKQl5cnuJ6fn4979+4Z7L1SZR4cHMyF9/vjjz/QtWtXNG/eHL6+vqKK8MUhlZ9UAj3ykkZyKSu6WNu3b0dOTg5SU1PRqVMnfPbZZ2jQoAE++ugjUUV7hUKB8+fPA4BWEaR8fHxw7NgxuLm5adUvyGXJkiVo164dqlSpwgkr/v3331AoFPj99991fr6+kKr7ISEhCAkJAaCf6EZsoV+Osba2xoQJE3D58mWkp6dzYlDVq1c3csp04+LFi0hOTpYlxmMMTEkAqKzw5MkTuLm5AQB2796Nzp07Q6VSoU2bNoiLi9P6OYYOE2dK6HNyYQjjVFJSkui/9U1ZMWyWlcmgPvjqq6/w7NkzAMCXX36JPn36YNiwYVxcZ1Npo4Y2EnXt2hWNGzfGiBEj8OLFC9SrVw83b94EEWHjxo1aGzD1hYuLCxYuXCi4Pm3aNNH7pRbXY8aMQc+ePeHg4IBq1apx5fbnn3+iVq1aku/XZZGrrVHAFOJ6m1JaYmNjMWTIECxfvpwTaDtz5gyGDRuG9957zyDv1KRwmetiXJOTn7og16h09+5d+Pj4ANCP8cJQaIq+aUZ/khqf1RGkBg4cqJVIb0n7BW2JiorC9evXsW7dOqSmpgIoEGAkImRmZnL3lVY0keIoXPf1HXqbLfTLMdevX0enTp1w4cIFAP9n2VTvnBlip6I0qFevHm7fvm3yC/3u3btj1KhRcHR05IUqGT16ND788EMjp8400ZclWN8dqSmjz8lFaRun9LmzqTZsFmbs2LE6PVfflJXJoD6oV68e928vLy/s3r2b939TaaOGNhLpy1NJX8iN7wxIh0kcPXo0GjZsiGbNmnGh0/z9/bmFmyEXuU5OTjh37hy3M6xJaUZzKQ5TSMvKlSvRt29f1KtXjws3l5eXhxYtWmD58uV6fZc2Ze7l5YVWrVohKipKtnFNTn726tULTk5OJfwl8sKDlrZnkBxK0g7V4/Po0aORkJCgdQSp4cOHIyoqCrdv35bsF3TF3t4egwcP5l0LCgoyuienNvns7u6Oli1bol27dnqJbsQW+uWY0aNHw9fXF/v27YOfnx9OnjyJhw8fYvz48SYTD7MkjBw5EqNHj0ZcXBxq1apl8BipJcWQocTMFX1Zgg0dJs6U0OfkwtDGKWPsbGZkZCA3NxdVq1bV+7NLgilPBksTU2qjhvZ+05enkr6Qe0RHKkyijY0NKlasKJhPtGnThvddQy1yi3LLLi1PIm0whbR4enpi586dSEtL43ZBg4ODDXJ8QJsyd3Z2hqenJ0JDQ2Ub10orP+WGBzW142M//fQTPDw80KZNGyQnJ+OTTz5BQkICiAihoaGCzZNLly7BxcUFc+bM0Wp8lvIASkpKQtOmTXmGXoDfLxiC9PR07jiYsbzEtKn77u7uePbsGTIzM/UTeltnNQFGmcXd3Z1ToXVycuLUVvfv368X5UtjoYsYjzEwJQGgssCpU6do27ZtnHgkEdEff/xBR44c0foZpRUmzhTQp+imoRWhDa3GK0ZwcLBJ9QvmKpIqxoMHD2j48OEUEhJC7u7uXFgvV1dXcnZ2Npk2eu3aNQoPD+cJu6rHE33UnYCAANq0aRM9f/6cPD09OQXrc+fOkbu7u87Pl4uNjQ3duHFDcP3GjRuiqtVSYRIVCgV5e3vT9OnTOfGt0kSdFrmYUjQXU0qLMbh06RLt2rWLp2wvFpKsOObNm0fz5s2jb775hgYMGECffvopd63wR1vkhgd9/fo1ffvttzRq1Cie8OGcOXNo2bJlsn+TruhLLb93796igo1SIr1KpZL8/f1LvV+wtLQkhUJBREVHEzE32EK/HOPi4kLXr18nogLFVbUC/NWrV8nOzs6YSdMJsbioJYmRyjA9xKIUMIrGEJMLQxmnDK3GK8bJkyc5dWdTwNQmg4akVatWFBAQQF9//TWtWrWKVq9ezfuYCm3btqX333+fMjMzycHBgS5fvkyHDx+mqKgo+vPPP3V+/qJFi8jKyopcXFwoPDyc8vPziYho/vz5FB0drfPz5SI3vrNUmMTdu3eTp6cnhYeHk5WVFTVv3pw2bdqktVFQ10Xu0KFDtQpVaei43nIwVlry8vJo+fLl1L17d4qNjaWmTZvyPqWFuswTExP1YlxT56evry9Vq1aNrKysCAABIIVCwRkWFQoF2dvbywqzVtLwoPoyXuiKnZ0d3bp1i4iKVstXl4mNjY3o+Ozn5ydqAJSKIJWZmUlz5swpcb9QUlq0aEGBgYHFRhMxFup8/vLLL/Ua3Ygt9Msx7777Lv3yyy9ERNS9e3dq2bIlHTlyhPr06WMSld4cKa1QYuaKvizBhggTZ+qYyuSiKExtZ9OYlIXy0hUHBwfJsFKm1EZLw/tNH55K+kJuHO2iwiSqVCoiIjpz5gyNGDGC3N3dyd3dnUaOHCkoe2Mtco3hSWRqafn444/J3t6eunbtSqNHj6YxY8bwPoZCqswVCgXVr19fZ+OaWH6uXLmSqlevTsHBwdx9qamp1KhRI1q7dq3Wz9am3mtiaM8guXh6enLGZM0d7latWpFSqSQifpkAoHHjxgnGZ6VSKRpmVMoDSBNt+gV9YWqenFJ1HwB9/vnngvtLGnqbLfTLMbt37+bci/755x8KCgoihUJBHh4eXAMu65QkRqohiY6O5mJiR0dHS35K04JeltCXJTggIEDUO6CkHakpo+vkojSNU4bc2fTz8+Ms+Jo8fvxY1i6OoTG1yaAhqVevHh07dkz0b6bURg3t/WZqnkpyj+g0a9aM1q1bR0REAwcOpKioKFq7di21aNGCoqKiuPvu3LlDU6dOJRsbG7K3tydLS0t699136eLFi0RU8kWulAu2tm7ZxvAkksJYaXF3d6cdO3YY7PlSSJW5vb09tyuui3FNLD/9/f1px44dgvw8ffq0qAu6FNrWezWG9gySS48ePSgyMlKww+3i4kLVq1cnIn6ZdOvWjQAIxmdXV1eqWbOm4PlSHkCFKa5fkEtZGeul6r6VlRWFhIQI7tfGcCIGW+gzeDx8+JDevHlj7GTojZKe0WOYPrpYguWeQS3L6Dq5KG3jlKF2NhUKBd27d09w/e7du9zuhSlgapNBQ3Ly5EmKiYmhgwcP0oMHD+jJkyfcx5TaqKG934x1ZrU4tD2ic+rUKc5Yce/ePWrRogU5OjpSZGQknTp1in7++Wdq1aoVWVlZ0dtvv03Lli2j58+f040bN6hnz57cpLaki1xfX1/ex97eXpZbtil5EhkrLRUrVqQrV64Y7PlSSJW5k5MTZ0TTxbgmlp92dna0du1aQX6eOHFC1rOLqvdicxFT08WS2uG2srKiCRMmEJGwHdra2grG586dO1OFChW09gAiKjiipm2/IBepsX7u3LlkZWUluG4sT06pul+pUiWysbER3K+t4aQwbKHPMGvK0kK/vIvulISSWoLlnkEty5ja5KIoDLGzqXZ5VygUlJCQwHOD37ZtG3388ccm5cVRlspLV9LS0qhevXqct4KmFwMAk2mjhvZ+M9aZVUOjNsS6ubnR6NGj6cKFC4J7MjIyOIEsfSxy161bRw0bNuTaDVHxbtmmpJFgrLR89913NHz48FLf6JEq84iICHJ0dCQi3YxrYvnZtm1bqlKlCtWtW5e77/Tp0xQZGUnt2rXT7w/UoKzoYkmVybJly0TboVwPILn9grYUN9Y7OztTlSpVBN8zlienVD5/9NFHZGFhIctwUhRsoc8wa7QV4zEGpiQAVJbQhyVY7hnUsowhJxf6Nk4ZYmezcOQNzY9SqaTAwED6/fff9fIufVBWJoP6oH79+tSgQQPauHEjJSUl0cGDB7lP9+7dTbqNGsr7rTTPrGpiiCM6MTExtH79enr58qXkPbm5uZwYpj4Wuf7+/jwRSzXFuWWbkkaCMdLSoUMHcnZ2Jj8/P2rbti117NiR9zEUUmU+bNgwbkGvq3GtcH7ev3+f6taty40BSqWSLCwsqFWrVqI7wfrC1HSxpHRQBgwYQJaWloIysbS0JFtbW8nxWVsPILn9grYUN9YrFApavny54HvG8uSUqvtz5swhT09PvUU3Ygt9BsNImJIAUFlBX5ZgQ4eJMyX0ObkwtHHKkDubvr6+Jmv008TUJoOGxM7Ojrfzqkl5aqOF0feZVW3Q5YhOUWESXV1dZaVD10WunZ0dnTx5UnC9KLdsU9JIMFZaPvrooyI/hkTbMi+Jca2o/Lxy5Qq341uSYwty672p6WIVpYNStWpVQZmsW7eORo4cafKeR1JjvSl6chZV9/UV3UhBRAQGo4wzf/58re8dNWqUAVOiPXZ2dkhLS4OPjw/69OmDSpUq4euvv0Z6ejpCQ0Px/PlzYyfR5IiNjcXAgQPRqVMn2NjYiN6Tl5eHo0ePokmTJsU+Ly0tDefPn4ednR1q1aqFatWq6TvJRmfPnj3Izs5Gp06dcPXqVbRt2xZpaWlwd3fHpk2bEBMTo/WzKlSogD179iA8PBzr16/H1KlTcf78efz0009YunQpkpOT9Zbus2fPYtWqVdiwYQMAoEePHhgwYADCw8P19g5TRJ/lZeo0btwY8fHxeO+99yTvKQ9tFAByc3Oxfft2rFy5Env37kW9evUwYMAAdO/eHZmZmfjss89w9uxZXL582dhJFdC6dWtcvXoVAwYMgLe3NxQKBfe3u3fvwtXVFffv38ebN29434uPj+f9PykpCU2bNtUpLe3atcOdO3ewfPlyREZGAgDOnDmDwYMHo3Llyvjtt98E37GxsUGVKlXQr18/9O3bFz4+PjqlQRdMKS2lgT7KvCgMmZ9F1XsA6Nu3b7HPePToEVxdXQXfLQ1sbW2RmpoKX19f3vUNGzagf//+ePHiheR3e/XqBQcHB2zZsgXZ2dkIDg5GzZo14enpKbh3zpw5gmv//PMPkpKStOoX9MWkSZOwadMmrFq1Co0bNwYAHDp0CP3798cHH3yA7777ziDvlcLQdV8NW+gzzAI/Pz/e/zMzM5GTkwMXFxcAQFZWFlQqFby8vHD9+nUjpFBIYGAgZsyYgTZt2sDPzw8bN25ETEwMzp8/j9jYWDx48MDYSWSYKSWdXJS2ceq///7D0qVL8fXXX8PKygovX75EgwYNsGTJEoSFhcl+XnZ2Ng4dOoT09HS8fv2a9zdTMQCKYczJoCH5+eef8fnnnyMuLg61atWCtbU17++1a9c2UspKl5EjR2LDhg0gIvTu3RsDBw5EzZo1effcvXsXlSpVEkyKS4OnT5/iwIEDCA4ORnBwsODvjo6OOHLkiMAIt2zZMgwbNgweHh6oUKECr/4qFAqcPXuWd78+FmWZmZno27cvdu/ezdWnvLw8tGjRAqtXr4aXl5fgOw8ePMCaNWvw008/4dKlS4iJicGAAQPQoUMHKJVK2WnQBWOnJTMzE1euXAEABAUFiS7c9ImhDRti+dmvXz88efIEhw4dEl1oHjhwQKtnS9X7skLVqlWxcOFCtG/fnnfd2toaRITPP/9cskyaNm2KxYsXY9OmTfjiiy+gUCjw5s0bODs7IzAwEPb29gAK2nnh/JTbL5QEsbE+Ly8Pa9euxblz52BlZQUAePPmDfr06YMlS5aUelvXrPu3bt3C999/D3t7e4wbN67I74kZToqCLfQZZsf69euxePFirFixAkFBQQCAK1euYNCgQRgyZAh69uxp5BQWsHjxYowePRoODg6oVq0azp49CwsLCyxYsADbtm1DUlKSsZNokpTUEjxu3DhMnz7dIB1peaE0jFOG2tlMTk5G69atkZOTg+zsbLi5ueHBgwcmZwAsT1hYWPD+T0TcpI+IMHbsWMnvmlMb1benkq507doVjRs3xogRI/DixQuEh4fj5s2bICJs3LgRnTt35t1fv359LFiwAG+//TbverVq1TB8+HBMmjRJq/fqc5GblpaG1NRUAEBwcDACAwO1+p4peRKVZlqys7MxcuRIJCQkcOOqpaUl+vTpgwULFkClUun9nUDpGjbU+bls2TK8evUKNWrUQFRUlMD4M3fuXK2eJ1XvywpSO9x9+/ZFjRo18PjxY0GZKBQKncdnuf2CXIob63fv3m0SXmKadf/vv/9GdHQ0hg4disWLF0sa9cUMJ8VSYqd/BsNEKakYjzEwJQGgssDSpUvJ0tKSvL29KTw8nOrUqcN9IiIiivxuaYeJM0cMrQhtKDVeIqImTZrQoEGDKD8/n4vGkZ6eTo0bN+bOTTJKl5s3b/I+b7/9Np0/f577N2ujxkGufoxUmERHR8cSCwkaS5SQyDgaCcZOy+DBg8nf35927tzJld+OHTuoevXqNHToUL2+S4rSKPM7d+6QnZ0dWVlZ6ZyfRYUHffLkiV7TbQi00UHRLBNbW1uytbUlZ2fnIsdnAEWK9Do6Oho0GlZZHOsNWffZQp9hdpREjMcYmJIAUFmhatWq9PXXXxs7GeUaQxqnDKXGS0Tk7OzMCb85OzvT5cuXiYjo+PHjFBQUVLIEMxh6Ii0tjX788UeaPn06TZs2jfcpbeTGs5cKkwigREY5NSVZ5Obl5dHy5cupe/fuFBsbS02bNuV9pDBkXG+5GCMt7u7ulJSUJLh+4MAB8vDw0Ou7isIQho3C+WltbU3Tp0/XOT+LCg9qYWFR4vSWNsWJvqnLRKFQkI2NDVlYWPDKRFOk9+nTp1SlSpUiRXr79+9PP/zwg8F+j+ZYr1Qq6fTp00RE9OGHH5Krq6vO0UQMhVTdP378uE7Rjax09j1gMEyM2NhYDBkyRCDGM2zYsCJFn0qbli1blivRHX3w+PFjdOnSRe/PLe4MKqMAtXhMvXr1eNfbtGmjl+fv37+/2HusrKxK5L5sbW3NuYp7eXkhPT0dISEhcHZ2xu3bt2U/j6FfnJyccO7cOfj7+4v+3ZzbaHFnVg0lTiWFj48Pjh07Bjc3N+zevRsbN24EUND/2traCu7v2bMnrK2tsX79ehw5coRL/8uXL7F582Z89NFHohoMYroYYkd3Fi5cyHMN7tKli6Rr8OjRo7F69Wq0adMGNWvW1ErXorBGwqxZs3gaCfb29vjuu+9QqVKlYp+lK8ZKS05ODry9vQXXvby8kJOTo9d3FUbXMi8Ksfzcs2cPrl+/DpVKBV9f3xLnp2a9FxPjKysEBgYKjraIlcnSpUtFy+TPP//ElClTAAC///47bG1tkZWVhZ9++gkzZsxA586deYLZNWrUwP/+9z8cP35c635BDppjvaWlJW7evIm6devi+vXrePLkiahosLHKTiyfa9asie7du6Nz586YPHkyGjduDCrYmBc9OlUs+rNFMBimwf3796lVq1alHiNVLoYMJWau6MsSbOgwceaKIeLcF8ZQO5vNmjWjdevWERHRwIEDKSoqitauXUstWrSgqKgofSSdoQNqF0s15amNmpqnktwjOpphEn19fbX6+Pn5CZ6jj6M77u7utGPHDlm/15CeRHIxVlpiYmKoS5cu9OLFC+5aTk4OdenShWJjY/X6Lk0MeVyLSDw/O3ToQM7OzuTn50dt27alDh06UKNGjahjx47UsWNHrZ9dVHhQU2Xs2LH0/Plz7t9inzp16pCtra1omajH54kTJxIAmjZtGllZWdG4ceOISNoDSJd+QS5lZayXqvuaR6cWLVpEAHQKvc3E+BhmS0nFeIyBKQkAmRqaluDs7GzMmTMHbdq00ckSXJph4swJQwsnGVKN9/Tp03j27BmaNm2K+/fvo0+fPvjrr78QEBCAlStXsrZmZBwdHXH+/HluR788tdHivBmMwenTp3H79m00a9YMDg4OAIAdO3bAxcUFDRs25N2rTZhE9VSzqJ0zfYgSVqpUCQcPHjTp8d4UuXDhAlq2bIlXr15xfeH58+dhY2ODxMTEEkU50QZjCFH269evyL+vWrVKq+doU+9NjaZNm+KXX36Bi4uLZGi3c+fOoVKlSjh79iyvTDTHZ29vb+Tk5MDBwQEpKSmoWLEiLl68KFukV5t+QS7ajvXG9hKTqvua0Y169eqFN2/eYP369SWObsQW+gyGiaDvUGLmQuHQiVIoFAqtldNLO0ycOWII45Sh1XgZpsuwYcMwffp0eHh4AChfbXTAgAGoX78+hg4dauykAJAf37moMInbtm3Dli1b8M8//wAAAgICMGbMGAwcOFDv6QaA2bNn4/r161i4cKGsxYMx4nqbWlpycnKwbt06boMkJCQEPXv2hJ2dncHeWRoYKj/LW3hQqfG5JBGkVqxYgblz55ZavwDIjyZiLPQd3Yid0WeYHfn5+Vi9ejX279+vU4zU0sCQZ9PMhRs3bohe18USLPcMKkNIZGQkKlSoAHd3d3z99ddYuXIlFi9erJNxylAaDAzT54cffuD939zbaGmeWZWLXP2Ybt26AQD69+/PXVPH1QaAyZMno0GDBgCAY8eOYezYsUhPT8cXX3wheJaui7IjR44gKSkJu3btQlhYmCAvt23bJviOKWkkGCstM2fOhLe3NwYNGsS7vnLlSmRmZhrU+GpIw0ZR+ZmXl4eYmBgAQFBQEDw9PWU9W6re0/8PE5qfn69T2ksbzR1uS0tLQZncu3cPGRkZgu8NHz4cUVFRnAeQ+ny8v78/ZsyYIbg/Pj4ec+bMwciRI7XuF/SBppbAL7/8AiISaAmUNmJ1PzAwEN27d4eTkxOqVauG6OhoLv21atWS/Q62o88wO0aMGMGJ8VSsWFGwENQ2RqqhKSwSM3DgQJ7oDgDcvXsXlSpVEgx+5Rl9WIJLYoFmFGCoOPeAYXc2Hz58iPj4eMkJ5aNHj/T+ToYQzQVuURw+fBi//vqr2bZRQ3gq6Qu5R3Ru3bol+pzIyEhMnTpVYKjYsGEDRo4cKdiZ0sfRnZK4ZZuSJ5Gx0uLr64v169fjnXfe4V0/ceIEPvzwQ0mDu64Y8rgWIJ6f2dnZGDlyJBISErhxwNLSEn369MGCBQugUqm0erZUvdd8tykjtcOtNlB4enryyiQ9PR329vZIT0/nPUeuB5Cnpyfmz5+P7t27865L9QtykRrrHz9+DGdnZ2RlZZmEl1hRdf/FixeYOXOmVkenioMt9Blmh4eHBxISEtC6dWtjJ6VIjHE2rawjZQleuHAhxo4dK8sSLOcMKqMAQxinDKHBIEbr1q1x9epVDBgwQFQhuW/fviV+NkN7Ci9wMzMzkZOTAxcXFwBAVlYWVCoVvLy8sHnz5nLXRg1xZlUXdDmi4+LiglOnTiEgIIB3PS0tDVFRUcjKyuJdN9Yi15Q0EoyVFltbW6SkpAja5/Xr1xEaGoqXL18a5L2GLnOx/BwyZAj27duHhQsXcv3IkSNHMGrUKDRr1kzgXWSuSOmg+Pj4wMbGBv/9959W4/O4cePg4uKCMWPGaOUBJLdfkIvUWD9p0iR07twZs2bN0otLvK5I1X25hpNi0UUxkMEwRSpWrEhXrlwxdjIYBsDDw4PWr18vuL5+/Xpyd3fX+jkHDhzQZ7LKDYZQhC4tNV4HBwdOyZZhGqxbt44aNmzIU65OTU2lRo0a0aeffmrElJU+y5cvp7CwMC5STFhYGC1btszYySIiebHNHR0duegJI0aMEI1PPX78eBo+fHiR39WV+/fv0+HDh+nw4cN0//79Iu81dFxvORgrLTVq1KA1a9YIrickJOhFCV0KfZa5GGL56e7uTklJSYJ7Dxw4QB4eHiV6j6F/hyGwtbXloudoquU7ODiQnZ0dEWk3Pvv4+JCbm5vWEaTk9gtykRrr5UYTMTRSdUbf0Y3YGX2G2TF+/HjMmzdPthiPMTAlAaCyQG5uriCGOwDUrVsXeXl5Wj9H7hlURgGGiHNvCA0GMYKDg/HixQu9PIuhH/73v/9hy5YtCAoK4q4FBQVh7ty5qFevHjZu3Fgu2qixzqwWRUn1Y6iQk+iKFSuQmJiIt99+G0CBK3h6ejr69OmDcePGcffNmTMHXbp0QWJiok5Hd7R1yzYljQRTSMugQYMwZswY5ObmcufW9+/fj4kTJ2L8+PEGeScAvZR5YYrLz6dPnyIxMRF///03Lz+9vLyQk5NToncWrvdlASkdlPfeew979+4FIH98VnsADR8+HMOHD5f0AJLTL8hFaqyXqyVgaKTq/p07d7ijU9OmTdM5uhFz3WeYHR07dkRSUhLc3Ny0FuMxBoY+m2aOjBw5EtbW1oLOf8KECXjx4gUWLVqk1XMMHSbOnDG0ccpQarynTp3C5MmTER8fj5o1awr6BScnJ52ez5CPSqXCoUOHUL9+fd71kydPokmTJvjqq6/KRRs19JlVuehyREczTKI27qf//vsvFAoFRowYoZejO9q6ZZuSRoIppIWIMHnyZMyfPx+vX78GUODOP2nSJL1vOhj6uFZx+Xn37l1YWFjA09MTN2/eBFBwJrpv37549OgR9u3bJ/udhcODlgU0tYpUKhUmTpwIhUKBvXv3Ys+ePejRo4egTI4dO4YLFy4UOT4XF0FKW7d0hUJRIvFsqbH+zz//ROPGjY061sut+/qIbsQW+gyzQ18xUg2NKQkAlRXUOzU+Pj6ilmDNjlJbS7AhwsSZK4Y2TulTg6Ew//zzD3r06CFII5VRhWRzoF27drhz5w6WL1+OyMhIAMCZM2cwePBgVK5cGb/99hsA82+jhj6zKhdd9GMKh0ksDn0vcj08PLBlyxZOqVpNUlISunbtiszMzCK/r29PIl0wRlqeP3+OlJQU2NnZISAgQLL8dcFYhg11fl68eBEtW7bEq1evuD7k/PnzsLGxQWJiYokixsit96aCWqto7NixXD178eIFLCwsBGX/+PFjPH36FJMmTRKMz6NGjUJERIRBRHrlIjXWq42S06dPN5qXWEnqvq6ht9lCn8EwEqYkAFRWMJQlWNeOtLxgaOOUIXc2o6KiYGVlhdGjR4uK8THBy9InMzMTffv2xe7duzkjXV5eHlq0aIHVq1fDy8uLu9ec26i+PJXMiZIuclUqFc6cOYOQkBDe9UuXLiEqKgrZ2dmi3zNGXG8pTCktpYmhDBti+Tls2DAolUqkpqYCAEJCQtCzZ0/Y2dnp9d2mjDaib5plIjU+t2jRAnv37oWrq6tJRJCSGuuzsrKwd+9eHDlyxOS8xArXfX1GN2ILfYbZkpmZiStXrgAoWYxUQ2PIUGKM4jFkmDhzxdDGKUPubKpUKiQnJ/POgzNMg7S0NG7CHRwcjMDAQADlp40awlNJV4o7oqNtmERAnvu1rovc2NhYuLu7IyEhAba2tgCKd8s2pCeRXEwpLaWFIQ0bYvk5Z84cHD9+HBMnTuTl58qVK5GZmVmkIdtQ9d4Y2NjYSGoViZXJ9evXcf78ecH43KBBA5w/fx6PHz82iQhS2oz1puIlJpbPXl5e+Pvvv/UW3Ygt9Blmh75ipBqC0golxigaQ4SJKw8Y2jhlyJ3Nxo0bIz4+Hu+9956uyWSUAuWpjRr6zKpctDmiIydMorbu1/pY5F64cEG2W7YpaSSYUlpKA0MbNsTy09fXF/369cOCBQt4+XnixAl8+OGHkgJ0gLzwoIbWdtAVKa2i8+fPY968eYIymT17NiIjI3H8+HHec0zN80jbsd7YXmJSdf/bb79F+/btsWHDBr0YTthCn2F2mHKMVFMQ3WHodga1vFGaxilD7mz+/PPP+PzzzxEXFyea9tq1a+uUdoZ88vPzsXr1auzfv1+wc5ycnIzFixezNmoE5B7RWb9+PRYvXowVK1Zwu2hXrlzBoEGDMGTIEPTs2VOr5+hrkZuTk4N169Zp7ZZtShoJppSW0sDQhg2x/LS1tcWOHTvQuXNnXn5ev34doaGhePnypVbP1le9NwU0d7gfPXqE5s2b45tvvuHtcKtd9ENDQwXjc/v27ZGRkYEXL16AiNCyZUvue6UdQaqosT43Nxc3btwwCS+x0jLqsYU+w+zQVYzHGJiSABCDoUlpGqcMubOpDqVT+DlMjM94jBgxAqtXr0abNm1QsWJFQf83d+5cI6WsfCP3iE716tWxZcsWRERE8K6fOXMGH3zwQZE7pJroY5E7c+ZMeHt7o3///rzrRbllm5JGgimlpTQwtGFDLD8DAgIQEBAAPz8/Xn6uWbMGU6dO1Xoc01e9NxXUO9zTpk2DnZ0dXr9+zdvhfuutt3DmzBk0atRI8L20tDRYW1tDqVRCoVCgRo0aAIwTQUpqrFcbkt3c3EzCS6youl+3bl3Mnj1bL9GN2EKfYXaUVIzHGJRX0R1TwNBh4sydsmacunXrVpF/r1atWimlhKHGw8MDCQkJaN26tejfWRs1DnKP6BQVJjE6Olrr2OT6WOT6+vpi/fr1eOedd3jXi3LLNiWNBFNKS2lgaMOGWH7+8ccfuH//Ppo2bcoZstPT03H27FmMHz8en3zyiVbP1le9NyZiOih2dnYICwvD+PHjeTvcUmViahGkpMb6Hj16oFu3bhgyZIhJeIlJ1f3mzZtj37598PLy0kt0I7bQZ5gdJRHjMQblUXTHVDB0mDhzhhmnGPqiUqVKOHjwICe+pwlro6WLLkd0tA2TWBz6WOTa2toiJSVF4IlUlFu2KWkkmFJaSgNDGzbE8pOIcP36ddy5c4czIFpYWGDq1KmyDIj6qvfGQkoHRbNMwsPDsX79etSsWVOyTFgEqZIhVfcvXbqEt99+m7sG6GbUYwt9htlREjEeY1DeRHdMCVOzQJcVzMU4xSYmpsHs2bNx/fp1LFy4UOAZwtpo6aLLER05YRKLQh+L3ICAAEydOhW9evXiXZfrls0oHYxp2Hj+/DlSUlJgZ2eHgIAAyV1eKfRV742FlFaRZpkQEZ48ecKJDWqiLhNTjiBVeKw3JS8xqbp/+PBhzrMC0L3us4U+wyyRK8ZjDMqb6I4pwRZ6JcNcjFOOjo44f/48K38j07FjRyQlJcHNzQ1hYWG8naLff/8dV65cYWVkZOQc0ZEKk1iazJo1C7NmzcK3336LmJgYAMD+/fsxceJEWW7ZDIa2mEK9L23KSgQpzbG+rHiJ6dtwwhb6DLOjJGI8xqC8ie6YEqZsgTZlzMU4xRb6pkG/fv0k/3b06FGMGzeOtVEjUVaP6BARJk+ejPnz5+P169cACtz5J02axHQdGIxClHSHu6xEkNIc603ZS8yQhhO20GeYHSUR4zEG5U10x9iUFQu0KWMuxqlhw4Zh+vTp8PDwMHZSGBqwNmoayD2iU1SYRABGOUuuq1s2g1Ecpljv5WCIHW5TE+nVHOtN2ZPTkIYTttBnmB0lEeMxBuVNdMfYlBULtCnDjFMMQ5CZmYkrV66ga9eusLa2Fg2PpAlro4ZF7hEdFiaRUR4p6/VenzvcZcEDqCx6curDcGKlr8QwGKaCj48Pjh49KljYHT16FJUqVTJSqoQkJSUZOwnlCilPDlOzQJsyFy9e5NSFr127BqAgRJqHhwcuXrzI3Wcqeam5Q1wcbIe49MnOzuaMR+rdMEtLS/Tp0wcLFiyASqUCwNpoaZObm4t69eoJrtetWxd5eXmC6xs3bsTmzZslwyQyGOZIWa/3jx8/RpcuXXR+jpQH0NixY5Genl4qIr1SY/2hQ4e4f79+/RoTJkzA8ePHTd5LTJ+GE7ajzzA7mBgPQxvKggWaoRuFjX2ZmZnIycnhFISzsrKgUqng5eXFdoiNwJAhQ7Bv3z4sXLgQDRs2BAAcOXIEo0aNQrNmzVCvXj3WRo2A3CM6RYVJZDDMlbJe7/W1w20KIr1SY73aOPzmzRsoFApYWlqiSpUqgu+bkpeYvqMbsYU+w+xgYjyM4jCXMHEM7Vm/fj0WL16MFStWICgoCABw5coVDBo0CEOGDEHPnj2NnMLyh4eHB7Zs2YLo6Gje9aSkJLRp0wYWFhasjRoBuUd0igqTyGCYK2Wx3htCB8XURHq1GetN2UtM34YTttBnmC1MjIchhSlYoBmlS/Xq1bFlyxZERETwrp85cwYffPCByYh0lidUKhXOnDmDkJAQ3vVLly6hZs2aWL9+PWujRkCufkxRYRIBYNu2bYZIJoNhVMpivTeEVpGpifQWNda3aNECFSpUMGkvMX0bTtgZfYbZ4uDggPr16xs7GQwTRO4ZVEbZJyMjQ7Rs8/Pzce/ePSOkiNGgQQNMnToVCQkJsLW1BQC8ePEC06ZNg5WVFWujRkKufoyLiws6duxooNQwGKZJWaz3htIqWrFiBRITE0U9gMaNG8fdVxoivVJj/eLFi/Hw4UMMGjTIaFoC2tC7d2/88MMPgrxaunRpiTwP2Y4+g8Eod5iaBZpheNq1a4c7d+5g+fLlnKDgmTNnMHjwYFSuXBm//fabkVNY/rhw4QJatmyJV69eITw8HABw/vx52NjYIDo6Gt7e3qyNMhgMhoHQh1aRqUWQkhrr3377bdSuXRtnzpzh3W9qXmL6jm7EFvoMBqPcwcLElT8yMzPRt29f7N69myvfvLw8tGjRAqtXr4aXl5eRU1g+ycnJwbp165CamgoACAkJQc+ePTFx4kTWRssY6jCJABAUFARPT08jp4jBMDxltd6bq1aR1FhvYWGBw4cPc+OJGmNpCUihb8MJW+gzGIxyh6lZoBmlR1paGreoDA4OLrOKyebAzJkz4e3tjf79+/Our1y5El9++SWqVq1a7DNYGzU+2oZJZDDMibJe781dq6jwWL9gwYJy6cnJFvoMBoPBYDBKHV9fX6xfvx7vvPMO7/qJEyfw4YcfMoHEMkJxYRJ/+OEHI6eQwdA/Zb3em5pavqEpr56cbKHPYDAYDLMnPz8fq1evxv79+3H//n1uB0YN2xUufWxtbZGSkiJQgr5+/TpCQ0Px8uVLI6WMIYeiwiR27doVmZmZxkkYg2FAynq9N1etIqmxPjk5GQBQp06dIr9vbl5iTHWfwWAwGGbP6NGjsXr1arRp0wY1a9Y0yfi55Q0fHx8cPXpUsNA/evQoKlWqZKRUMeSSk5MDb29vwXUvLy/k5OQYIUUMhuExh3pvSmr5+kJqrFcLvs6dO9eYySt12I4+g8FgMMweDw8PJCQkoHXr1sZOCuP/M2vWLMyaNQvffvstYmJiAAD79+/HxIkTMX78eHzyySdGTiFDG2JjY+Hu7i4Ik9i3b188evQI+/btM3IKGQz9U9brvblqFbGxng/b0WcwGAyG2aNUKlGjRg1jJ4OhQVxcHB4+fIjhw4fj9evXAArc+SdNmsQW+WWI77//Hi1btkSVKlUEYRITExONnDoGwzCU9XqflJRk7CQYBDbW82E7+gwGg8Ewe2bPno3r169j4cKFzG3fxHj+/DlSUlJgZ2eHgIAA2NjYGDtJDJlIhUm0s7MzcsoYDMPB6r3pwcZ6Pmyhz2AwGAyzp2PHjkhKSoKbmxvCwsJ4CrsAsG3bNiOljMEo2xQVJjEzMxOTJk0yUsoYDMPB6r1pwsZ6PhbGTgCDwWAwGIbGxcUFHTt2RJMmTeDh4QFnZ2feh8FglIwff/wRwcHBguthYWFYsmSJEVLEYBgeVu9NEzbW82E7+gwGg8FgMBiMEsHCJDLKI6zeM8oCTIyPwWAwGOWGzMxMXLlyBQAQFBQET09PI6eIwSjbsDCJjPIIq/emDRvrC2ALfQaDwWCYPdnZ2Rg5ciQSEhLw5s0bAIClpSX69OmDBQsWQKVSGTmFDEbZZNCgQRgzZgxyc3NFwyQyGOYIq/emCRvr+TDXfQaDwWCYPUOGDMG+ffuwcOFCNGzYEABw5MgRjBo1Cs2aNcMPP/xg5BQyGGUTIsLkyZMxf/58QZjE+Ph4I6eOwTAMrN6bJmys58MW+gwGg8Ewezw8PLBlyxZER0fzriclJaFr167IzMw0TsIYDDOBhUlklEdYvTct2FjPh7nuMxgMBsPsycnJgbe3t+C6l5cXcnJyjJAiBsO8cHBwQP369Y2dDAajVGH13rRgYz0ftqPPYDAYDLMnNjYW7u7uSEhIgK2tLQDgxYsX6Nu3Lx49eoR9+/YZOYUMBoPBYDB0gY31fNhCn8FgMBhmz4ULF9CyZUu8evUK4eHhAIDz58/DxsYGiYmJCAsLM3IKGQwGg8Fg6AIb6/mwhT6DwWAwygU5OTlYt24dUlNTAQAhISHo2bMn7OzsjJwyBoPBYDAY+oCN9f8HW+gzGAwGw+yZOXMmvL290b9/f971lStXIjMzE5MmTTJSyhgMBoPBYOgDNtbzsTB2AhgMBoPBMDQ//vgjgoODBdfDwsKwZMkSI6SIwWAwGAyGPmFjPR+20GcwGAyG2XP37l1UrFhRcN3T0xMZGRlGSBGDwWAwGAx9wsZ6Pmyhz2AwGAyzx8fHB0ePHhVcP3r0KCpVqmSEFDEYDAaDwdAnbKznY2XsBDAYDAaDYWgGDRqEMWPGIDc3FzExMQCA/fv3Y+LEiRg/fryRU8dgMBgMBkNX2FjPh4nxMRgMBsPsISJMnjwZ8+fPx+vXrwEAtra2mDRpEuLj442cOgaDwWAwGLrCxno+bKHPYDAYjHLD8+fPkZKSAjs7OwQEBMDGxsbYSWIwGAwGg6FH2FhfAFvoMxgMBoPBYDAYDAaDYUYwMT4Gg8FgMBgMBoPBYDDMCLbQZzAYDAaDwWAwGAwGw4xgC30Gg8FgMBgMBoPBYDDMCLbQZzAYDAaDwWAwGAwGw4xgC30Gg8FgMBhaEx0djTFjxhg7GQwGg8FgMIqALfQZDAaDwWAwGAwGg8EwI9hCn8FgMBgMhlZ89NFHOHToEObNmweFQgGFQoFr165hwIAB8PPzg52dHYKCgjBv3jze9/Ly8jBq1Ci4uLjA3d0dkyZNQt++fdGhQwfuni1btqBWrVqws7ODu7s73nvvPWRnZ5fyL2QwGAwGwzxgC30Gg8FgMBhaMW/ePDRo0ACDBg1CRkYGMjIyUKVKFVSpUgU///wzLl++jPj4eHz66afYvHkz971vvvkG69atw6pVq3D06FE8ffoUv/76K/f3jIwMdO/eHf3790dKSgoOHjyITp06gYiM8CsZDAaDwSj7KIiNogwGg8FgMLQkOjoaderUwffffy95z4gRI3D37l1s2bIFAFChQgVMmDABEyZMAADk5+fD398fERER+PXXX3H27FnUrVsXN2/eRLVq1UrjZzAYDAaDYdawHX0Gg8FgMBg6sWjRItStWxeenp5wcHDA0qVLkZ6eDgB48uQJ7t27h6ioKO5+S0tL1K1bl/t/eHg4YmNjUatWLXTp0gXLli3D48ePS/13MBgMBoNhLrCFPoPBYDAYjBKzceNGTJgwAQMGDEBiYiLOnTuHfv364fXr11o/w9LSEnv37sWuXbsQGhqKBQsWICgoCDdu3DBgyhkMBoPBMF/YQp/BYDAYDIbWKJVK5Ofnc/8/evQo3nnnHQwfPhwRERGoUaMGrl27xv3d2dkZ3t7eOHXqFHctPz8fZ8+e5T1XoVCgYcOGmDZtGpKTk6FUKvHLL78Y/gcxGAwGg2GGWBk7AQwGg8FgMMoOvr6+OHHiBG7evAkHBwcEBAQgISEBe/bsgZ+fH9asWYNTp07Bz8+P+87IkSMxc+ZM1KhRA8HBwViwYAEeP34MhUIBADhx4gT279+P5s2bw8vLCydOnEBmZiZCQkKM9TMZDAaDwSjTsIU+g8FgMBgMrZkwYQL69u2L0NBQvHjxAqmpqUhOTka3bt2gUCjQvXt3DB8+HLt27eK+M2nSJNy9exd9+vSBpaUlBg8ejBYtWsDS0hIA4OTkhD///BPff/89nj59imrVqmH27Nlo1aqVsX4mg8FgMBhlGqa6z2AwGAwGo1R58+YNQkJC0LVrV0yfPt3YyWEwGAwGw+xgO/oMBoPBYDAMyq1bt5CYmIgmTZrg1atXWLhwIW7cuIEePXoYO2kMBoPBYJglTIyPwWAwGAyGQbGwsMDq1atRv359NGzYEBcuXMC+ffvYGXwGg8FgMAwEc91nMBgMBoPBYDAYDAbDjGA7+gwGg8FgMBgMBoPBYJgRbKHPYDAYDAaDwWAwGAyGGcEW+gwGg8FgMBgMBoPBYJgRbKHPYDAYDAaDwWAwGAyGGcEW+gwGg8FgMBgMBoPBYJgRbKHPYDAYDAaDwWAwGAyGGcEW+gwGg8FgMBgMBoPBYJgRbKHPYDAYDAaDwWAwGAyGGcEW+gwGg8FgMBgMBoPBYJgR/w8Z0CeeKL/luQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "### какой никакой EDA\n", "import json\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from ast import literal_eval\n", "\n", "with open('data/combined.json', 'r') as f:\n", " data = json.load(f)\n", "\n", "df = pd.DataFrame(data)\n", "\n", "for col in ['author', 'tag', 'link']:\n", " df[col] = df[col].apply(literal_eval)\n", "\n", "print(\"Общая статистика:\")\n", "print(f\"Всего статей: {len(df)}\")\n", "print(f\"Период публикаций: {df['year'].min()}-{df['year'].max()}\")\n", "print(\"\\nПример данных:\")\n", "print(df.head(3))\n", "\n", "# Анализ временных меток\n", "plt.figure(figsize=(12, 6))\n", "sns.countplot(x='year', data=df)\n", "plt.title('Распределение статей по годам')\n", "plt.xticks(rotation=45)\n", "plt.show()\n", "\n", "# Анализ тегов\n", "df['tags'] = df['tag'].apply(lambda x: [item['term'] for item in x])\n", "tag_counts = pd.Series([tag for sublist in df['tags'] for tag in sublist]).value_counts()\n", "\n", "plt.figure(figsize=(12, 6))\n", "tag_counts.head(40).plot(kind='bar')\n", "plt.title('Топ-40 самых популярных тегов')\n", "plt.xlabel('Тег')\n", "plt.ylabel('Количество статей')\n", "plt.xticks(rotation=45)\n", "plt.show()\n", "\n", "# Анализ текстовых полей\n", "df['summary_length'] = df['summary'].apply(len)\n", "df['title_length'] = df['title'].apply(len)\n", "\n", "plt.figure(figsize=(12, 6))\n", "sns.histplot(df['summary_length'], bins=50)\n", "plt.title('Распределение длины аннотаций')\n", "plt.xlabel('Длина аннотации')\n", "plt.ylabel('Количество статей')\n", "plt.show()\n", "\n", "plt.figure(figsize=(12, 6))\n", "sns.histplot(df['title_length'], bins=50)\n", "plt.title('Распределение длины заголовков')\n", "plt.xlabel('Длина заголовка')\n", "plt.ylabel('Количество статей')\n", "plt.show()\n", "\n", "# Анализ пропущенных данных\n", "missing_data = df.isnull().sum()\n", "print(\"\\nПропущенные данные:\")\n", "print(missing_data[missing_data > 0])\n", "\n", "# Анализ связи тегов с другими параметрами\n", "plt.figure(figsize=(12, 6))\n", "sns.boxplot(x=df['tags'].apply(lambda x: x[0]), y=df['summary_length'])\n", "plt.title('Длина аннотаций по основным тегам')\n", "plt.xticks(rotation=90)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: scikit-multilearn in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (0.2.0)\n" ] } ], "source": [ "!pip install scikit-multilearn" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import MultiLabelBinarizer\n", "from skmultilearn.model_selection import iterative_train_test_split\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "MIN_SAMPLES = 750\n", "OTHER_CLASS = 'Other'" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "df = df[['title', 'summary', 'tags']].copy()\n", "\n", "def process_tags(tags):\n", " processed = []\n", " for tag in tags:\n", " if tag in rare_tags:\n", " processed.append(OTHER_CLASS)\n", " else:\n", " processed.append(tag)\n", " seen = set()\n", " unique_tags = [x for x in processed if not (x in seen or seen.add(x))]\n", " \n", " return unique_tags" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "\n", "all_tags = [tag for sublist in df['tags'] for tag in sublist]\n", "tag_counts = pd.Series(all_tags).value_counts()\n", "rare_tags = tag_counts[tag_counts < MIN_SAMPLES].index.tolist()\n", "\n", "df['processed_tags'] = df['tags'].apply(process_tags)\n", "\n", "# теги с <2 наблюдениями\n", "new_tag_counts = pd.Series([tag for sublist in df['processed_tags'] for tag in sublist]).value_counts()\n", "problematic_tags = new_tag_counts[new_tag_counts < 2].index.tolist()\n", "if problematic_tags:\n", " print(f\"Удаляем {len(problematic_tags)} проблемных тегов:\")\n", " df = df[~df['processed_tags'].apply(lambda x: any(tag in problematic_tags for tag in x))]\n", "\n", "df['stratify_column'] = df['processed_tags'].apply(\n", " lambda x: x[0] if x and x[0] != OTHER_CLASS else OTHER_CLASS\n", ")\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+sAAAJ6CAYAAABQTdMbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbpFJREFUeJzt3XlYFXXj/vH7gCIugKKCG4r7rmmmYWlWJhmVS4t77mZluW8tZKvlk5o+aVruPZpmm6XlErmU+4amuS9hKWqakliIML8//HG+HgGFAuYz+H5d17kuz8xwvMHjYe75zHzGZVmWJQAAAAAAYAwvuwMAAAAAAABPlHUAAAAAAAxDWQcAAAAAwDCUdQAAAAAADENZBwAAAADAMJR1AAAAAAAMQ1kHAAAAAMAwlHUAAAAAAAyTx+4AdkpOTtbx48fl5+cnl8tldxwAAAAAQC5nWZb+/PNPlSpVSl5e6Y+f39Rl/fjx4woJCbE7BgAAAADgJnPs2DGVKVMm3fU3dVn38/OTdOWH5O/vb3MaAAAAAEBuFxcXp5CQEHcfTc9NXdZTTn339/enrAMAAAAAcsyNLsVmgjkAAAAAAAxDWQcAAAAAwDCUdQAAAAAADENZBwAAAADAMJR1AAAAAAAMQ1kHAAAAAMAwlHUAAAAAAAxDWQcAAAAAwDCUdQAAAAAADENZBwAAAADAMJR1AAAAAAAMQ1kHAAAAAMAwlHUAAAAAAAxDWQcAAAAAwDCUdQAAAAAADENZBwAAAADAMJR1AAAAAAAMQ1kHAAAAAMAwlHUAAAAAAAyTx+4AThI6Ykm2vfbRtyKy7bUBAAAAAM7CyDoAAAAAAIahrAMAAAAAYBjKOgAAAAAAhqGsAwAAAABgGMo6AAAAAACGoawDAAAAAGAYyjoAAAAAAIahrAMAAAAAYBjKOgAAAAAAhqGsAwAAAABgGMo6AAAAAACGoawDAAAAAGAYyjoAAAAAAIahrAMAAAAAYBjKOgAAAAAAhqGsAwAAAABgGMo6AAAAAACGoawDAAAAAGAYyjoAAAAAAIahrAMAAAAAYBjKOgAAAAAAhqGsAwAAAABgGMo6AAAAAACGoawDAAAAAGAYyjoAAAAAAIahrAMAAAAAYBjKOgAAAAAAhqGsAwAAAABgGMo6AAAAAACGoawDAAAAAGAYyjoAAAAAAIahrAMAAAAAYBjKOgAAAAAAhqGsAwAAAABgGMo6AAAAAACGoawDAAAAAGAYyjoAAAAAAIahrAMAAAAAYBjKOgAAAAAAhqGsAwAAAABgGMo6AAAAAACGoawDAAAAAGAYyjoAAAAAAIahrAMAAAAAYBjKOgAAAAAAhqGsAwAAAABgGMo6AAAAAACGoawDAAAAAGAYyjoAAAAAAIahrAMAAAAAYBjKOgAAAAAAhqGsAwAAAABgGMo6AAAAAACGoawDAAAAAGAYyjoAAAAAAIahrAMAAAAAYJhMlfXRo0frtttuk5+fn4KCgtS6dWvt27fPY5u///5bzzzzjIoWLapChQrpkUce0cmTJz22iYmJUUREhAoUKKCgoCANHTpUly9f9thm1apVql+/vvLly6dKlSpp1qxZqfJMmjRJoaGh8vX1VaNGjbRp06bMfDsAAAAAABgpU2V99erVeuaZZ7RhwwatWLFCiYmJatGiheLj493bDBw4UF9//bUWLlyo1atX6/jx42rbtq17fVJSkiIiInTp0iWtW7dOs2fP1qxZsxQZGene5siRI4qIiNDdd9+t6OhoDRgwQL169dKyZcvc2yxYsECDBg3Syy+/rG3btqlu3boKDw/XqVOn/s3PAwAAAAAA27ksy7L+6RefPn1aQUFBWr16tZo2barz58+rePHimjdvnh599FFJ0t69e1W9enWtX79et99+u7799ls9+OCDOn78uIKDgyVJU6ZM0fDhw3X69Gn5+Pho+PDhWrJkiXbt2uX+u9q3b69z585p6dKlkqRGjRrptttu03vvvSdJSk5OVkhIiJ599lmNGDEiQ/nj4uIUEBCg8+fPy9/f/4bbh45YkqmfT2YcfSsi214bAAAAAGCGjPbQf3XN+vnz5yVJgYGBkqStW7cqMTFRzZs3d29TrVo1lS1bVuvXr5ckrV+/XrVr13YXdUkKDw9XXFycdu/e7d7m6tdI2SblNS5duqStW7d6bOPl5aXmzZu7twEAAAAAwKny/NMvTE5O1oABA3THHXeoVq1akqTY2Fj5+PiocOHCHtsGBwcrNjbWvc3VRT1lfcq6620TFxenv/76S3/88YeSkpLS3Gbv3r3pZk5ISFBCQoL7eVxcXCa+YwAAAAAAcsY/Hll/5plntGvXLs2fPz8r82Sr0aNHKyAgwP0ICQmxOxIAAAAAAKn8o7Ler18/LV68WCtXrlSZMmXcy0uUKKFLly7p3LlzHtufPHlSJUqUcG9z7ezwKc9vtI2/v7/y58+vYsWKydvbO81tUl4jLSNHjtT58+fdj2PHjmXuGwcAAAAAIAdkqqxblqV+/frpiy++0Pfff6/y5ct7rL/11luVN29eRUVFuZft27dPMTExCgsLkySFhYXpp59+8pi1fcWKFfL391eNGjXc21z9GinbpLyGj4+Pbr31Vo9tkpOTFRUV5d4mLfny5ZO/v7/HAwAAAAAA02TqmvVnnnlG8+bN06JFi+Tn5+e+xjwgIED58+dXQECAevbsqUGDBikwMFD+/v569tlnFRYWpttvv12S1KJFC9WoUUNdunTRmDFjFBsbqxdffFHPPPOM8uXLJ0nq27ev3nvvPQ0bNkw9evTQ999/r08++URLlvzfbOyDBg1S165d1aBBAzVs2FDvvvuu4uPj1b1796z62QAAAAAAYItMlfX3339fktSsWTOP5TNnzlS3bt0kSePHj5eXl5ceeeQRJSQkKDw8XJMnT3Zv6+3trcWLF+upp55SWFiYChYsqK5du+rVV191b1O+fHktWbJEAwcO1IQJE1SmTBlNmzZN4eHh7m3atWun06dPKzIyUrGxsbrlllu0dOnSVJPOAQAAAADgNP/qPutOx33WAQAAAAA5KUfusw4AAAAAALIeZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwTB67AyBnhI5Ykm2vffStiGx7bQAAAAC4GTGyDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGCbTZX3NmjV66KGHVKpUKblcLn355Zce67t16yaXy+XxuP/++z22OXv2rDp16iR/f38VLlxYPXv21IULFzy22blzp5o0aSJfX1+FhIRozJgxqbIsXLhQ1apVk6+vr2rXrq1vvvkms98OAAAAAADGyXRZj4+PV926dTVp0qR0t7n//vt14sQJ9+Pjjz/2WN+pUyft3r1bK1as0OLFi7VmzRr16dPHvT4uLk4tWrRQuXLltHXrVv3nP//RqFGj9MEHH7i3WbdunTp06KCePXtq+/btat26tVq3bq1du3Zl9lsCAAAAAMAoeTL7BS1btlTLli2vu02+fPlUokSJNNft2bNHS5cu1ebNm9WgQQNJ0n//+1898MADeuedd1SqVCnNnTtXly5d0owZM+Tj46OaNWsqOjpa48aNc5f6CRMm6P7779fQoUMlSa+99ppWrFih9957T1OmTMnstwUAAAAAgDGy5Zr1VatWKSgoSFWrVtVTTz2lM2fOuNetX79ehQsXdhd1SWrevLm8vLy0ceNG9zZNmzaVj4+Pe5vw8HDt27dPf/zxh3ub5s2be/y94eHhWr9+fbq5EhISFBcX5/EAAAAAAMA0WV7W77//fs2ZM0dRUVF6++23tXr1arVs2VJJSUmSpNjYWAUFBXl8TZ48eRQYGKjY2Fj3NsHBwR7bpDy/0TYp69MyevRoBQQEuB8hISH/7psFAAAAACAbZPo0+Btp3769+8+1a9dWnTp1VLFiRa1atUr33ntvVv91mTJy5EgNGjTI/TwuLo7CDgAAAAAwTrbfuq1ChQoqVqyYDh48KEkqUaKETp065bHN5cuXdfbsWfd17iVKlNDJkyc9tkl5fqNt0rtWXrpyLb2/v7/HAwAAAAAA02R7Wf/111915swZlSxZUpIUFhamc+fOaevWre5tvv/+eyUnJ6tRo0bubdasWaPExET3NitWrFDVqlVVpEgR9zZRUVEef9eKFSsUFhaW3d8SAAAAAADZKtNl/cKFC4qOjlZ0dLQk6ciRI4qOjlZMTIwuXLigoUOHasOGDTp69KiioqLUqlUrVapUSeHh4ZKk6tWr6/7771fv3r21adMmrV27Vv369VP79u1VqlQpSVLHjh3l4+Ojnj17avfu3VqwYIEmTJjgcQp7//79tXTpUo0dO1Z79+7VqFGjtGXLFvXr1y8LfiwAAAAAANgn02V9y5YtqlevnurVqydJGjRokOrVq6fIyEh5e3tr586devjhh1WlShX17NlTt956q3744Qfly5fP/Rpz585VtWrVdO+99+qBBx7QnXfe6XEP9YCAAC1fvlxHjhzRrbfeqsGDBysyMtLjXuyNGzfWvHnz9MEHH6hu3br69NNP9eWXX6pWrVr/5ucBAAAAAIDtXJZlWXaHsEtcXJwCAgJ0/vz5DF2/HjpiSbZlOfpWRLa9tuTs7AAAAACQW2S0h2b7NesAAAAAACBzKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGHy2B0AuJ7QEUuy7bWPvhWRba8NAAAAAP8GI+sAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABgm02V9zZo1euihh1SqVCm5XC59+eWXHusty1JkZKRKliyp/Pnzq3nz5jpw4IDHNmfPnlWnTp3k7++vwoULq2fPnrpw4YLHNjt37lSTJk3k6+urkJAQjRkzJlWWhQsXqlq1avL19VXt2rX1zTffZPbbAQAAAADAOJku6/Hx8apbt64mTZqU5voxY8Zo4sSJmjJlijZu3KiCBQsqPDxcf//9t3ubTp06affu3VqxYoUWL16sNWvWqE+fPu71cXFxatGihcqVK6etW7fqP//5j0aNGqUPPvjAvc26devUoUMH9ezZU9u3b1fr1q3VunVr7dq1K7PfEgAAAAAARnFZlmX94y92ufTFF1+odevWkq6MqpcqVUqDBw/WkCFDJEnnz59XcHCwZs2apfbt22vPnj2qUaOGNm/erAYNGkiSli5dqgceeEC//vqrSpUqpffff18vvPCCYmNj5ePjI0kaMWKEvvzyS+3du1eS1K5dO8XHx2vx4sXuPLfffrtuueUWTZkyJUP54+LiFBAQoPPnz8vf3/+G24eOWJLhn01mHX0rItteW3JudqfmBgAAAIC0ZLSHZuk160eOHFFsbKyaN2/uXhYQEKBGjRpp/fr1kqT169ercOHC7qIuSc2bN5eXl5c2btzo3qZp06buoi5J4eHh2rdvn/744w/3Nlf/PSnbpPw9AAAAAAA4VZ6sfLHY2FhJUnBwsMfy4OBg97rY2FgFBQV5hsiTR4GBgR7blC9fPtVrpKwrUqSIYmNjr/v3pCUhIUEJCQnu53FxcZn59gAAAAAAyBE31Wzwo0ePVkBAgPsREhJidyQAAAAAAFLJ0rJeokQJSdLJkyc9lp88edK9rkSJEjp16pTH+suXL+vs2bMe26T1Glf/Heltk7I+LSNHjtT58+fdj2PHjmX2WwQAAAAAINtlaVkvX768SpQooaioKPeyuLg4bdy4UWFhYZKksLAwnTt3Tlu3bnVv8/333ys5OVmNGjVyb7NmzRolJia6t1mxYoWqVq2qIkWKuLe5+u9J2Sbl70lLvnz55O/v7/EAAAAAAMA0mS7rFy5cUHR0tKKjoyVdmVQuOjpaMTExcrlcGjBggF5//XV99dVX+umnn/TEE0+oVKlS7hnjq1evrvvvv1+9e/fWpk2btHbtWvXr10/t27dXqVKlJEkdO3aUj4+Pevbsqd27d2vBggWaMGGCBg0a5M7Rv39/LV26VGPHjtXevXs1atQobdmyRf369fv3PxUAAAAAAGyU6QnmtmzZorvvvtv9PKVAd+3aVbNmzdKwYcMUHx+vPn366Ny5c7rzzju1dOlS+fr6ur9m7ty56tevn+699155eXnpkUce0cSJE93rAwICtHz5cj3zzDO69dZbVaxYMUVGRnrci71x48aaN2+eXnzxRT3//POqXLmyvvzyS9WqVesf/SAAAAAAADDFv7rPutNxn/WswX3WAQAAACBjbLnPOgAAAAAA+Pco6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYJo/dAYDcKnTEkmx77aNvRWTbawMAAACwHyPrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYJo/dAQCYJXTEkmx77aNvRWTbawMAAAC5CSPrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABgmj90BACCrhI5Ykm2vffStiGx7bQAAAOBajKwDAAAAAGAYyjoAAAAAAIahrAMAAAAAYBiuWQcAm3GtPQAAAK7FyDoAAAAAAIahrAMAAAAAYBjKOgAAAAAAhqGsAwAAAABgGMo6AAAAAACGoawDAAAAAGAYbt0GAPjHuO0cAABA9mBkHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwTJaX9VGjRsnlcnk8qlWr5l7/999/65lnnlHRokVVqFAhPfLIIzp58qTHa8TExCgiIkIFChRQUFCQhg4dqsuXL3tss2rVKtWvX1/58uVTpUqVNGvWrKz+VgAAAAAAsEW2jKzXrFlTJ06ccD9+/PFH97qBAwfq66+/1sKFC7V69WodP35cbdu2da9PSkpSRESELl26pHXr1mn27NmaNWuWIiMj3dscOXJEERERuvvuuxUdHa0BAwaoV69eWrZsWXZ8OwAAAAAA5Kg82fKiefKoRIkSqZafP39e06dP17x583TPPfdIkmbOnKnq1atrw4YNuv3227V8+XL9/PPP+u677xQcHKxbbrlFr732moYPH65Ro0bJx8dHU6ZMUfny5TV27FhJUvXq1fXjjz9q/PjxCg8Pz45vCQAAAACAHJMtI+sHDhxQqVKlVKFCBXXq1EkxMTGSpK1btyoxMVHNmzd3b1utWjWVLVtW69evlyStX79etWvXVnBwsHub8PBwxcXFaffu3e5trn6NlG1SXiM9CQkJiouL83gAAAAAAGCaLC/rjRo10qxZs7R06VK9//77OnLkiJo0aaI///xTsbGx8vHxUeHChT2+Jjg4WLGxsZKk2NhYj6Kesj5l3fW2iYuL019//ZVuttGjRysgIMD9CAkJ+bffLgAAAAAAWS7LT4Nv2bKl+8916tRRo0aNVK5cOX3yySfKnz9/Vv91mTJy5EgNGjTI/TwuLo7CDgAAAAAwTrbfuq1w4cKqUqWKDh48qBIlSujSpUs6d+6cxzYnT550X+NeokSJVLPDpzy/0Tb+/v7XPSCQL18++fv7ezwAAAAAADBNtpf1Cxcu6NChQypZsqRuvfVW5c2bV1FRUe71+/btU0xMjMLCwiRJYWFh+umnn3Tq1Cn3NitWrJC/v79q1Kjh3ubq10jZJuU1AAAAAABwsiwv60OGDNHq1at19OhRrVu3Tm3atJG3t7c6dOiggIAA9ezZU4MGDdLKlSu1detWde/eXWFhYbr99tslSS1atFCNGjXUpUsX7dixQ8uWLdOLL76oZ555Rvny5ZMk9e3bV4cPH9awYcO0d+9eTZ48WZ988okGDhyY1d8OAAAAAAA5LsuvWf/111/VoUMHnTlzRsWLF9edd96pDRs2qHjx4pKk8ePHy8vLS4888ogSEhIUHh6uyZMnu7/e29tbixcv1lNPPaWwsDAVLFhQXbt21auvvurepnz58lqyZIkGDhyoCRMmqEyZMpo2bRq3bQMAZEjoiCXZ9tpH34rIttcGAAA3jywv6/Pnz7/uel9fX02aNEmTJk1Kd5ty5crpm2++ue7rNGvWTNu3b/9HGQEAAAAAMFm2X7MOAAAAAAAyh7IOAAAAAIBhKOsAAAAAABgmy69ZBwAA2YfJ8QAAuDkwsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGCaP3QEAAEDuFzpiSba99tG3IrLttQEAsAsj6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGHy2B0AAADAZKEjlmTbax99KyLbXhsA4GyMrAMAAAAAYBjKOgAAAAAAhqGsAwAAAABgGMo6AAAAAACGoawDAAAAAGAYZoMHAADIhZw8i72TswNAVqGsAwAAAFnAyQcZnJwdyK0o6wAAAAAciYMMyM24Zh0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw3DNOgAAAADkMKdeb+/U3E7EyDoAAAAAAIZhZB0AAAAAkOs57awARtYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADAMZR0AAAAAAMNQ1gEAAAAAMAxlHQAAAAAAw1DWAQAAAAAwDGUdAAAAAADDUNYBAAAAADCM48v6pEmTFBoaKl9fXzVq1EibNm2yOxIAAAAAAP+Ko8v6ggULNGjQIL388svatm2b6tatq/DwcJ06dcruaAAAAAAA/GOOLuvjxo1T79691b17d9WoUUNTpkxRgQIFNGPGDLujAQAAAADwjzm2rF+6dElbt25V8+bN3cu8vLzUvHlzrV+/3sZkAAAAAAD8O3nsDvBP/f7770pKSlJwcLDH8uDgYO3duzfNr0lISFBCQoL7+fnz5yVJcXFxGfo7kxMu/sO0N5bRDP+UU7M7Nbfk3OxOzS05N7tTc0vOze7U3JJzszs1t+Tc7E7NLTk3u1NzS87N7tTcknOzOzW3ZE72lG0ty7rudi7rRlsY6vjx4ypdurTWrVunsLAw9/Jhw4Zp9erV2rhxY6qvGTVqlF555ZWcjAkAAAAAQCrHjh1TmTJl0l3v2JH1YsWKydvbWydPnvRYfvLkSZUoUSLNrxk5cqQGDRrkfp6cnKyzZ8+qaNGicrlcWZovLi5OISEhOnbsmPz9/bP0tbOTU3NLzs3u1NySc7M7Nbfk3OxOzS05N7tTc0vOze7U3JJzszs1t+Tc7E7NLTk3u1NzS87Nnt25LcvSn3/+qVKlSl13O8eWdR8fH916662KiopS69atJV0p31FRUerXr1+aX5MvXz7ly5fPY1nhwoWzNae/v7+j3pgpnJpbcm52p+aWnJvdqbkl52Z3am7Judmdmltybnan5pacm92puSXnZndqbsm52Z2aW3Ju9uzMHRAQcMNtHFvWJWnQoEHq2rWrGjRooIYNG+rdd99VfHy8unfvbnc0AAAAAAD+MUeX9Xbt2un06dOKjIxUbGysbrnlFi1dujTVpHMAAAAAADiJo8u6JPXr1y/d097tlC9fPr388supTrs3nVNzS87N7tTcknOzOzW35NzsTs0tOTe7U3NLzs3u1NySc7M7Nbfk3OxOzS05N7tTc0vOzW5KbsfOBg8AAAAAQG7lZXcAAAAAAADgibIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo61ng7NmzdkfANU6dOqU333zT7hhpunz5subMmaOTJ0/aHQVAJiUnJ2vx4sV2xwAAY/z22292RwByLWaDzwK+vr5q3bq1evbsqfvuu8/uOBmWnJys3bt3q3bt2pKkKVOm6NKlS+713t7eeuqpp+Tl5bxjOjt27FD9+vWVlJRkd5Q0FShQQHv27FG5cuXsjpJhX331VYa2e/jhh7M5CZzu8OHD6tu3r5YvX253lAw7ePCgZsyYoVmzZun06dNKTEy0OxJsNmbMGD377LPKnz+/JGnt2rVq0KCB+zY/f/75p4YPH67JkyfbGfMf+fzzzzVq1Cjt3LnT7ihuEydOVJ8+feTr66uJEyded9vnnnsuh1Jl3sKFC/Xxxx9r//79kqQqVaqoY8eOevTRR21OlnmxsbF64403NH36dF28eNHuOOk6cuSILl++rMqVK3ssP3DggPLmzavQ0FB7gl1Hjx49NGHCBPn5+dkd5aawf/9+nTt3Tg0bNnQvi4qK0uuvv674+Hi1bt1azz//vC3ZKOtZ4KOPPtKsWbO0atUqhYSEqFu3burWrZuR//mvNm/ePE2ZMkVr1qyRJPn5+alw4cLKkyePJOn333/Xu+++q549e9oZ8x8xvaw3a9ZMAwcOVKtWreyOkmEZOWjjcrmM/ZnHx8frrbfeUlRUlE6dOqXk5GSP9YcPH7Yp2Y399ttv+uyzz9w7d1WrVlXbtm1VunRpm5P9M6b//0zx119/aeHChZo2bZrWrl2rJk2aqH379mrTpo2Cg4PtjnddBw4c0MqVK9N8r0dGRtqUKmMuXbqUZu6yZcvalCht3t7eOnHihIKCgiRJ/v7+io6OVoUKFSRJJ0+eVKlSpYx9n0+dOlUrVqyQj4+P+vfvr0aNGun777/X4MGDtX//fj3xxBN6//337Y7pVr58eW3ZskVFixZV+fLl093O5XIZ+XmenJysDh06aOHChapSpYqqVasmSdqzZ48OHjyoxx57TB9//LFcLpfNST398ccfevrpp93vlREjRqhfv34aNWqU3nnnHdWpU0cDBw5Uu3bt7I6arrvuuks9evRQ165dPZb/73//07Rp07Rq1Sp7gl3HtZ8vTnH8+HGNGzdOkZGR8vf391h3/vx5vf766xoyZIhxv0PbtGmj2rVr69VXX5V05QBPzZo11aRJE1WrVk0zZszQa6+9pgEDBuR8OAtZ5vDhw1ZkZKQVGhpqeXt7W82bN7fmz59vJSQk2B0tTSn5UhQqVMg6dOiQ+/n7779vNWvWzI5o/1p0dLTl5eVld4x0LViwwKpQoYL13//+11q3bp21Y8cOjweyXvv27a2SJUtaw4YNs8aPH2+9++67Hg9TTZo0ycqXL5/lcrmsgIAAKyAgwHK5XFa+fPmsSZMm2R3vHzH9/+emTZusPn36WP7+/la9evWsd955x/L29rZ2795td7QM+eCDDyxvb28rODjYqlu3rnXLLbe4H/Xq1bM7Xrr2799v3XnnnZaXl5fHw+VyGfl+cblc1smTJ93Pr/0dGhsba2Ruy7Ks0aNHW3nz5rVuvfVWq2DBglaBAgWsN954wypRooQ1evRo6+zZs3ZHzHXGjRtnBQYGWl9//XWqdYsWLbICAwOt8ePH53ywG+jTp49VtmxZa/DgwVatWrUsLy8vq2XLllZERIS1fv16u+NliJ+fn3XgwIFUyw8cOGAFBATkfKAMuPbzxSkGDx5s9e7dO931Tz75pDVs2LAcTJQxZcqUsdatW+d+/tprr1l169Z1P582bZrH85xEWc8mK1assDp27GgVKFDACgwMtJ599lm7I6VSpkwZ6+DBg+7n1+5o/Pzzz1aRIkXsiPavmV4GXC5XqofJO6UZkZSUlOZOiCkCAgKsH3/80e4YmbJ48WLL29vbGjx4sHX8+HH38uPHj1sDBw608uTJYy1ZssTGhP+Myf8/a9eubZUrV84aOXKktWvXLvfyPHnyOKasly1b1nrrrbfsjpFpjRs3tpo2bWp988031vbt263o6GiPh2mcXNarVKlizZo1y7Isy1qzZo3lcrmsiIgI68KFCzYny71q165tTZ8+Pd3106ZNs2rXrp2DiTImJCTEioqKsizLso4cOWK5XC5r5MiRNqfKHH9/f2vbtm2plm/ZssUqVKiQDYluzOVyWQcPHrTOnz9/3Ydpatasaf3www/prl+7dq1Vo0aNHEyUMb6+vlZMTIz7+T333GO9+OKL7ucHDx607cBOnpwfy785NG/eXM2bN9dnn32mPn36aNKkSTe8xiqnnT592uP54cOHVbRoUffzvHnzKj4+PqdjZcigQYOuu/7a7800R44csTtClnHKtbxFihRRYGCg3TEy5T//+Y9GjBih119/3WN5yZIlNW7cOBUoUEBjxozRAw88YFPC3Gffvn1q166d7r77btWoUcPuOP/IH3/8occee8zuGJkWHR2trVu3uk8PRvaJiYnRPffcI0lq0qSJ8ubNq1deeUUFCxa0OVnGPPLII2rYsKGGDx/usXzMmDHavHmzFi5caFOy9B04cEDNmzdPd33z5s3Vr1+/HEyUMcePH1f16tUlSaGhofL19VXnzp1tTpU5TZs21ejRo/Xxxx/L29tbkpSUlKTRo0frzjvvtDld+qpUqZLuOsuyjLz08MiRI9e9ZKlMmTI6evRozgXKoMDAQJ04cUIhISFKTk7Wli1bPLrGpUuXZNl05ThlPRv88ssvmjlzpmbPnq1jx47p7rvvNvK67+DgYO3bt08VK1aUJBUvXtxj/Z49e1SiRAk7ot3Q9u3bb7hN06ZNcyDJP+OkieXSkta1vJGRkWrTpo3d0dL12muvKTIyUrNnz1aBAgXsjpMh27Zt09SpU9Nd36VLF+MOAkpSvXr1rnvdpckTER0+fFizZs3SU089pb/++ksdOnRQp06djLuO9Hoee+wxLV++XH379rU7SqbUqFFDv//+u90xMmXatGkqVKiQpCt3+pg1a5aKFSsm6coEc6ZKSEiQr6+v+7mPj4+jDmauWbNGo0aNSrW8ZcuWGjt2bM4HyoD8+fPr3Llz6RaZuLg4j38TU1iW5Z7LSLpyLXXKpIpO8fbbb6tp06aqWrWqmjRpIkn64YcfFBcXp++//97mdOn79NNPHfX/UrryPj969Gi67/OjR48a+f5p1qyZXnvtNU2ePFkLFy5UcnKymjVr5l7/888/2zYXGRPMZZGEhAR99tlnmjFjhlatWqXSpUurW7du6t69u7ETzfXo0UP79u3T2rVrU62zLEt33HGHe1IFZL2PPvpIU6ZM0ZEjR7R+/XqVK1dO7777rsqXL2/sxHObN2/WtGnTNH/+fFWsWFGdOnXS8OHDtXPnTiNHIa8tjQcPHpRlWQoNDVXevHk9tt22bVtOx7uhggUL6qeffnJPWHWtw4cPq3bt2sadAfPKK69kaLuXX345m5P8O99//71mzJihzz//XH///beGDBmiXr16XXe0wy5XH7SJj4/XuHHjFBERodq1a6d6r5s0U3ZcXJz7z1u2bNGLL76oN998M83c105WZLfQ0NAMHcQx8UwqLy8v9enTx33gctKkSercubMCAgI8ths3bpwd8W4of/78io6OVtWqVT2W7927V/Xq1dNff/1lU7L0RUREqGzZsulO2te3b1/FxMTom2++yeFk1+fl5aVatWq5C/vOnTtVrVo1+fj4eGxn4u/Qqx0/flzvvfeeduzYofz586tOnTrq16+fsWXYy8tLsbGxjptgLiIiQqVKldKHH36Y5vpevXrp+PHjxr3Pjx49qvvuu0+HDh2St7e3Jk6cqKeeesq9vnXr1ipfvrzGjx+f49ko61ng6aef1vz583Xx4kW1atXKfQs300diDh06pPr166tatWoaMmSIewd03759euedd7Rv3z5t3bpVlSpVsjlp2uLi4lSoUKFUs5QnJyfrwoULxu3YXe39999XZGSkBgwYoDfeeEO7du1ShQoVNGvWLM2ePVsrV660O2IqderUUVxcnDp27KhOnTqpZs2akq5cLrFjxw4jy3pGS6NkZnFs2LChOnTooIEDB6a5fty4cZo/f742bdqUw8luLufPn9fcuXM1Y8YMbdu2TbVq1TLqllaSrjs79tVMmynby8vL43dlyqmdVzP1dE8na9as2Q33UVwul7Gjjg0bNtSDDz6Y6s4Go0aN0tdff62tW7falCx969atU7NmzdS6dWsNGTJE1apVk2VZ2rNnj8aOHatFixZp5cqVuuOOO+yO6iG3HHx1GqeW9ZUrV+q+++7TgAEDNHToUPes7ydPntSYMWM0YcIELV++3H0ZjkkuX76s3bt3q3jx4ipVqpTHuh07dqhMmTIelwvnFMp6FqhTp4569uypzp072/KP+G9s2rRJ3bp10969e92/uC3LUrVq1TRz5kw1atTI5oRp++KLLzR8+HBFR0enOqU5Pj5e9evX1zvvvKOHHnrIpoTXV6NGDb355ptq3bq1/Pz8tGPHDlWoUEG7du1Ss2bNjDwVNF++fGrXrp26dOmi5s2bu98vJpd1p5s9e7aeeuopvfPOO+rTp497ZOPy5cuaOnWqhg4dqsmTJ6tbt272Br2JREdHa8aMGUZefuBEq1evzvC2d911VzYmgZN8/fXXatu2rTp27Oje6Y+KitLHH3+shQsXqnXr1vYGTMcXX3yhPn366OzZsx7LixQpoqlTp+qRRx6xKVnulpmDq3Xq1MnGJBl39a0KnWbq1Knq37+/EhMT5e/vL5fLpfPnzytv3rwaP368x4g1boyynkXSG+VNSkpSfHy80aO80pUd0JR7OFeuXFn16tWzOdH1tWjRQo8//rh69eqV5voZM2ZowYIFWrZsWQ4ny5j8+fNr7969KleunEdZP3DggOrUqWPkKXy//fabZs2apZkzZ3pcy9uoUSNFR0c7pqxv2bJFe/bskXTloMmtt95qc6LrGzJkiMaNGyc/Pz9VrFhRlmXp8OHDunDhgp577jlbTsm6kYweMTd11C43SfkVb/qZXtKVSc9CQkLSHFk/duyYcfdZz+gBG5MuO7iak89Ok6QlS5bozTffVHR0tPu05pdfftn4gzoXL17UsmXLdODAAUlXJhFr0aKFY+ZSSbF69WrFx8crLCxMRYoUsTvOdV19Bk96n4mcwZO1fvvtN33yySfuyw+rVKmiRx99VGXKlLE7Wrri4+P19ttv6/PPP9fRo0flcrlUvnx5PfrooxoyZIht/0cp61nA6aO86Tl8+LD69u2r5cuX2x0llVKlSmnNmjXpnqJ/8OBBNW3aVMePH8/hZBlTo0YNjR49Wq1atfIo6//97381c+ZM46/9ctK1vCl+/fVXdejQQWvXrlXhwoUlSefOnVPjxo01f/58o3+BbNiwQR9//LHHzl379u11++2325wsbV5eXipXrpwiIiJSXXd8NRMPNBw6dEhvvPGGe66OsmXL6sKFC+71efLk0Q8//JDqWlnTTJ8+XePHj3e/ZypXrqwBAwake4DTBN7e3jpx4kSq0z7PnDmjoKAg43air7304NixYypZsqTHZFymXXaQIrfutzjdb7/9ptKlS9sdw8Pbb7+tCxcu6LXXXpN0pdS2bNnSvW8YFBSkqKgo96VxJvryyy81ZMgQDR06VGFhYZKk9evXa+zYsRozZozHAJUpEwBn5KC3y+VSVFRUDqTJ/S5duqTGjRtr165datmypcdlKkuXLlX9+vW1Zs2a6+7TZJscukVcrta8eXPrww8/THf99OnTrRYtWuRgoqxh8r2QfX19rT179qS7/ueff7Z8fX1zMFHmfPjhh1bp0qWt+fPnWwULFrQ+/vhj6/XXX3f/2SnOnTtnTZo0ybr11lstl8tl5D1iU4SHh1uNGjWy9u7d6162d+9eKywszAoPD7cxWe4zZswYq3r16lZQUJA1cOBA66effrI7Uob179/fGjFihPt5oUKFrDFjxlizZs2yZs2aZbVs2dJ68sknbUx4Yy+99JJVsGBBa8SIEdaiRYusRYsWWSNGjLAKFSpkvfTSS3bHS5fL5bJOnTqVavnRo0etAgUK2JAoc669z7rJ7rvvPkfvt8TExFjHjh1zP9+4caPVv39/a+rUqTam+udOnDhh9evXz8qfP7/dUVKpV6+eNX/+fPfzTz75xMqfP7/1448/WmfOnLEiIiKsxx57zMaEN3bbbbdZS5YsSbV8yZIlVv369W1IdGMDBgxI99GzZ08rf/78xu6jW9aV90mbNm2smjVrWjVr1rTatGljLVy40O5Y6Xr33Xet4OBgj33EFHv27LGCg4OtiRMn2pDMsijrWaBkyZLWgQMH0l1/4MABq2TJkjmYKGuYXNarVatmffTRR+munzNnjlW1atUcTJR5//vf/6xKlSpZLpfLcrlcVunSpa1p06bZHesf2759u/Xss8/aHSNdvr6+1rZt21It37Jli5E7SJZlWfv377fat29vnT9/PtW6c+fOWR06dDC6HKxbt87q1auX5e/vb912223W+++/n+b3YpJatWpZGzdudD+/toCtWrXKqlSpkh3RMqxYsWLWvHnzUi2fN2+eVbRoURsSXd/AgQOtgQMHWl5eXtaTTz7pfj5w4EDrueeesxo1amQ1btzY7pg35KSy7vT9ljvvvNOaM2eOZVlXiq6fn58VFhZmFStWzHrllVdsTpe2s2fPWu3bt7eKFi1qlSxZ0powYYKVlJRkvfTSS1b+/PmtRo0aeZRiUxQuXNj6+eef3c+7detmdenSxf18/fr1VpkyZeyIlmG+vr4e30MK0wd2rpWYmGi9++67VvHixa1KlSoZObiTlJRkPf7445bL5bKqVq1qtWrVymrVqpVVpUoVy8vLy2rXrp2VnJxsd8xUmjZtar333nvprp84caLVtGnTHEz0fyjrWcDpo7zpMbmsP//881bZsmWt2NjYVOtOnDhhlS1b1nr++edtSJZ58fHx1smTJ+2OketVrlzZo4Sl2Lhxo1WxYkUbEt1Y7969raFDh6a7ftiwYVbfvn1zMNE/Ex8fb82aNcu67bbbrIIFCxpd2AsVKuQxYjdgwADr999/dz8/evSo8Z/nAQEB1v79+1Mt37dvnxUQEJDzgW6gWbNmVrNmzSyXy2U1btzY/bxZs2ZWixYtrD59+qT5/ZjGSWXd6fsthQsXdo+ATZgwwX0wZ9myZVb58uXtjJauPn36WGXLlrUGDx5s1apVy/Ly8rJatmxpRUREWOvXr7c7XrqufV9XrVrVev/9993Pf/nlF6PfK5Z15eyALl26WAkJCe5lCQkJVpcuXax69erZmCzj/ve//1kVKlSwSpYsaU2aNMlKTEy0O1Kaxo0bZwUGBlpff/11qnWLFi2yAgMDrfHjx+d8sBsoVqyYtWvXrnTX//TTT1axYsVyMNH/oaxngdwwypsWk8t6XFycVbNmTcvPz8966qmnrHfffdd69913rb59+1p+fn5WjRo1rLi4OLtj3lRGjhxp9ejRw+4Y6fryyy+thg0bWps3b3Yv27x5s3X77bdbX3zxhX3BrqNKlSrWpk2b0l2/ZcsWq0qVKjmY6J/54YcfrO7du1uFChWyGjVqZF28eNHuSOny9/dP86BOio0bN1p+fn45mCjz+vXrZw0cODDV8sGDB1tPP/20DYkyplu3bkYfyLkRJ5V1p++3FCxY0Dpy5IhlWZb10EMPWW+99ZZlWWYXx5CQECsqKsqyLMs6cuSI5XK5rJEjR9qc6sbq1q1rzZw507KsKz9fl8tl7d69271+7dq1VunSpW1KlzEbN260goKCrOLFi1v33nuvde+991rFixe3goKCrvt5b4Jvv/3Wqlu3ruXv72+9+uqr1oULF+yOdF21a9e2pk+fnu76adOmGXnJZJ48eawTJ06ku/748eNW3rx5czDR/8lz46vacSNt27bVCy+8oPvuu899P8EUsbGxevHFF9W5c2eb0qWvXr16150h+OLFizmYJnP8/Py0du1ajRw5UgsWLNAff/whSSpcuLA6d+6sN954Q35+fjanTN/Jkyc1ZMgQRUVF6dSpU+7ZSVOYNpFSRvz66686duyY3THS1a1bN128eFGNGjXyuAVanjx51KNHD/Xo0cO97bW31bFLTEzMde+xWqxYMWN/5sePH9esWbM0a9YsxcXFqXPnztq4caPxdw2oWbOmvvvuOzVs2DDN9cuWLVOtWrVyOFXmTZ8+XcuXL3dPQrhx40bFxMToiSee0KBBg9zbjRs3zq6IqcycOdP9548//lgPP/ywChYsaGOi64uLi/N47nK5dOHChVTLTZxV3an7LSlq1qypKVOmKCIiQitWrHBPfnb8+HFjb3V1/PhxVa9eXZIUGhoqX19fo3/GKZ555hn169dPP/zwgzZs2KCwsDCPz/Hvv//e+DsINWzYUIcPH9bcuXO1d+9eSVK7du3UsWNHYz9jNm3apOHDh2vDhg3q27evvvvuOxUrVszuWDd04MABNW/ePN31zZs3V79+/XIwUcYkJyfL29s73fVeXl627ZszG3wW+PPPPxUWFqaYmBh17tzZPUvw3r17NXfuXIWEhGjDhg3GlcdXXnklQ9u9/PLL2Zzk37EsS7///rssy1Lx4sUdcYuili1bKiYmRv369VPJkiVTZW7VqpVNyXKv2bNnZ3jbrl27ZmOSjCtRooTmzZuX7qywUVFR6tSpk2JjY3M42fU98MADWrlypVq0aKEePXooIiLCY4Zsk3344YcaMGCAPvnkE0VERHis+/rrr9W+fXu9++676t27t00Jb+zuu+/O0HYul8vY2+f5+/srOjpaFSpUsDtKuq6+HZT0f7d+uva5iQdfnbrfkmLVqlVq06aN4uLi1LVrV/fdG55//nnt3btXn3/+uc0JU/P29lZsbKyKFy8u6cqgw86dO1PdVcBEM2bM0Ndff60SJUro5ZdfVokSJdzrnn76ad13331q06aNjQlzHy8vL+XPn199+vS57nvEtFtDBgYGatWqVener/6nn35S06ZN3YNspvDy8lKtWrXS3Ve5fPmydu/ebcvnOWU9i5w/fz7NUd727dvrjTfeMP4elMhZfn5++uGHH3TLLbfYHSVLnDt3zn07NGSdxx9/XImJifriiy/SXN+qVSv5+Pho4cKFOZzs+ry8vFSyZEkFBQVd9+CZqbco7NChgxYsWKBq1aq5S8y+ffu0b98+PfLII/rkk09sTpj7XX1LS1OtXr06Q9uZet9vp++3JCUlKS4uziPn0aNHVaBAgeuekWSXa8vAzp07Va1aNfn4+HhsZ+rnYm7hhAOB0pWzL240+GTirSEjIiJUtmxZvf/++2mu79u3r2JiYvTNN9/kcLLrM3kAk7KexZw4ypsbPf/884qNjXUfbTdNjRo1NHfuXONPHUvL22+/rdDQULVr107SlUL52WefqUSJEvrmm29Ut25dmxPeWEREhKZNm6aSJUvaHeW6tm/frrCwMD344IMaNmyYx+jXmDFjtGTJEq1bt07169e3Oaknk3/pZdT8+fM1f/587d+/X9KV+5R36NBB7du3tzlZ5jjhdPK0OKGs5xZO329566231LdvX+MPGOeGz8XcgM+W7LVu3To1a9ZMrVu31pAhQzzuVz527FgtWrRIK1eu1B133GF3VMegrCNdphfe6+natauOHTtm7Cmey5cv19ixYzV16lSFhobaHSdTypcvr7lz56px48ZasWKFHn/8cS1YsECffPKJYmJitHz5crsj3pCTflkvXrxYPXr00JkzZzyWFy1aVNOmTdPDDz9sUzI4gVNGka71448/6rbbblO+fPnsjgLDOfU9nls0b95chw8fNm6ENz1O+v3vVF988YX69OmTav6fIkWKaOrUqXrkkUdsSuZMzriI0OGcWnp/++03YyevupHMXJ+cU4oUKeIxYhEfH6+KFSuqQIECyps3r8e2pkxwlpbY2FiFhIRIulIkH3/8cbVo0UKhoaFq1KiRzelynwcffFC//PKLli5dqoMHD8qyLFWpUkUtWrRQgQIF7I4HwznxeHzKpJubNm1S1apVjTylOSOcVmKu5qT9Fie+x3OTNm3a6Pfff7c7RroSExP15JNP6qWXXlL58uXVuXNnIyd9zKwtW7bo4sWLatq0qd1RUmnTpo3Cw8O1bNkyHThwQJIcv99i52ciZT0HOLX0mlh4M8LU66ffffdduyNkiSJFiujYsWMKCQnR0qVL9frrr0u6ssNk4kRKaSlXrlyqAyQmy58/f66avMdJReBaTi5gpvvzzz/19NNPa/78+e7PEm9vb7Vr106TJk1SQECAzQkzx/QScz1O3W9xMqd+Lj7zzDN2R7iuvHnz6rPPPtNLL70kSeleS+00Xbp00f79+43d7ypQoECu2m+x8zORsp4DnFh6TS2813LS9dOmzDD+b7Vt21YdO3ZU5cqVdebMGbVs2VLSleurK1WqZHO69MXExCgkJEQul0u7du1yL7csS8eOHVPZsmVtTPfPmHxk/XpMv83f9TitgH377bcqXbq03TEypFevXtq+fbsWL16ssLAwSdL69evVv39/Pfnkk5o/f77NCTPH9BJzPU7ab/n5559VqlQpu2P8axwgyT6tW7fWl19+qYEDB9odJctERUUpMTHR7hiZ5tT9Fjs/E7lmPZs5ofQ6qfBey6nXT3t7e+vEiROpTu88c+aMgoKCjD1SKl05pWzixImKiYlRt27d3JPkjR8/Xv7+/urZs6fNCdPm5J95eqpXr270kXXY69SpU9q3b58kOeJ08oIFC2rZsmW68847PZb/8MMPuv/++xUfH29TspuLE/ZbkPPi4+P11ltvKSoqSqdOnVJycrLHepPPNnr99dc1duxY3Xvvvbr11ltTTbhp2u3PcjMn7rfY/ZnIyHoWcmrpnTJliubOnStJWrFihVasWKFvv/1Wn3zyiYYOHWps4ZWce/10esfIEhISUt3GxTTvvPOOgoODNXjwYI/lAQEBOn36tE2pbuzaeyCnuHDhgnx9fW1I9O+ZfmR9zpw5ateuXapJwi5duqT58+friSeesClZ7ubU08mLFi2aZraAgACjbyPm5BLjpP2Wa+d9uR6T531Ji91lICN69eql1atXq0uXLipZsqSj7howffp0FS5cWFu3btXWrVs91rlcLuPLenJysg4ePJjm54vTRqhN328x8TORkfUs5NRR3vz582v//v0KCQlR//799ffff2vq1Knav3+/GjVq5L7/qolKlSqlTz/9VI0bN1bVqlX1+uuv67HHHtO+fft02223KS4uzu6IHiZOnChJGjhwoF577TUVKlTIvS4pKUlr1qzR0aNHtX37drsi3lBoaKjmzZunxo0beyzfuHGj2rdvryNHjtiULG2DBg2SJE2YMEG9e/f2mNwkKSlJGzdulLe3t9auXWtXxFzLyWczOLmAtWvXTtu3b9d///vfVKeT33LLLcaeTv7BBx9o4cKF+uijj1SiRAlJVw7Idu3aVW3bttWTTz5pc8K0dejQ4bolpn///jYluzEn7bdk5jRUky87M7EMZEThwoW1ZMkSbrmVwzZs2KCOHTvql19+STXQ43K5jP496kQmfiYysp6FnDrK6+QJw5x2/fT48eMlXfnZTpkyRd7e3u51Pj4+Cg0N1ZQpU+yKlyGxsbFp3p+8ePHiOnHihA2Jri/lwIdlWfrpp588zlzw8fFR3bp1NWTIELviZZgTj6yndzbDr7/+auzobgonjyItXrw41enk4eHh+vDDD3X//ffbmOz63n//fR08eFBly5Z1zyERExOjfPny6fTp05o6dap7223bttkVM5Vvv/3WsSXGSfstKQX88uXLmjdvnsLDwxUcHGxzqsxz6tmMRYoUUWBgoN0x/pGUg/bXcrlc8vX1VaVKldSqVSsjv7++ffuqQYMGWrJkieN+Fzlxv8XEz0TKehZyaul1WuG92vjx41W+fHnFxMRozJgx7pHqEydOGDm5T8qo8913363PP/9cly9flsvlUrFixWxOlnEhISFau3atypcv77F87dq1Rk7ys3LlSklS9+7dNWHCBEfessVpR9br1asnl8sll8ule++9V3ny/N+vmqSkJB05csTo0ig5u4A59XTy1q1b2x3hH3FyiXHifkuePHnUt29f7dmzx+4o/4iJZSAjXnvtNUVGRmr27NmOu/3W9u3btW3bNiUlJalq1aqSpP3798vb21vVqlXT5MmTNXjwYP3444+qUaOGzWk9HThwQJ9++qnx++PXctp+SwoTPxMp61nIqaXXaYX3ak68fvrcuXOqXr26Kleu7L7EoEiRImrfvr1ef/11469b6927twYMGKDExETdc889kq5cgzRs2LBU/w4mmTlzpt0R/jGnHVlPKV3R0dEKDw/3uNwj5QySRx55xKZ0GePkAvbiiy9q0KBBqU4nHzp0qPv2RSZ6+eWX7Y7wjzi5xDh1v6Vhw4bavn27ypUrZ3eUTDOxDKQn5cBrioMHDyo4OFihoaGpbn9q0tku10oZNZ85c6b7gP358+fVq1cv3Xnnnerdu7c6duyogQMHatmyZTan9dSoUSMdPHjQ6P+PaXHafksKEz8TuWY9Czl1luzRo0crODhYPXr08Fg+Y8YMnT59WsOHD7cp2Y057frps2fPKiwsTL/99ps6deqk6tWrS7py65l58+YpJCRE69atM3r0y7IsjRgxQhMnTtSlS5ckSb6+vho+fLgiIyNtTpc+J1+DXLBgQe3YscNxv6xnz56tdu3aOXICv//9739atGiRIwtYvXr1dPDgQSUkJKQ6nbxy5coe25q2g33u3Dl9+umnOnTokIYOHarAwEBt27ZNwcHBRt2CLq0SY1mW40qMU/dbPvnkE40cOVIDBw5Mc3bvOnXq2JTsxvr166fFixercuXK2r59u44ePapChQpp/vz5GjNmjFHvl1deeSXD25p8sK106dJasWJFqlHz3bt3q0WLFvrtt9+0bds2tWjRwohbc+7cudP950OHDunFF1/U0KFDVbt27VSfL6a+152632LiZyIj61nIiaO8kjR16lTNmzcv1fKaNWuqffv2Rpd1p10//eqrr8rHx0eHDh1Kda3dq6++qhYtWujVV191X9tuIpfLpbffflsvvfSS9uzZo/z586ty5cqpZvw2jZOvQXbqkXWTJ3lKS24ZRXLq6eQ7d+5U8+bNFRAQoKNHj6p3794KDAzU559/rpiYGM2ZM8fuiG5O/Rlfy6n7Le3bt5fkecstl8vlnifDtBHqqznpbEaTC3hmnD9/XqdOnUpV1k+fPu2eiLhw4cLuAQi73XLLLe73c4qrB9Sc8F536n6LiZ+JlPUs5NTS67TCezWnXT/95ZdfaurUqWlOilOiRAmNGTNGffv2NbqspyhUqJBuu+02u2NkmNOuQb76yPqzzz6rwYMHKzY21lFH1pOSkjR+/Hj3LKrX7giZdnul3FLAnLqDPWjQIHXr1k1jxoyRn5+fe/kDDzygjh072pgsNaf+jK/l1P0W086aywwTy0BmbNmyxT1fQI0aNXTrrbfanOjGWrVqpR49emjs2LHu/ZbNmzdryJAh7s/9TZs2qUqVKjam/D9OfX/nhv0WIz8TLWSZfPnyWYcPH061/NChQ1a+fPlsSJQxlSpVsj766KNUy+fMmWOVL1/ehkQZ9/bbb1tFixa1ZsyYYR09etQ6evSoNX36dKto0aLWm2++aXe8VHx8fKxjx46lu/7YsWNGv1ecLDQ01Pr555/tjpFhLpfL8vLyslwuV5qPlHVeXl52R03XSy+9ZJUsWdJ65513LF9fX+u1116zevbsaRUtWtSaMGGC3fFytT/++MP68MMPrREjRlhnzpyxLMuytm7dav366682J0ufv7+/dfDgQcuyLKtQoULWoUOHLMuyrKNHjzric3Hz5s3WnDlzrDlz5lhbtmyxO06GOHW/ZfXq1VZiYmKq5YmJidbq1attSJRx5cqVs9auXZtq+YYNG6zQ0FAbEmXMsWPHrDvvvNNyuVxWkSJFrCJFilgul8u64447rrtfY4I///zT6tWrl+Xj42N5eXlZXl5elo+Pj9W7d2/rwoULlmVZ1vbt263t27fbGzQNTnqv54b9FhM/ExlZz0JOG+VN4dQJwyRp6NChOnPmjJ5++ulU10+PHDnS5nSpFStWTEePHlWZMmXSXH/kyBHHTmplOqdNAuXUI+tXmzt3rj788ENFRERo1KhR6tChgypWrKg6depow4YNHqewmsqJo0hOOp38avny5XOfknq1/fv3q3jx4jYkyphff/1VHTp00Nq1a90ThJ47d06NGzfW/Pnz0/28N4FT91vuvvtunThxQkFBQR7Lz58/r7vvvtvYU4Ml557N2KtXLyUmJmrPnj3uGdX37dun7t27q1evXlq6dKnNCdNXqFAhffjhhxo/frx7fpoKFSp4TH56yy232JTu+pz0Xs8N+y1Gfibacoggl3LaKG+K5ORka9iwYZavr6/7iGOBAgWsV155xe5oGfbnn39amzZtsn766Sfr77//tjtOurp37241bdrUSkhISLXu77//tu666y6re/fuNiTL/W655RbLz8/PKlSokFWrVi2rXr16Hg+TOenI+tUKFChg/fLLL5ZlWVaJEiWsrVu3WpZ15Qi1v7+/ndFuyMmjSPfee681dOhQy7I8R6jXrl1rlStXzsZk19ezZ0+rdevW1qVLl6xChQpZhw8ftn755RerXr16Vv/+/e2Ol67w8HCrUaNG1t69e93L9u7da4WFhVnh4eE2Jrsxp+63uFwu69SpU6mW79u3z/Lz87MhUcY59WxGX19fa9u2bamWb9myxcqfP78NiW4OTn2vO3W/xcTPREbWs5DTRnlTOHXCsKs55frpV199VQ0aNFDlypX1zDPPqFq1arIsS3v27NHkyZOVkJCgjz76yO6YuZKTr0d20pH1q5UpU0YnTpxQ2bJlVbFiRS1fvlz169fX5s2bjf98cfIo0ubNmzV16tRUy0uXLq3Y2FgbEmXM2LFj9eijjyooKEh//fWX7rrrLsXGxur222/XG2+8YXe8dK1evVrr1q1zv08kqWrVqvrvf/+rJk2a2Jjsxpy239K2bVtJV/ZbunXr5vE5kpSUpJ07d6a6O4xpnHo2Y0hIiBITE1MtT0pKMvosDKdy+nvdqfstJn4mUtazkNNLr1MKr5OVKVNG69ev19NPP62RI0e6Z/p0uVy677779N577ykkJMTmlLmTkyeEsv7/rK/XOnPmTKpbFpmkTZs2ioqKUqNGjfTss8+qc+fOmj59umJiYjRw4EC7412XkwuYU08nDwgI0IoVK7R27Vrt2LFDFy5cUP369dW8eXO7o12Xk0uM0/ZbAgICJF35TPTz81P+/Pnd63x8fHT77berd+/edsXLEBPLQEb85z//0bPPPqtJkyapQYMGkq5cJtS/f3+98847NqfLfZz+XnfqfouJn4ncZx2wyR9//KEDBw5IkipVqsS16kgl5cj6okWLdP/996d5ZL1q1apGj/JebcOGDVq3bp0qV66shx56yO4411WlShX973//U8OGDT2Wb9q0SR07dtTBgwdtSnZjvXr10pkzZ/TJJ58oMDBQO3fulLe3t1q3bq2mTZvq3XfftTtiuqKiohQVFaVTp04pOTnZY92MGTNsSnV9ixYt0ptvvpmqxDz77LMaPny4o8/qMdUrr7yiIUOGGL3TfyMXLlwwpgxkRJEiRXTx4kVdvnxZefJcGetL+fO1/w6m3enDyZz2Xs9t+y0moKwDuCk47TZiktS9e3dJ0uzZs/X444+nOrIeGhqq3r17q1ixYnZFvK41a9aocePG7h27FJcvX9a6devUtGlTm5LdmJML2Pnz5/Xoo49qy5Yt+vPPP1WqVCn36eTffvutsTt9r7zyivtSoZIlS6Yalfniiy9sSnZ9lBjcDGbPnp3hbbt27ZqNSWAyp++3mIiyDuCmEBkZqWnTpmnw4MF68cUX9cILL+jo0aP68ssvFRkZafTM5E47sp7C29s7zWvWzpw5o6CgIGOvWZNyRwFz2unkJUuW1JgxY9SlSxe7o2QKJSbnnTlzRpGRkVq5cmWaZ2GY+n8S+Cc+/fTTdAcatm3bZlOq63PqfouJKOsAbgoVK1bUxIkTFRERIT8/P0VHR7uXbdiwQfPmzbM7Yq7j5eWlkydPprpOev/+/WrQoEGa11WbwukFzImnkxctWlSbNm1SxYoV7Y4Cwz3wwAM6ePCgevbsqeDg4FRnYZj4fzI3iYiI0LRp09K8BR2y1sSJE/XCCy+oW7du+uCDD9S9e3cdOnRImzdv1jPPPGP05JvIGpR1ADeFggULas+ePSpbtqxKliypJUuWqH79+jp8+LDq1aun8+fP2x3xupx0ZJ1r1uzl1NPJhw8frkKFCumll16yO8o/RonJGX5+fvrxxx9Vt25du6PclPz8/LRjxw5VqFDB7ii5XrVq1fTyyy+rQ4cOHj/3yMhInT17Vu+9957dEdPlpP0WkzEbPICbgpNvI3b1kfVFixalOrJuGqfPYnstpxWwKVOmaNasWY44nXzQoEHuPycnJ+uDDz7Qd999pzp16ihv3rwe244bNy6n42XamjVr9Ndff9kdI9erVq0aP2fcFGJiYty3aMufP7/+/PNPSVKXLl10++23G1vWnbbfYjLKOoCbgpNvIzZ58mR98MEH6tChg2bNmqVhw4Z5HFk3zcyZMyVJxYsX16hRo1SgQAFJcs8RUL16dUdNLuO0Anbp0iWj7797te3bt3s8v+WWWyRJu3bt8lie1i2AcPOaPHmyRowYocjISNWqVSvVgR1/f3+bkt0cypUrl+pnjuxRokQJnT17VuXKlVPZsmW1YcMG1a1bV0eOHJHJJ0c7bb/FZJR1ADeFt956y/3ndu3aqWzZslq/fr0jbiPm1CPr27dv15w5c9S3b1+dO3dOt99+u/Lmzavff/9d48aN01NPPWV3xFypV69emjdvniNOJ1+5cqXdEbIUJSZnFC5cWHFxcbrnnns8lqfc29nkyStzg2sPpiH73HPPPfrqq69Ur149de/eXQMHDtSnn36qLVu2uC85M5FT91tMRFkHcFMKCwtTWFiY3TEyxKlH1rdv3+6+p/enn36q4OBgbd++XZ999pkiIyMdU9adUMBy2+nkTkWJyRmdOnVS3rx5NW/evDQnmEP22bp1q/bs2SNJqlGjhurXr29zotztgw8+cE8S+swzz6hYsWJau3atHn74YfXt29fmdOlz6n6LiSjrAG4Kc+bMue76J554IoeSZJ5Tj6xfvHhRfn5+kqTly5erbdu28vLy0u23365ffvnF5nQZ54QCxunk9qPE5Jxdu3Zp+/btqlq1qt1RbhqnTp1S+/bttWrVKhUuXFiSdO7cOd19992aP39+qrt+IGt4eXnp0qVL2rZtm06dOqX8+fO7b8O5dOlSY88MdOp+i4mYDR7ATaFIkSIezxMTE3Xx4kX5+PioQIECRl9DlZycrOTkZPf9vhcsWKC1a9eqcuXK6tu3r7GjvnXq1FGvXr3Upk0b1apVS0uXLlVYWJi2bt2qiIgIxcbG2h3xhihguBFKTM5r2rSpIiMj3aUF2a9du3Y6fPiw5syZo+rVq0uSfv75Z3Xt2lWVKlXSxx9/bHPC3Gnp0qXq0qWLzpw5k2qdyZd8OHW/xUSUdQA3rQMHDuipp57S0KFDFR4ebnec6/r777+1c+fOVPfNdrlcxh5Z//TTT9WxY0clJSXp3nvv1fLlyyVJo0eP1po1a/Ttt9/anDB9FDBkFCUm5y1cuFCjRo3S0KFDVbt27VQ7/nXq1LEpWe4VEBCg7777TrfddpvH8k2bNqlFixY6d+6cPcFyucqVK6tFixaKjIxUcHCw3XEyxYn7LSairAO4qW3ZskWdO3fW3r177Y6SLqceWZek2NhYnThxQnXr1pWXl5ekKzt3/v7+qlatms3p0kcBQ0ZRYnJeymfJ1VwuFxPMZSM/Pz/98MMP7ktsUmzfvl133XWX4uLi7AmWy/n7+2v79u2qWLGi3VEyxcn7LaahrAO4qUVHR6tp06ZG72g4+ci6U1HAkFGUmJx3ozkvypUrl0NJbh6tWrXSuXPn9PHHH6tUqVKSpN9++02dOnVSkSJF9MUXX9icMHfq0aOH7rjjDvXs2dPuKJnCfkvWoawDuCl89dVXHs8ty9KJEyf03nvvKSQkxOhTsp16ZN3JKGDIKEoMbgbHjh3Tww8/rN27dyskJMS9rFatWvrqq69UpkwZmxPmThcvXtRjjz2m4sWLp3nJx3PPPWdTsutjvyXrUNYB3BSuPW3S5XKpePHiuueeezR27FiVLFnSpmQ35tQj605GAUNGUWLMceLECSUmJqps2bJ2R8mVLMvSd999575srHr16kzyl82mT5+uvn37ytfXV0WLFvW4o4fL5dLhw4dtTJc+9luyDmUdAAzn1CPrTkYBQ2ZQYsxQvXp17d+/n+ths1hiYqLy58+v6Oho1apVy+44N5USJUroueee04gRI9Kcq8FU7LdkHco6gJvCoEGDMrztuHHjsjFJ5jn1yLrTUcBwI5QYs2zevFkXL17UXXfdZXeUXKdChQr64osvVLduXbuj3FQCAwO1efNmx51Ozn5L1qGsA7gp3H333dq2bZsuX76sqlWrSpL2798vb29vj3tnu1wuff/993bFTJNTj6w7FQUMmUGJwc1g+vTp+vzzz/XRRx8pMDDQ7jg3jYEDB6p48eJ6/vnn7Y6SKey3ZJ08dgcAgJzw0EMPyc/PT7Nnz1aRIkUkSX/88Ye6d++uJk2aaPDgwTYnTN+lS5fUrl07fuHlkLx586ps2bKcSosMeeGFF/T8889TYnJQhQoVtHnzZhUtWtRj+blz51S/fn1G7bLBe++9p4MHD6pUqVIqV66cChYs6LF+27ZtNiXL3ZKSkjRmzBgtW7ZMderUSXU6uWlnAqZgvyXrMLIO4KZQunRpLV++XDVr1vRYvmvXLrVo0ULHjx+3KdmNOfXIupMxioSMqlevng4ePKjExERKTA7x8vJSbGysgoKCPJafPHlSZcuWVUJCgk3Jcq9Ro0Z5nMp8rZdffjkH09w87r777nTXmXgmYAr2W7IOI+sAbgpxcXE6ffp0quWnT5/Wn3/+aUOijHPqkXUnYxQJGdWqVavrlhhknatvwbls2TIFBAS4nyclJSkqKkqhoaE2JMv9Ro0aZXeEm9LKlSvtjvCPsN+SdRhZB3BTeOKJJ/TDDz9o7NixatiwoSRp48aNGjp0qJo0aaLZs2fbnDB9Tj2y7mSMIgHmSTml1uVy6drd17x58yo0NFRjx47Vgw8+aEe8XI1LD5AZ7LdkHco6gJvCxYsXNWTIEM2YMUOJiYmSpDx58qhnz576z3/+k2rkFAAyghKT88qXL6/NmzerWLFidke5aVzv0oOQkBBdunTJpmRA7kZZB3BTiY+P16FDhyRJFStWpKQjTRQwZBQlBrlZyqUHrVu31uzZs9O89GDFihXat2+fXRGBXI1r1gHcVAoWLKg6derYHQOGO3r0aJqzwSckJOjXX3+1IRFMk5Hrp8uXL29HtJtCfHy8Vq9erZiYmFQHRJ577jmbUuU+rVu3lnTl1OWuXbt6rLv60gMA2YOyDgDA/0cBQ0ZRYuyzfft2PfDAA7p48aLi4+MVGBio33//XQUKFFBQUBBlPQslJydL4tIDwC6cBg8AwP/HBFbILEpMzmvWrJmqVKmiKVOmKCAgQDt27FDevHnVuXNn9e/fX23btrU74k3h3LlzKly4sN0xgFyNO9UDAPD/JScnKzk5WWXLltWpU6fcz5OTk5WQkKB9+/ZR1OHhyJEjqYr6uXPn7Alzk4iOjtbgwYPl5eUlb29vJSQkKCQkRGPGjOG+ztnk7bff1oIFC9zPH3vsMQUGBqp06dLasWOHjcmA3I2yDgDANShgyChKTM7Lmzev+yyYoKAgxcTESJICAgJ07NgxO6PlWlOmTFFISIgkacWKFfruu++0dOlStWzZUkOHDrU5HZB7UdYBALgGBQwZRYnJefXq1dPmzZslSXfddZciIyM1d+5cDRgwQLVq1bI5Xe4UGxvrfp8vXrxYjz/+uFq0aKFhw4a5/y0AZD3KOgAA16CAIaMoMTnvzTffVMmSJSVJb7zxhooUKaKnnnpKp0+f1gcffGBzutypSJEi7rMWli5dqubNm0uSLMtK884ZALIGs8EDAHCN9ApYaGioGjVqZHM6mCSlxISEhGjp0qV6/fXXJVFislODBg3cfw4KCtLSpUttTHNzaNu2rTp27KjKlSvrzJkzatmypaQrM/NXqlTJ5nRA7sXIOgAA12AUCRmVUmLuu+8+SgxyrfHjx6tfv36qUaOGVqxYoUKFCkmSTpw4oaefftrmdEDuxcg6AADXYBQJGTV+/HiFhobq2LFjGjNmDCUmB5w5c0aRkZFauXKl+64NVzt79qxNyXKvvHnzasiQIfr5558VExOjr776SpJUsWJFm5MBuRtlHQCAa1DAkFGUmJzXpUsXHTx4UD179lRwcLBcLpfdkXK9w4cPq23btvrpp58kXTnLSJL7Z88ZR0D2cFkp/9sAAICHlAJ26dIlj+UPP/ywTYlgGkpMzvPz89OPP/6ounXr2h3lpvHQQw/J29tb06ZNU/ny5bVp0yadOXNGgwcP1jvvvKMmTZrYHRHIlRhZBwDgGhQwZFT//v0VGhqq7777Ls0Sg6xXrVo1/fXXX3bHuKmsX79e33//vYoVKyYvLy95eXnpzjvv1OjRo/Xcc89p+/btdkcEciUmmAMA4BopBezkyZMqUKCAdu/erTVr1qhBgwZatWqV3fFgkPXr1+vVV19Nt8Qg602ePFkvvPCCVq9erTNnziguLs7jgayXlJQkPz8/SVKxYsV0/PhxSVK5cuW0b98+O6MBuRoj6wAAXINRJGRUWiWmatWqlJhsVLhwYcXFxemee+7xWG5ZllwuF2e+ZINatWppx44dKl++vBo1aqQxY8bIx8dHH3zwgSpUqGB3PCDXoqwDAHANChgyihKT8zp16qS8efNq3rx5TDCXQ1588UXFx8dLkl599VU9+OCDatKkiYoWLaoFCxbYnA7IvSjrAABcgwKGjKLE5Lxdu3Zp+/btqlq1qt1Rbhrh4eHuP1eqVEl79+7V2bNnVaRIEQ6WANmI2eABALjGsmXLFB8fr7Zt2+rgwYN68MEHtX//fncBu/b0W+BqlJjs1bRpU0VGRqp58+Z2RwGAbEVZBwAgAyhggBkWLlyoUaNGaejQoapdu7by5s3rsb5OnTo2JQOArEVZBwAAgGN4eaW+mZHL5WKCOQC5DtesAwAAwDGOHDlidwQAyBGMrAMAAAAAYJjU5xEBAAAADuDv76/Dhw/bHQMAsgVlHQAAAI7ECaIAcjPKOgAAAAAAhqGsAwAAwJE6d+4sf39/u2MAQLZggjkAAAAAAAzDrdsAAABgtIkTJ2Z42+eeey4bkwBAzmFkHQAAAEYrX768x/PTp0/r4sWLKly4sCTp3LlzKlCggIKCgpgdHkCuwTXrAAAAMNqRI0fcjzfeeEO33HKL9uzZo7Nnz+rs2bPas2eP6tevr9dee83uqACQZRhZBwAAgGNUrFhRn376qerVq+exfOvWrXr00Ud15MgRm5IBQNZiZB0AAACOceLECV2+fDnV8qSkJJ08edKGRACQPSjrAAAAcIx7771XTz75pLZt2+ZetnXrVj311FNq3ry5jckAIGtR1gEAAOAYM2bMUIkSJdSgQQPly5dP+fLlU8OGDRUcHKxp06bZHQ8AsgzXrAMAAMBx9u/fr71790qSqlWrpipVqticCACyFmUdAAAAAADD5LE7AAAAAJBRSUlJmjVrlqKionTq1CklJyd7rP/+++9tSgYAWYuyDgAAAMfo37+/Zs2apYiICNWqVUsul8vuSACQLTgNHgAAAI5RrFgxzZkzRw888IDdUQAgWzEbPAAAABzDx8dHlSpVsjsGAGQ7yjoAAAAcY/DgwZowYYI4ORRAbsdp8AAAAHCMNm3aaOXKlQoMDFTNmjWVN29ej/Wff/65TckAIGsxwRwAAAAco3DhwmrTpo3dMQAg2zGyDgAAAACAYRhZBwAAgOOcPn1a+/btkyRVrVpVxYsXtzkRAGQtJpgDAACAY8THx6tHjx4qWbKkmjZtqqZNm6pUqVLq2bOnLl68aHc8AMgylHUAAAA4xqBBg7R69Wp9/fXXOnfunM6dO6dFixZp9erVGjx4sN3xACDLcM06AAAAHKNYsWL69NNP1axZM4/lK1eu1OOPP67Tp0/bEwwAshgj6wAAAHCMixcvKjg4ONXyoKAgToMHkKswsg4AAADHuPfee1W0aFHNmTNHvr6+kqS//vpLXbt21dmzZ/Xdd9/ZnBAAsgZlHQAAAI7x008/6f7771dCQoLq1q0rSdqxY4fy5cun5cuXq2bNmjYnBICsQVkHAACAo1y8eFFz587V3r17JUnVq1dXp06dlD9/fpuTAUDWoawDAADAMUaPHq3g4GD16NHDY/mMGTN0+vRpDR8+3KZkAJC1mGAOAAAAjjF16lRVq1Yt1fKaNWtqypQpNiQCgOxBWQcAAIBjxMbGqmTJkqmWFy9eXCdOnLAhEQBkD8o6AAAAHCMkJERr165NtXzt2rUqVaqUDYkAIHvksTsAAAAAkFG9e/fWgAEDlJiYqHvuuUeSFBUVpWHDhmnw4ME2pwOArMMEcwAAAHAMy7I0YsQITZw4UZcuXZIk+fr6avjw4YqMjLQ5HQBkHco6AAAAHOfChQvas2eP8ufPr8qVKytfvnx2RwKALEVZBwAAAADAMEwwBwAAAACAYSjrAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AwE1g1apVcrlcOnfunHvZl19+qUqVKsnb21sDBgywLZuUdj4AAG5mlHUAAGzWrVs3tW7dOster1mzZqnKd+PGjXXixAkFBAS4lz355JN69NFHdezYMb322mtZ9vcDAIB/L4/dAQAAQMYkJiYqb968/+hrfXx8VKJECffzCxcu6NSpUwoPD1epUqWyKiIAAMgijKwDAJBDPv30U9WuXVv58+dX0aJF1bx5cw0dOlSzZ8/WokWL5HK55HK5tGrVKh09elQul0sLFizQXXfdJV9fX82dO1dnzpxRhw4dVLp0aRUoUEC1a9fWxx9/7P47unXrptWrV2vChAnu1zt69KjHaearVq2Sn5+fJOmee+6Ry+XSq6++qrx58yo2NtYj84ABA9SkSZMMfX9r165Vs2bNVKBAARUpUkTh4eH6448/JEkJCQl67rnnFBQUJF9fX915553avHlzuq81atQo3XLLLR7L3n33XYWGhnp8r61bt9abb76p4OBgFS5cWK+++qouX76soUOHKjAwUGXKlNHMmTPdX5Pyc/3888919913q0CBAqpbt67Wr1+foe8RAICcQlkHACAHnDhxQh06dFCPHj20Z88erVq1Sm3bttXLL7+sxx9/XPfff79OnDihEydOqHHjxu6vGzFihPr37689e/YoPDxcf//9t2699VYtWbJEu3btUp8+fdSlSxdt2rRJkjRhwgSFhYWpd+/e7tcLCQnxyNK4cWPt27dPkvTZZ5/pxIkTGjFihCpUqKCPPvrIvV1iYqLmzp2rHj163PD7i46O1r333qsaNWpo/fr1+vHHH/XQQw8pKSlJkjRs2DB99tlnmj17trZt26ZKlSopPDxcZ8+e/Vc/1++//17Hjx/XmjVrNG7cOL388st68MEHVaRIEW3cuFF9+/bVk08+qV9//dXj61544QUNGTJE0dHRqlKlijp06KDLly//qywAAGQlToMHACAHnDhxQpcvX1bbtm1Vrlw5SVLt2rUlSfnz51dCQoLHaeopBgwYoLZt23osGzJkiPvPzz77rJYtW6ZPPvlEDRs2VEBAgHx8fFSgQIE0X0+6ckp8UFCQJCkwMNC9Xc+ePTVz5kwNHTpUkvT111/r77//1uOPP37D72/MmDFq0KCBJk+e7F5Ws2ZNSVJ8fLzef/99zZo1Sy1btpQkffjhh1qxYoWmT5/u/vv+icDAQE2cOFFeXl6qWrWqxowZo4sXL+r555+XJI0cOVJvvfWWfvzxR7Vv3979dUOGDFFERIQk6ZVXXlHNmjV18OBBVatW7R9nAQAgKzGyDgBADqhbt67uvfde1a5dW4899pg+/PBD9yni19OgQQOP50lJSXrttddUu3ZtBQYGqlChQlq2bJliYmL+dcZu3brp4MGD2rBhgyRp1qxZevzxx1WwYMEbfm3KyHpaDh06pMTERN1xxx3uZXnz5lXDhg21Z8+ef5W5Zs2a8vL6v92Z4OBg90EQSfL29lbRokV16tQpj6+rU6eO+88lS5aUpFTbAABgJ8o6AAA5wNvbWytWrNC3336rGjVq6L///a+qVq2qI0eOXPfrri3K//nPfzRhwgQNHz5cK1euVHR0tMLDw3Xp0qV/nTEoKEgPPfSQZs6cqZMnT+rbb7/N0Cnw0pWzA7KSl5eXLMvyWJaYmJhqu2sn3HO5XGkuS05OTvfrXC6XJKXaBgAAO1HWAQDIIS6XS3fccYdeeeUVbd++XT4+Pvriiy/k4+Pjvrb7RtauXatWrVqpc+fOqlu3ripUqKD9+/d7bJOZ17tWr169tGDBAn3wwQeqWLGix2j49dSpU0dRUVFprqtYsaJ8fHy0du1a97LExERt3rxZNWrUSPNrihcvrtjYWI/CHh0dnfFvBAAAh6OsAwCQAzZu3Kg333xTW7ZsUUxMjD7//HOdPn1a1atXV2hoqHbu3Kl9+/bp999/T3MEOUXlypW1YsUKrVu3Tnv27NGTTz6pkydPemwTGhqqjRs36ujRo/r9998zNWIcHh4uf39/vf766+revXuGv27kyJHavHmznn76ae3cuVN79+7V+++/r99//10FCxbUU089paFDh2rp0qX6+eef1bt3b128eFE9e/ZM8/WaNWum06dPa8yYMTp06JAmTZqkb7/9NsN5AABwOso6AAA5wN/fX2vWrNEDDzygKlWq6MUXX9TYsWPVsmVL9e7dW1WrVlWDBg1UvHhxjxHoa7344ouqX7++wsPD1axZM5UoUUKtW7f22GbIkCHy9vZWjRo1VLx48Uxdz+7l5aVu3bopKSlJTzzxRIa/rkqVKlq+fLl27Nihhg0bKiwsTIsWLVKePFfmsn3rrbf0yCOPqEuXLqpfv74OHjyoZcuWqUiRImm+XvXq1TV58mRNmjRJdevW1aZNmzwm1gMAILdzWddeEAYAAG5qPXv21OnTp/XVV1/ZHQUAgJsWt24DAACSpPPnz+unn37SvHnzKOoAANiM0+ABAIAkqVWrVmrRooX69u2r++67z2Ndy5YtVahQoTQfb775pk2JAQDIvTgNHgAA3NBvv/2mv/76K811gYGBCgwMzOFEAADkbpR1AAAAAAAMw2nwAAAAAAAYhrIOAAAAAIBhKOsAAAAAABiGsg4AAAAAgGEo6wAAAAAAGIayDgAAAACAYSjrAAAAAAAYhrIOAAAAAIBh/h9SrGb00vA0MQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(12,6))\n", "df['stratify_column'].value_counts().head(20).plot(kind='bar')\n", "plt.title('')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "X_train, X_val = train_test_split(\n", " df,\n", " test_size=0.2,\n", " random_state=42,\n", " stratify=df['stratify_column']\n", ")" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "После обработки:\n", "Всего примеров: 207009\n", "Уникальных тегов: 101\n", "Примеры распределения в трейне:\n", "processed_tags\n", "cs.CV 18617\n", "cs.LG 14265\n", "cs.CL 9286\n", "Other 7309\n", "cs.AI 6450\n", "Name: count, dtype: int64\n", " title \\\n", "21229 Weight-Based Variable Ordering in the Context ... \n", "23107 Understanding physics from interconnected data \n", "146540 AnchorGAE: General Data Clustering via $O(n)$ ... \n", "197367 Multiset permutation generation by transpositions \n", "\n", " summary processed_tags \n", "21229 Dom/wdeg is one of the best performing heurist... [cs.AI] \n", "23107 Metal melting on release after explosion is a ... [cs.CV, Other] \n", "146540 Since the representative capacity of graph-bas... [cs.LG] \n", "197367 This paper proposes a new algorithm for genera... [math.CO, Other] \n", " title \\\n", "190868 Disorder effects on the so-called Andreev band... \n", "89876 The Impact of Nuclear Physics Uncertainties on... \n", "\n", " summary processed_tags \n", "190868 We comment on a recent publication Phys. Rev. ... [cond-mat.mes-hall] \n", "89876 Modeling the evolution of the elements in the ... [astro-ph.GA] \n" ] } ], "source": [ "\n", "print(\"\\nПосле обработки:\")\n", "print(f\"Всего примеров: {len(df)}\")\n", "print(f\"Уникальных тегов: {new_tag_counts.shape[0]}\")\n", "print(f\"Примеры распределения в трейне:\")\n", "print(X_train['processed_tags'].apply(lambda x: x[0] if x else None).value_counts().head(5))\n", "\n", "print(X_train[['title', 'summary', 'processed_tags']].head(4))\n", "\n", "print(X_val[['title', 'summary', 'processed_tags']].head(2))" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: transformers in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (4.50.3)\n", "Requirement already satisfied: filelock in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from transformers) (3.18.0)\n", "Requirement already satisfied: huggingface-hub<1.0,>=0.26.0 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from transformers) (0.29.3)\n", "Requirement already satisfied: numpy>=1.17 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from transformers) (1.26.4)\n", "Requirement already satisfied: packaging>=20.0 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from transformers) (24.2)\n", "Requirement already satisfied: pyyaml>=5.1 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from transformers) (6.0.2)\n", "Requirement already satisfied: regex!=2019.12.17 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from transformers) (2024.11.6)\n", "Requirement already satisfied: requests in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from transformers) (2.32.3)\n", "Requirement already satisfied: tokenizers<0.22,>=0.21 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from transformers) (0.21.1)\n", "Requirement already satisfied: safetensors>=0.4.3 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from transformers) (0.5.3)\n", "Requirement already satisfied: tqdm>=4.27 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from transformers) (4.67.1)\n", "Requirement already satisfied: fsspec>=2023.5.0 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.26.0->transformers) (2025.3.0)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.26.0->transformers) (4.12.2)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from requests->transformers) (3.4.1)\n", "Requirement already satisfied: idna<4,>=2.5 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from requests->transformers) (3.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from requests->transformers) (2.3.0)\n", "Requirement already satisfied: certifi>=2017.4.17 in /home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages (from requests->transformers) (2025.1.31)\n" ] } ], "source": [ "!pip install transformers" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/aliaksandr/miniconda3/envs/EDA/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } ], "source": [ "import torch\n", "import numpy as np\n", "import pandas as pd\n", "from torch.utils.data import Dataset, DataLoader\n", "from transformers import DistilBertTokenizer, DistilBertForSequenceClassification, DistilBertConfig" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "# кол-во классов\n", "all_tags = []\n", "for df in [X_train, X_val]:\n", " all_tags.extend(df['processed_tags'].explode().tolist())\n", "\n", "unique_tags = sorted(list(set(all_tags)))\n", "num_classes = len(unique_tags)\n", "tag_to_idx = {tag: idx for idx, tag in enumerate(unique_tags)}" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "def tags_to_vector(tags_list):\n", " vector = np.zeros(num_classes, dtype=np.float32)\n", " for tag in tags_list:\n", " vector[tag_to_idx[tag]] = 1.0\n", " return vector" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "y_train = X_train['processed_tags'].apply(tags_to_vector)\n", "y_val = X_val['processed_tags'].apply(tags_to_vector)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "class ArxivDataset(Dataset):\n", " def __init__(self, texts, labels):\n", " self.texts = texts\n", " self.labels = labels\n", " \n", " def __len__(self):\n", " return len(self.texts)\n", " \n", " def __getitem__(self, idx):\n", " text = self.texts.iloc[idx]\n", " label = self.labels.iloc[idx]\n", " \n", " encoding = tokenizer(\n", " text,\n", " max_length=512,\n", " padding='max_length',\n", " truncation=True,\n", " return_tensors='pt'\n", " )\n", "\n", " label_tensor = torch.tensor(label, dtype=torch.float)\n", " if label_tensor.sum() > 0:\n", " label_tensor = label_tensor / label_tensor.sum()\n", " \n", " return {\n", " 'input_ids': encoding['input_ids'].flatten(),\n", " 'attention_mask': encoding['attention_mask'].flatten(),\n", " 'labels': label_tensor\n", " }" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-cased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] }, { "data": { "text/plain": [ "DistilBertForSequenceClassification(\n", " (distilbert): DistilBertModel(\n", " (embeddings): Embeddings(\n", " (word_embeddings): Embedding(28996, 768, padding_idx=0)\n", " (position_embeddings): Embedding(512, 768)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (transformer): Transformer(\n", " (layer): ModuleList(\n", " (0-5): 6 x TransformerBlock(\n", " (attention): DistilBertSdpaAttention(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (q_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (k_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (v_lin): Linear(in_features=768, out_features=768, bias=True)\n", " (out_lin): Linear(in_features=768, out_features=768, bias=True)\n", " )\n", " (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (ffn): FFN(\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (lin1): Linear(in_features=768, out_features=3072, bias=True)\n", " (lin2): Linear(in_features=3072, out_features=768, bias=True)\n", " (activation): GELUActivation()\n", " )\n", " (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " )\n", " )\n", " )\n", " )\n", " (pre_classifier): Linear(in_features=768, out_features=768, bias=True)\n", " (classifier): Linear(in_features=768, out_features=101, bias=True)\n", " (dropout): Dropout(p=0.2, inplace=False)\n", ")" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')\n", "config = DistilBertConfig.from_pretrained(\n", " 'distilbert-base-cased',\n", " num_labels=num_classes,\n", " problem_type=\"multi_label_classification\"\n", ")\n", "model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-cased', config=config)\n", "\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "model.to(device)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "def create_data_loader(df, labels, batch_size=108):\n", " dataset = ArxivDataset(\n", " texts=df.apply(lambda x: x['title'] + ' ' + x['summary'], axis=1),\n", " labels=labels\n", " )\n", " return DataLoader(dataset, batch_size=batch_size)\n", "\n", "train_loader = create_data_loader(X_train, y_train)\n", "val_loader = create_data_loader(X_val, y_val, batch_size=108)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "import torch\n", "from tqdm import tqdm\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "from IPython.display import clear_output" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "def run_train_epoch(model, train_loader, optimizer, criterion, device):\n", " model.train()\n", " total_loss = 0.0\n", " train_progress = tqdm(train_loader, desc=\"Training\", leave=False)\n", " for batch in train_progress:\n", " input_ids = batch['input_ids'].to(device)\n", " attention_mask = batch['attention_mask'].to(device)\n", " labels = batch['labels'].to(device)\n", "\n", " optimizer.zero_grad()\n", " outputs = model(input_ids=input_ids, attention_mask=attention_mask)\n", " loss = criterion(outputs.logits, labels)\n", " loss.backward()\n", " optimizer.step()\n", "\n", " total_loss += loss.item()\n", " train_progress.set_postfix(loss=f\"{loss.item():.4f}\")\n", " return total_loss / len(train_loader)\n", "\n", "def run_val_epoch(model, val_loader, criterion, device):\n", " model.eval()\n", " total_loss = 0.0\n", " val_progress = tqdm(val_loader, desc=\"Validation\", leave=False)\n", " with torch.no_grad():\n", " for batch in val_progress:\n", " input_ids = batch['input_ids'].to(device)\n", " attention_mask = batch['attention_mask'].to(device)\n", " labels = batch['labels'].to(device)\n", "\n", " outputs = model(input_ids=input_ids, attention_mask=attention_mask)\n", " loss = criterion(outputs.logits, labels)\n", " total_loss += loss.item()\n", " val_progress.set_postfix(loss=f\"{loss.item():.4f}\")\n", " return total_loss / len(val_loader)\n", "\n", "def plot_metrics(epochs, train_losses, val_losses, lrs, save_plot=False, filename='training_metrics.png'):\n", " clear_output(wait=True)\n", " \n", " fig, axs = plt.subplots(1, 3, figsize=(15, 5))\n", " \n", " axs[0].plot(epochs, train_losses, marker='o', label='Train Loss')\n", " axs[0].set_xlabel('Epoch')\n", " axs[0].set_ylabel('Loss')\n", " axs[0].set_title('Training Loss')\n", " axs[0].legend()\n", " \n", " axs[1].plot(epochs, val_losses, marker='o', color='orange', label='Validation Loss')\n", " axs[1].set_xlabel('Epoch')\n", " axs[1].set_ylabel('Loss')\n", " axs[1].set_title('Validation Loss')\n", " axs[1].legend()\n", " \n", " axs[2].plot(epochs, lrs, marker='o', color='green', label='Learning Rate')\n", " axs[2].set_xlabel('Epoch')\n", " axs[2].set_ylabel('Learning Rate')\n", " axs[2].set_title('Learning Rate per Epoch')\n", " axs[2].legend()\n", " \n", " plt.tight_layout()\n", " \n", " if save_plot:\n", " fig.savefig(filename)\n", " \n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "from IPython.display import clear_output\n", "#!pip install ipywidgets" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XlYVGX7B/DvDMuwr7IKMriDC6CoqRmYFC7hnkuWa9ovc3s1Kytx7fXVMrWsTNPUcktTKyvMSHBNRQMXXJPFBVBR9p05vz/GOTqyyDJwBvh+rmuumTnznHPuYZnnnHuecz8yQRAEEBERERERERERERFRCXKpAyAiIiIiIiIiIiIi0ldMohMRERERERERERERlYFJdCIiIiIiIiIiIiKiMjCJTkRERERERERERERUBibRiYiIiIiIiIiIiIjKwCQ6EREREREREREREVEZmEQnIiIiIiIiIiIiIioDk+hERERERERERERERGVgEp2IiIiIiIiIiIiIqAxMohPVIWPHjoVSqazSuvPnz4dMJtNtQERERFSm+Ph4yGQybNy4UVxWmf5YJpNh/vz5Oo0pMDAQgYGBOt0mERFRXadUKjF27Fipw6B6IDAwEG3btpU6DKoBTKIT6YBMJqvQLSIiQupQJTF27FhYWFhIHQYREVGZ+vfvDzMzM2RmZpbZZtSoUTA2NkZqamotRlZ5sbGxmD9/PuLj46UORRQREQGZTIZdu3ZJHQoREdWQjRs3QiaTISoqSupQ6pQn8wZWVlYICAjAr7/+WuVtbt26FStXrtRdkHokMDCwzJxL69atpQ6P6jFDqQMgqg++++47reebN2/GgQMHSiz38vKq1n7WrVsHlUpVpXU//PBDvPfee9XaPxERUX01atQo/PLLL9izZw9Gjx5d4vWcnBz89NNP6N27N+zt7au8n9roj2NjY7FgwQIEBgaWuILtjz/+qNF9ExER1UWXL1+GXC7dONMXXngBo0ePhiAISEhIwFdffYWQkBD8/vvvCA4OrvT2tm7divPnz2PGjBm6D1YPuLm5YcmSJSWWW1tbSxANNRRMohPpwKuvvqr1/O+//8aBAwdKLH9STk4OzMzMKrwfIyOjKsUHAIaGhjA05L88ERFRafr37w9LS0ts3bq11CT6Tz/9hOzsbIwaNapa+5G6PzY2NpZs30RERLWhqKgIKpWqUn2eQqGowYiermXLllr5gyFDhsDb2xurVq2qUhK9LlOpVCgoKICJiUmZbaytrZ+abyHSNZZzIaolmrpYp0+fxnPPPQczMzO8//77ANQn5v369YOrqysUCgWaNWuGRYsWobi4WGsbT9ZE19Ra/eSTT7B27Vo0a9YMCoUCnTp1wqlTp7TWLa0Gq0wmw5QpU7B37160bdsWCoUCbdq0QVhYWIn4IyIi4O/vDxMTEzRr1gxff/21zuus79y5Ex07doSpqSkaNWqEV199Fbdu3dJqk5ycjHHjxsHNzQ0KhQIuLi4YMGCA1iXrUVFRCA4ORqNGjWBqagpPT0+MHz9eZ3ESEVH9Y2pqisGDByM8PBx37twp8frWrVthaWmJ/v374/79+3j77bfRrl07WFhYwMrKCn369EFMTMxT91Na35mfn4///Oc/cHBwEPdx8+bNEusmJCRg8uTJaNWqFUxNTWFvb4+XX35Zqw/cuHEjXn75ZQBAz549S5SUK60m+p07dzBhwgQ4OTnBxMQEPj4+2LRpk1abyhxzVMf169fx8ssvw87ODmZmZnjmmWdKvZz9888/R5s2bWBmZgZbW1v4+/tj69at4uuZmZmYMWMGlEolFAoFHB0d8cILL+DMmTM6i5WIiKrm1q1bGD9+PJycnMRz0A0bNmi1KSgoQGhoKDp27Ahra2uYm5ujR48eOHjwoFa7x/unlStXiv2TprSZTCbDtWvXMHbsWNjY2MDa2hrjxo1DTk6O1naerImuKU1z9OhRzJw5Ew4ODjA3N8egQYNw9+5drXVVKhXmz58PV1dXmJmZoWfPnoiNja1WnXUvLy80atQI//77r9byiuQOAgMD8euvvyIhIUE8Dng8j5Cfn4958+ahefPmUCgUcHd3xzvvvIP8/PynxvV4XqNbt27i+faaNWtKtK3ofjR5iS1btqBNmzZQKBSl5iQqS/P7v3TpEoYNGwYrKyvY29tj+vTpyMvL02pbVFSERYsWiX8/SqUS77//fqk/k99//x0BAQGwtLSElZUVOnXqpHUMohEbG4uePXvCzMwMjRs3xrJly6r9nkhaHJZKVItSU1PRp08fjBgxAq+++iqcnJwAqDtoCwsLzJw5ExYWFvjrr78QGhqKjIwMfPzxx0/d7tatW5GZmYk33ngDMpkMy5Ytw+DBg3H9+vWnjl4/cuQIdu/ejcmTJ8PS0hKfffYZhgwZgsTERPFy9X/++Qe9e/eGi4sLFixYgOLiYixcuBAODg7V/6E8tHHjRowbNw6dOnXCkiVLkJKSglWrVuHo0aP4559/YGNjA0D9jfyFCxcwdepUKJVK3LlzBwcOHEBiYqL4/MUXX4SDgwPee+892NjYID4+Hrt379ZZrEREVD+NGjUKmzZtwg8//IApU6aIy+/fv4/9+/dj5MiRMDU1xYULF7B37168/PLL8PT0REpKCr7++msEBAQgNjYWrq6uldrv66+/ju+//x6vvPIKunXrhr/++gv9+vUr0e7UqVM4duwYRowYATc3N8THx+Orr75CYGAgYmNjYWZmhueeew7Tpk3DZ599hvfff18sJVdWSbnc3FwEBgbi2rVrmDJlCjw9PbFz506MHTsWaWlpmD59ulb76hxzPE1KSgq6deuGnJwcTJs2Dfb29ti0aRP69++PXbt2YdCgQQDU5e2mTZuGoUOHiifCZ8+exYkTJ/DKK68AAP7v//4Pu3btwpQpU+Dt7Y3U1FQcOXIEFy9eRIcOHaoVJxERVV1KSgqeeeYZMXHq4OCA33//HRMmTEBGRoZYfiQjIwPffPMNRo4ciYkTJyIzMxPr169HcHAwTp48CV9fX63tfvvtt8jLy8OkSZOgUChgZ2cnvjZs2DB4enpiyZIlOHPmDL755hs4Ojpi6dKlT4136tSpsLW1xbx58xAfH4+VK1diypQp2LFjh9hmzpw5WLZsGUJCQhAcHIyYmBgEBweXSNRWRnp6Oh48eIBmzZppLa9I7uCDDz5Aeno6bt68iRUrVgCAOEeZSqVC//79ceTIEUyaNAleXl44d+4cVqxYgStXrmDv3r1Pje3Bgwfo27cvhg0bhpEjR+KHH37Am2++CWNjY3HwWmX389dff4nHX40aNSpRju5JxcXFuHfvXonlpqamMDc311o2bNgwKJVKLFmyBH///Tc+++wzPHjwAJs3bxbbvP7669i0aROGDh2KWbNm4cSJE1iyZAkuXryIPXv2aP38x48fjzZt2mDOnDmwsbHBP//8g7CwMPEYRPMz6t27NwYPHoxhw4Zh165dePfdd9GuXTv06dPnqT9j0lMCEencW2+9JTz57xUQECAAENasWVOifU5OTollb7zxhmBmZibk5eWJy8aMGSN4eHiIz+Pi4gQAgr29vXD//n1x+U8//SQAEH755Rdx2bx580rEBEAwNjYWrl27Ji6LiYkRAAiff/65uCwkJEQwMzMTbt26JS67evWqYGhoWGKbpRkzZoxgbm5e5usFBQWCo6Oj0LZtWyE3N1dcvm/fPgGAEBoaKgiCIDx48EAAIHz88cdlbmvPnj0CAOHUqVNPjYuIiOhxRUVFgouLi9C1a1et5WvWrBEACPv37xcEQRDy8vKE4uJirTZxcXGCQqEQFi5cqLUMgPDtt9+Ky57sj6OjowUAwuTJk7W298orrwgAhHnz5onLSjteOH78uABA2Lx5s7hs586dAgDh4MGDJdoHBAQIAQEB4vOVK1cKAITvv/9eXFZQUCB07dpVsLCwEDIyMrTeS0WOOUpz8OBBAYCwc+fOMtvMmDFDACAcPnxYXJaZmSl4enoKSqVS/JkPGDBAaNOmTbn7s7a2Ft56661y2xARkW59++23Tz0XmzBhguDi4iLcu3dPa/mIESMEa2trsa8rKioS8vPztdo8ePBAcHJyEsaPHy8u0/RPVlZWwp07d7Taa/rcx9sLgiAMGjRIsLe311rm4eEhjBkzpsR7CQoKElQqlbj8P//5j2BgYCCkpaUJgiAIycnJgqGhoTBw4ECt7c2fP18AoLXNsgAQJkyYINy9e1e4c+eOEBUVJfTu3bvUc9+K5g769eunlTvQ+O677wS5XK7V1wrCo2Odo0ePlhurJq+xfPlycVl+fr7g6+srODo6CgUFBZXeDwBBLpcLFy5cKHffT8ZQ2u2NN94Q22l+//3799daf/LkyQIAISYmRhCER8dir7/+ula7t99+WwAg/PXXX4IgCEJaWppgaWkpdOnSRStvIQiC1t+IJr7Hj83y8/MFZ2dnYciQIRV6j6SfWM6FqBYpFAqMGzeuxHJTU1PxcWZmJu7du4cePXogJycHly5deup2hw8fDltbW/F5jx49AKgviX6aoKAgrW+327dvDysrK3Hd4uJi/Pnnnxg4cKDWyLrmzZvr7BvUqKgo3LlzB5MnT9aqe9avXz+0bt1avIzb1NQUxsbGiIiIwIMHD0rdlmbE+r59+1BYWKiT+IiIqGEwMDDAiBEjcPz4ca0SKVu3boWTkxN69eoFQN2fayYfKy4uRmpqKiwsLNCqVatKlwv57bffAADTpk3TWl7aRGCPHy8UFhYiNTUVzZs3h42NTZXLlPz2229wdnbGyJEjxWVGRkaYNm0asrKyEBkZqdW+OsccFYmlc+fOePbZZ8VlFhYWmDRpEuLj4xEbGwtA3dffvHmz3DIyNjY2OHHiBG7fvl3tuIiISDcEQcCPP/6IkJAQCIKAe/fuibfg4GCkp6eL/ZmBgYFY01ylUuH+/fsoKiqCv79/qX3ekCFDyrxS+v/+7/+0nvfo0QOpqanIyMh4asyTJk3SKsPWo0cPFBcXIyEhAQAQHh6OoqIiTJ48WWu9qVOnPnXbj1u/fj0cHBzg6OgIf39/hIeH45133sHMmTO12lU3d7Bz5054eXmhdevWWj//559/HgBKlMspjaGhId544w3xubGxMd544w3cuXMHp0+frtJ+AgIC4O3t/dR9ayiVShw4cKDErbTjp7feekvrueZ3ozkG09w/+bOeNWsWAIj5iAMHDiAzMxPvvfdeiXrtT5bqs7Cw0KrZbmxsjM6dO+vkeImkwyQ6US1q3LhxqZObXLhwAYMGDYK1tTWsrKzg4OAgfuCmp6c/dbtNmjTReq45uS0r0Vzeupr1NeveuXMHubm5aN68eYl2pS2rCs0BSKtWrUq81rp1a/F1hUKBpUuX4vfff4eTkxOee+45LFu2DMnJyWL7gIAADBkyBAsWLECjRo0wYMAAfPvttxWq70ZERKSZOFRT2/LmzZs4fPgwRowYAQMDAwDqk/kVK1agRYsWUCgUaNSoERwcHHD27NkK9duPS0hIgFwuL3G5dml9Ym5uLkJDQ+Hu7q6137S0tErv9/H9t2jRQvxSQENT/kXTB2tU55ijIrGU9r6fjOXdd9+FhYUFOnfujBYtWuCtt97C0aNHtdZZtmwZzp8/D3d3d3Tu3Bnz58/niSsRkcTu3r2LtLQ0rF27Fg4ODlo3zWCzx+cl2bRpE9q3bw8TExPY29vDwcEBv/76a6l9nqenZ5n71eX58pPravqmJ8+N7ezstL50fpoBAwbgwIED+PXXX8Va3jk5OSX65+rmDq5evYoLFy6U+Pm3bNkSAEqdF+ZJrq6uJUqmaNbXDEKo7H7K+/2VxtzcHEFBQSVurVu3LtG2RYsWWs+bNWsGuVwuxqo5Fnvyd+js7AwbGxvxd6ypT9+2bdunxufm5lYisf54noXqJtZEJ6pFj39rrJGWloaAgABYWVlh4cKFaNasGUxMTHDmzBm8++67UKlUT92u5qT+SYIg1Oi6UpgxYwZCQkKwd+9e7N+/H3PnzsWSJUvw119/wc/PDzKZDLt27cLff/+NX375Bfv378f48eOxfPly/P3332ItOCIiotJ07NgRrVu3xrZt2/D+++9j27ZtEARBTK4DwH//+1/MnTsX48ePx6JFi2BnZwe5XI4ZM2ZUqN+uqqlTp+Lbb7/FjBkz0LVrV1hbW0Mmk2HEiBE1ut/H6cNxg5eXFy5fvox9+/YhLCwMP/74I7788kuEhoZiwYIFANT1T3v06IE9e/bgjz/+wMcff4ylS5di9+7drEVKRCQRTV/16quvYsyYMaW2ad++PQDg+++/x9ixYzFw4EDMnj0bjo6OMDAwwJIlS0pMtgmUfq6tURfOl93c3BAUFAQA6Nu3Lxo1aoQpU6agZ8+eGDx4MADd5A5UKhXatWuHTz/9tNTX3d3ddfJ+Kruf8n5/uvZkcvtpy6tCH46XSPeYRCeSWEREBFJTU7F7924899xz4vK4uDgJo3rE0dERJiYmuHbtWonXSltWFR4eHgCAy5cvi5d3aVy+fFl8XaNZs2aYNWsWZs2ahatXr8LX1xfLly/H999/L7Z55pln8Mwzz+Cjjz7C1q1bMWrUKGzfvh2vv/66TmImIqL6a9SoUZg7dy7Onj2LrVu3okWLFujUqZP4+q5du9CzZ0+sX79ea720tDQ0atSoUvvy8PCASqXCv//+qzUK+/LlyyXa7tq1C2PGjMHy5cvFZXl5eUhLS9NqV5mTQA8PD5w9exYqlUprtJvmkvAn++Ca5OHhUer7Li0Wc3NzDB8+HMOHD0dBQQEGDx6Mjz76CHPmzBEvsXZxccHkyZMxefJk3LlzBx06dMBHH33EJDoRkUQcHBxgaWmJ4uJiMWFcll27dqFp06bYvXu3Vr82b968mg6zUjR907Vr17RGU6emplZr1PEbb7yBFStW4MMPP8SgQYMgk8kqlTso61igWbNmiImJQa9evaqcNL59+zays7O1RqNfuXIFAMQJQXWxH125evWq1u/m2rVrUKlUYqyaY7GrV69qTcSekpKCtLQ08XesuWrw/PnzOrsqn+oWlnMhkpjmG8rHv5EsKCjAl19+KVVIWgwMDBAUFIS9e/dq1RW9du0afv/9d53sw9/fH46OjlizZo1W2ZXff/8dFy9eRL9+/QAAOTk5JWY4b9asGSwtLcX1Hjx4UOLbXc3M7SzpQkREFaEZdR4aGoro6GitUeiAum98sq/ZuXMnbt26Vel9aRK6n332mdbylStXlmhb2n4///xzFBcXay3TnNQ+mVwvTd++fZGcnIwdO3aIy4qKivD555/DwsICAQEBFXkbOtG3b1+cPHkSx48fF5dlZ2dj7dq1UCqVYq3U1NRUrfWMjY3h7e0NQRBQWFiI4uLiEpe0Ozo6wtXVlccCREQSMjAwwJAhQ/Djjz/i/PnzJV6/e/euVltA+zz5xIkTWn2EPujVqxcMDQ3x1VdfaS1fvXp1tbZraGiIWbNm4eLFi/jpp58AVC53YG5uXmp5l2HDhuHWrVtYt25diddyc3ORnZ391NiKiorw9ddfa8Xw9ddfw8HBAR07dtTZfnTliy++0Hr++eefA3h0DNa3b18AJY+9NKPoNfmIF198EZaWlliyZEmJvARHmDcMHIlOJLFu3brB1tYWY8aMwbRp0yCTyfDdd9/p1Yfw/Pnz8ccff6B79+548803UVxcjNWrV6Nt27aIjo6u0DYKCwuxePHiEsvt7OwwefJkLF26FOPGjUNAQABGjhyJlJQUrFq1CkqlEv/5z38AqL/d7tWrF4YNGwZvb28YGhpiz549SElJwYgRIwCo6+Z9+eWXGDRoEJo1a4bMzEysW7cOVlZWYudIRERUHk9PT3Tr1k08aX0yif7SSy9h4cKFGDduHLp164Zz585hy5YtaNq0aaX35evri5EjR+LLL79Eeno6unXrhvDw8FKv9nrppZfw3XffwdraGt7e3jh+/Dj+/PNP2Nvbl9imgYEBli5divT0dCgUCjz//PNwdHQssc1Jkybh66+/xtixY3H69GkolUrs2rULR48excqVK2FpaVnp91SeH3/8sdSJz8aMGYP33nsP27ZtQ58+fTBt2jTY2dlh06ZNiIuLw48//iiOlH/xxRfh7OyM7t27w8nJCRcvXsTq1avRr18/WFpaIi0tDW5ubhg6dCh8fHxgYWGBP//8E6dOndIaxU9ERDVjw4YNCAsLK7F8+vTp+N///oeDBw+iS5cumDhxIry9vXH//n2cOXMGf/75J+7fvw9A3eft3r0bgwYNQr9+/RAXF4c1a9bA29sbWVlZtf2WyuTk5ITp06dj+fLl6N+/P3r37o2YmBj8/vvvaNSoUbVGYY8dOxahoaFYunQpBg4cWKncQceOHbFjxw7MnDkTnTp1goWFBUJCQvDaa6/hhx9+wP/93//h4MGD6N69O4qLi3Hp0iX88MMP2L9/P/z9/cuNy9XVFUuXLkV8fDxatmyJHTt2IDo6GmvXroWRkREA6GQ/5UlPT9e6Ev1xj0/oCahH6mt+N8ePH8f333+PV155BT4+PgAAHx8fjBkzBmvXrhVL5pw8eRKbNm3CwIED0bNnTwCAlZUVVqxYgddffx2dOnXCK6+8AltbW8TExCAnJwebNm2q8vuhOkIgIp176623hCf/vQICAoQ2bdqU2v7o0aPCM888I5iamgqurq7CO++8I+zfv18AIBw8eFBsN2bMGMHDw0N8HhcXJwAQPv744xLbBCDMmzdPfD5v3rwSMQEQ3nrrrRLrenh4CGPGjNFaFh4eLvj5+QnGxsZCs2bNhG+++UaYNWuWYGJiUsZP4ZExY8YIAEq9NWvWTGy3Y8cOwc/PT1AoFIKdnZ0watQo4ebNm+Lr9+7dE9566y2hdevWgrm5uWBtbS106dJF+OGHH8Q2Z86cEUaOHCk0adJEUCgUgqOjo/DSSy8JUVFRT42TiIhI44svvhAACJ07dy7xWl5enjBr1izBxcVFMDU1Fbp37y4cP35cCAgIEAICAsR2mn7622+/FZeV1h/n5uYK06ZNE+zt7QVzc3MhJCREuHHjRom+/MGDB8K4ceOERo0aCRYWFkJwcLBw6dKlUvvtdevWCU2bNhUMDAy0jieejFEQBCElJUXcrrGxsdCuXTutmB9/LxU55ijNwYMHyzwWACAcPnxYEARB+Pfff4WhQ4cKNjY2gomJidC5c2dh3759Wtv6+uuvheeee06wt7cXFAqF0KxZM2H27NlCenq6IAiCkJ+fL8yePVvw8fERLC0tBXNzc8HHx0f48ssvy42RiIiq59tvvy33s/7GjRuCIKj7nbfeektwd3cXjIyMBGdnZ6FXr17C2rVrxW2pVCrhv//9r+Dh4SEoFArBz89P2LdvX6XOiTV97t27d0uNMy4uTlz2ZF+qaXPq1CmtdTX92ePn6UVFRcLcuXMFZ2dnwdTUVHj++eeFixcvCvb29sL//d//PfXnVtZ5uSAIwvz587X2V9HcQVZWlvDKK68INjY2AgCtn1lBQYGwdOlSoU2bNoJCoRBsbW2Fjh07CgsWLBD70rJo8hpRUVFC165dBRMTE8HDw0NYvXp1ibYV3U9577+sGMr7O9PQ/P5jY2OFoUOHCpaWloKtra0wZcoUITc3V2ubhYWFwoIFCwRPT0/ByMhIcHd3F+bMmSPk5eWV2P/PP/8sdOvWTTA1NRWsrKyEzp07C9u2bSvxM3rSk3+7VPfIBEGPhrsSUZ0ycOBAXLhwAVevXpU6FCIiIiIiIiK9kJaWBltbWyxevBgffPCB1OHoTGBgIO7du1dqOR59M3/+fCxYsAB3796t9Jw1RKVhTXQiqpDc3Fyt51evXsVvv/2GwMBAaQIiIiIiIiIiktiT58rAo/raPF8mqj9YE52IKqRp06YYO3YsmjZtioSEBHz11VcwNjbGO++8I3VoRERERERERJLYsWMHNm7ciL59+8LCwgJHjhzBtm3b8OKLL6J79+5Sh0dEOsIkOhFVSO/evbFt2zYkJydDoVCga9eu+O9//4sWLVpIHRoRERERERGRJNq3bw9DQ0MsW7YMGRkZ4mSjixcvljo0ItIh1kQnIiIiIiIiIiIiIioDa6ITEREREREREREREZWBSXQiIiIiIiIiIiIiojI0uJroKpUKt2/fhqWlJWQymdThEBFRHScIAjIzM+Hq6gq5nN9N6wP29UREpCvs5/UT+3oiItKVivb1DS6Jfvv2bbi7u0sdBhER1TM3btyAm5ub1GEQ2NcTEZHusZ/XL+zriYhI157W1ze4JLqlpSUA9Q/GyspK4miIiKiuy8jIgLu7u9i/kPTY1xMRka6wn9dP7OuJiEhXKtrXN7gkuuZSLysrK3a2RESkM7yUWH+wryciIl1jP69f2NcTEZGuPa2vZ1E3IiIiIiIiIiIiIqIyMIlORERERERERERERFQGJtGJiIiIiIiIiIiIiMrQ4GqiExHVBpVKhYKCAqnDIB0wMjKCgYGB1GEQERGA4uJiFBYWSh0G1TPGxsaQyzm+jIhIn/EYgKpKV+f0TKITEelYQUEB4uLioFKppA6FdMTGxgbOzs6cVIyISCKCICA5ORlpaWlSh0L1kFwuh6enJ4yNjaUOhYiInsBjANIFXZzTM4lORKRDgiAgKSkJBgYGcHd356imOk4QBOTk5ODOnTsAABcXF4kjIiJqmDQnz46OjjAzM+OXmqQzKpUKt2/fRlJSEpo0acK/LSIiPcNjAKoOXZ7TM4lORKRDRUVFyMnJgaurK8zMzKQOh3TA1NQUAHDnzh04OjqytAsRUS0rLi4WT57t7e2lDofqIQcHB9y+fRtFRUUwMjKSOhwiInqIxwCkC7o6p+cQSSIiHSouLgYAXg5cz2i+EGENPiKi2qf57OWX01RTNMdtmuM4IiLSDzwGIF3RxTk9k+hERDWAl5jVL/x9EhFJj5/FVFP4t0VEpN/4OU3VpYu/ISbRiYiIiIiIiIiIiIjKwCQ6ERHVCKVSiZUrV0odBhERUZ0VGBiIGTNmiM8r0rfKZDLs3bu32vvW1XaIiIhIv/BcvWqYRK+iYpWA4/+m4qfoWzj+byqKVYLUIRFRPVKbnzEymazc2/z586u03VOnTmHSpEnViu3J5AERVYCqGEiJAOK3qe9VrPFLBKBW/zdCQkLQu3fvUl87fPgwZDIZzp49W+nt6qJvfdL8+fPh6+tbYnlSUhL69Omj0309aePGjbCxsanRfdRnX3zxBZRKJUxMTNClSxecPHmy3PY7d+5E69atYWJignbt2uG3337Tel0QBISGhsLFxQWmpqYICgrC1atXtdrcv38fo0aNgpWVFWxsbDBhwgRkZWWJr1++fBk9e/aEk5MTTExM0LRpU3z44YclatA+LRYqW7GqGBHxEdh2bhsi4iNQzH6eqEJq+39n7NixGDhwYI3uo6pq4niiNEqlUswrmJmZoV27dvjmm28qvR19+WLfUMqdHzp0CB9//DFOnz6NpKQk7Nmz56l/YFu2bMGyZctw9epVWFtbo0+fPvj4449rdZbesPNJWPBLLJLS88RlLtYmmBfijd5tXWotDiKqn2r7MyYpKUl8vGPHDoSGhuLy5cviMgsLC/GxIAgoLi6GoeHTuw8HBwfdBkpET3djN3B6OpBz89EyMzeg4yrAfbB0cRFJrZb/NyZMmIAhQ4bg5s2bcHNz03rt22+/hb+/P9q3b1/p7dZm3+rs7Fxr+6LK27FjB2bOnIk1a9agS5cuWLlyJYKDg3H58mU4OjqWaH/s2DGMHDkSS5YswUsvvYStW7di4MCBOHPmDNq2bQsAWLZsGT777DNs2rQJnp6emDt3LoKDgxEbGwsTExMAwKhRo5CUlIQDBw6gsLAQ48aNw6RJk7B161YAgJGREUaPHo0OHTrAxsYGMTExmDhxIlQqFf773/9WOBYq3e6LuzE9bDpuZjz6LHOzcsOq3qsw2Iv9PFFZGsr/TmFhIYyMjJ7arjaPJxYuXIiJEyciJycHO3fuxMSJE9G4ceMa/6K+Jkg6Ej07Oxs+Pj744osvKtT+6NGjGD16NCZMmIALFy5g586dOHnyJCZOnFjDkT4Sdj4Jb35/Riu5BQDJ6Xl48/szCDufVMaaRERPJ8VnjLOzs3iztraGTCYTn1+6dAmWlpb4/fff0bFjRygUChw5cgT//vsvBgwYACcnJ1hYWKBTp074888/tbb75CViMpkM33zzDQYNGgQzMzO0aNECP//8c7Vi//HHH9GmTRsoFAoolUosX75c6/Uvv/wSLVq0gImJCZycnDB06FDxtV27dqFdu3YwNTWFvb09goKCkJ2dXa14iCR1YzdweKh2khAAcm6pl9/YLU1cRFKT4H/jpZdegoODAzZu3Ki1PCsrCzt37sSECROQmpqKkSNHonHjxuLorG3btpW73Sf71qtXr+K5556DiYkJvL29ceDAgRLrvPvuu2jZsiXMzMzQtGlTzJ07VxwVvHHjRixYsAAxMTHiSDFNzE+O+jp37hyef/55sd+cNGmS1ghkzYi7Tz75BC4uLrC3t8dbb71VYgRyZSQmJmLAgAGwsLCAlZUVhg0bhpSUFPH1mJgY9OzZE5aWlrCyskLHjh0RFRUFAEhISEBISAhsbW1hbm6ONm3a1KvRzp9++ikmTpyIcePGwdvbG2vWrIGZmRk2bNhQavtVq1ahd+/emD17Nry8vLBo0SJ06NABq1evBqAeKLFy5Up8+OGHGDBgANq3b4/Nmzfj9u3b4t/BxYsXERYWhm+++QZdunTBs88+i88//xzbt2/H7du3AQBNmzbFuHHj4OPjAw8PD/Tv3x+jRo3C4cOHKxwLlW73xd0Y+sNQrSQgANzKuIWhPwzF7ovs54lKo6//O+fPn0efPn1gYWEBJycnvPbaa7h37574elhYGJ599lnY2NjA3t4eL730Ev7991/x9fj4eMhkMuzYsQMBAQEwMTHBli1bKtQfV+Vc/eeffxbPrXv27IlNmzZBJpMhLS2t3PdpaWkJZ2dnNG3aFO+++y7s7Oy0jldOnTqFF154AY0aNYK1tTUCAgJw5swZrVgBYNCgQZDJZOJzAPjpp5/QoUMH8cqnBQsWoKioqCI//iqRNInep08fLF68GIMGDapQ++PHj0OpVGLatGnw9PTEs88+izfeeOOpl63pSrFKwIJfYlFaUQXNsgW/xLK0CxGJBEFATkFRhW6ZeYWY9/OFcj9j5v8ci8y8wgptTxB091n03nvv4X//+x8uXryI9u3bIysrC3379kV4eDj++ecf9O7dGyEhIUhMTCx3OwsWLMCwYcNw9uxZ9O3bF6NGjcL9+/erFNPp06cxbNgwjBgxAufOncP8+fMxd+5c8eQ/KioK06ZNw8KFC3H58mWEhYXhueeeA6AefT9y5EiMHz8eFy9eREREBAYPHqzTnxlRrVIVq0fZlvcJcnoGS7tQ/SAIQFF2xW4FGUDUNJT7vxE1Xd2uIturYD9haGiI0aNHY+PGjVp9y86dO1FcXIyRI0ciLy8PHTt2xK+//orz589j0qRJeO211yp8bqNSqTB48GAYGxvjxIkTWLNmDd59990S7SwtLbFx40bExsZi1apVWLduHVasWAEAGD58OGbNmoU2bdogKSkJSUlJGD58eIltZGdnIzg4GLa2tjh16hR27tyJP//8E1OmTNFqd/DgQfz77784ePAgNm3ahI0bN5b4IqGiVCoVBgwYgPv37yMyMhIHDhzA9evXteIbNWoU3NzccOrUKZw+fRrvvfeeOALvrbfeQn5+Pg4dOoRz585h6dKlWlfX1WUFBQU4ffo0goKCxGVyuRxBQUE4fvx4qescP35cqz0ABAcHi+3j4uKQnJys1cba2hpdunQR2xw/fhw2Njbw9/cX2wQFBUEul+PEiROl7vfatWsICwtDQEBAhWOhkopVxZgeNh1CKZ9lmmUzwmawtAs1CIIgILsgu0K3jLwMTPt9Wrn/O9N/n46MvIwKbU9X54tpaWl4/vnn4efnh6ioKISFhSElJQXDhg0T22RnZ2PmzJmIiopCeHg45HI5Bg0aBJVKpbWt9957D9OnT8fFixcRHBwMoGr9cXnn6nFxcRg6dCgGDhyImJgYvPHGG/jggw8q9Z5VKhV+/PFHPHjwAMbGxuLyzMxMjBkzBkeOHMHff/+NFi1aoG/fvsjMzASgTrID6iv5kpKSxOeHDx/G6NGjMX36dMTGxuLrr7/Gxo0b8dFHH1UqrsqQtJxLZXXt2hXvv/8+fvvtN/Tp0wd37tzBrl270Ldv31rZ/8m4+yVGhz5OAJCUnoeTcffRtVntlZchIv2VW1gM79D9OtmWACA5Iw/t5v9RofaxC4NhZqybj/mFCxfihRdeEJ/b2dnBx8dHfL5o0SLs2bMHP//8c4kT6seNHTsWI0eOBAD897//xWeffYaTJ0+WWTe2PJ9++il69eqFuXPnAgBatmyJ2NhYfPzxxxg7diwSExNhbm6Ol156CZaWlvDw8ICfnx8AdRK9qKgIgwcPhoeHBwCgXbt2lY6hPqtKybX8/HwsXLgQ33//PZKTk+Hi4oLQ0FCMHz8egLrGfWRkZIn1+vbti19//RWA+m9k06ZNWq8HBwcjLCxMN2+svrp7uOQoWy0CkHND3c4psLaiIqoZxTnAD7pKhgpA7k1gl3XFmg/LAgzNK9R0/Pjx+PjjjxEZGYnAwEAA6hPAIUOGwNraGtbW1nj77bfF9lOnTsX+/fvxww8/oHPnzk/d/p9//olLly5h//79cHV1BaDuW5+8PPrDDz8UHyuVSrz99tvYvn073nnnHZiamsLCwgKGhobllm/ZunUr8vLysHnzZpibq9//6tWrERISgqVLl8LJyQkAYGtri9WrV8PAwACtW7dGv379EB4eXqUrh8PDw3Hu3DnExcXB3d0dALB582a0adMGp06dQqdOnZCYmIjZs2ejdevWAIAWLVqI6ycmJmLIkCFi/960adNKx6Cv7t27h+LiYvHnruHk5IRLly6Vuk5ycnKp7ZOTk8XXNcvKa/NkqRhDQ0PY2dmJbTS6deuGM2fOID8/H5MmTcLChQsrHEtp8vPzkZ+fLz7PyMgos219dDjxcIlRtI8TIOBGxg0cTjyMQGVg7QVGJIGcwhxYLNHNcYAAATczb8J6acWOA7LmZMHcuGLHAeVZvXo1/Pz8xDJXALBhwwa4u7vjypUraNmyJYYMGaK1zoYNG+Dg4IDY2Fit0lczZszA4MHaJWmq0h+Xd67+9ddfo1WrVvj4448BAK1atcL58+crlLB+99138eGHHyI/Px9FRUWws7PD66+/Lr7+/PPPa7Vfu3YtbGxsEBkZKV7ZBwA2NjZaxyoLFizAe++9hzFjxgBQ9/OLFi3CO++8g3nz5j01rqqoUxOLdu/eHVu2bMHw4cNhbGwslh4orxxMfn4+MjIytG5VdSez7AR6VdoREdUVj484AtSXo7/99tvw8vKCjY0NLCwscPHixaeORH+8/qu5uTmsrKxw586dKsV08eJFdO/eXWtZ9+7dcfXqVRQXF+OFF16Ah4cHmjZtitdeew1btmxBTk4OAMDHxwe9evVCu3bt8PLLL2PdunV48OBBleKorypbcg0Ahg0bhvDwcKxfvx6XL1/Gtm3b0KpVK/H13bt3iyMdk5KScP78eRgYGODll1/W2k7v3r212j2tvAEByK1gqaeKtiOiamvdujW6desmlte4du0aDh8+jAkTJgAAiouLsWjRIrRr1w52dnawsLDA/v37n9qXaly8eBHu7u5iAh1QDzp60o4dO9C9e3c4OzvDwsICH374YYX38fi+fHx8xAQ6oO5zVSqV1jwqbdq0gYGBgfjcxcWlWv28u7u7mEAHAG9vb9jY2ODixYsAgJkzZ+L1119HUFAQ/ve//2ld5j5t2jQsXrwY3bt3x7x586o0kStV3Y4dO3DmzBls3boVv/76Kz755JNqbW/JkiXil0/W1tZafxcNQVJmxfrvirYjImnFxMTg4MGDsLCwEG+aL4Q1fdnVq1cxcuRING3aFFZWVmIZkyf78CfP1YGq9cflnatfvnwZnTp10mpfkS/8AWD27NmIjo7GX3/9hS5dumDFihVo3ry5+HpKSgomTpyIFi1awNraGlZWVsjKynrqsUpMTAwWLlyo9TOcOHEikpKSxPN+XatTI9FjY2Mxffp0hIaGIjg4GElJSZg9ezb+7//+D+vXry91nSVLlmDBggU62b+jpYlO2xFR/WdqZIDYhcEVansy7j7Gfnvqqe02juuEzp52Fdq3rjx+0gwAb7/9Ng4cOIBPPvkEzZs3h6mpKYYOHYqCgoJyt/PkJCcymazE5Wi6YmlpiTNnziAiIgJ//PEHQkNDMX/+fJw6dQo2NjY4cOAAjh07hj/++AOff/45PvjgA5w4cQKenp41Ek9d06dPn0pN9hIWFobIyEhcv34ddnbqv8/H69UBEJdrbN++HWZmZiWS6AqFghPaVZZpBScdrmg7In1mYKYeEV4Rdw4BERW4ajXwN8DxuYrtuxImTJiAqVOn4osvvsC3336LZs2aiWUtPv74Y6xatQorV65Eu3btYG5ujhkzZjy1L62M48ePY9SoUViwYAGCg4NhbW2N7du3l5hDRFdqs58HgPnz5+OVV17Br7/+it9//x3z5s3D9u3bMWjQILz++usIDg7Gr7/+ij/++ANLlizB8uXLMXXq1BqLp7Y0atQIBgYGWvXhAXUioqz+09nZudz2mvuUlBS4uLhotfH19RXbPJmEKSoqwv3790vsV5Pk9vb2RnFxMSZNmoRZs2bBwMDgqbGUZs6cOZg5c6b4PCMjo0El0l0sK9Z/V7QdUV1mZmSGrDkVOw44lHAIfbc+/Tjgt1d+w3MeTz8OMDOq3HFAWbKyssSruZ6k+QwOCQmBh4cH1q1bB1dXV6hUKrRt27bEccKT5+pA1frjmurDGzVqhObNm6N58+bYuXMn2rVrB39/f3h7ewMAxowZg9TUVKxatQoeHh5QKBTo2rXrU4+HsrKysGDBghKj8AGIk2HrWp0aib5kyRJ0794ds2fPRvv27REcHIwvv/wSGzZsQFJS6d+4zpkzB+np6eLtxo0bVd5/Z087uFibQFbG6zIALtYmFUpuEVHDIJPJYGZsWKFbjxYOFfqM6dHCoULbk8nK2lL1HT16FGPHjsWgQYPQrl07ODs7Iz4+vsb2VxovLy8cPXq0RFwtW7YUv3U3NDREUFAQli1bhrNnzyI+Ph5//fUXAPXvpnv37liwYAH++ecfGBsbY8+ePbX6HuqTn3/+Gf7+/li2bBkaN26Mli1b4u2330Zubm6Z66xfvx4jRowoceAXEREBR0dHtGrVCm+++SZSU1NrOvy6z6EHYOYGlPcJYuaubkdU18lk6pIqFbk5v1ix/w3nFyu2vUr2rcOGDYNcLsfWrVuxefNmjB8/Xuyfjx49igEDBuDVV1+Fj48PmjZtiitXrlR4215eXrhx44bWedDff/+t1ebYsWPw8PDABx98AH9/f7Ro0QIJCQlabYyNjVFcXH4dZS8vL8TExGhNwH306FHI5XKtK450SfP+Hj9/i42NRVpamnjiDajLuf3nP//BH3/8gcGDB+Pbb78VX3N3d8f//d//Yffu3Zg1axbWrVtXI7HWNmNjY3Ts2BHh4eHiMpVKhfDw8FKvRgDUVyk83h4ADhw4ILb39PSEs7OzVpuMjAycOHFCbNO1a1ekpaXh9OnTYpu//voLKpUKXbp0KTNelUqFwsJCMRnztFhKo1AoYGVlpXVrSHo06QE3KzfIyvgsk0EGdyt39GjCfp7qP5lMBnNj8wrdXmz2YoX+d15s9mKFtqerc+wOHTrgwoULUCqVYoJZczM3N0dqaiouX76MDz/8EL169YKXl5ekV063atVKnLhbQ1ObvDLc3d0xfPhwzJkzR1x29OhRTJs2DX379kWbNm2gUCi0JlgF1An+J49VOnTogMuXL5f4+TVv3hxyec2ku+vUSPScnBwYGmqHrEmUlFXcX6FQQKFQ6GT/BnIZ5oV4483vz0CGktMTCQDmhXjDQF5ziSsiqr/K+4zRfKroy2dMixYtsHv3boSEhEAmk2Hu3Lk1NtLs7t27iI6O1lrm4uKCWbNmoVOnTli0aBGGDx+O48ePY/Xq1fjyyy8BAPv27cP169fx3HPPwdbWFr/99htUKhVatWqFEydOIDw8HC+++CIcHR1x4sQJ3L17F15eXjXyHhqC69ev48iRIzAxMcGePXtw7949TJ48GampqVoJDY2TJ0/i/PnzJa4k6927NwYPHgxPT0/8+++/eP/999GnTx8cP35c65LExzX0OqkAALkB0HEVcHhoKS8+/MzouFLdjqgh0frfKKN3rcH/DQsLC/FkMSMjA2PHjhVfa9GiBXbt2oVjx47B1tYWn376KVJSUrQSxOUJCgpCy5YtMWbMGHz88cfIyMgoMclXixYtkJiYiO3bt6NTp0749ddfS3xhrFQqERcXh+joaLi5ucHS0rLE+dOoUaMwb948jBkzBvPnz8fdu3cxdepUvPbaayVqW1dWcXFxiX5eoVAgKCgI7dq1w6hRo7By5UoUFRVh8uTJCAgIgL+/P3JzczF79mwMHToUnp6euHnzJk6dOiXWkJ0xYwb69OmDli1b4sGDBzh48GC96udnzpyJMWPGwN/fH507d8bKlSuRnZ2NcePGAQBGjx6Nxo0bY8mSJQCA6dOnIyAgAMuXL0e/fv2wfft2REVFYe3atQDUSakZM2Zg8eLFaNGiBTw9PTF37ly4urqKc6J4eXmhd+/emDhxItasWYPCwkJMmTIFI0aMEMsKbdmyBUZGRmjXrh0UCgWioqIwZ84cDB8+XBzl+LRYqCQDuQFW9V6FoT+U7Oc1ycGVvVfCgP08kZbH/3dkkGlNMFob/zvp6ekl+jh7e3u89dZbWLduHUaOHIl33nkHdnZ2uHbtGrZv345vvvkGtra2sLe3x9q1a+Hi4oLExES89957NRJjRbzxxhv49NNP8e6772LChAmIjo4WJyqt7BcL06dPR9u2bREVFSV+wf/dd9/B398fGRkZmD17NkxNTbXWUSqVCA8PR/fu3aFQKGBra4vQ0FC89NJLaNKkCYYOHQq5XI6YmBicP38eixcv1tVb1yLpSPSsrCxER0eLf1CagzdN3Zs5c+Zg9OjRYvuQkBDs3r0bX331Fa5fvy5+W9G5c2etWoA1qXdbF3z1agc4W5e8NKCxjSle8Obl50RUdWV9xjhbm+CrVzugd1v9uETz008/ha2tLbp164aQkBAEBwejQ4cONbKvrVu3ws/PT+u2bt06dOjQAT/88AO2b9+Otm3bIjQ0FAsXLhQTFDY2Nti9ezeef/55eHl5Yc2aNdi2bRvatGkDKysrHDp0CH379kXLli3x4YcfYvny5ZUqX0LaVCoVZDIZtmzZgs6dO6Nv37749NNPsWnTplJHo69fvx7t2rUrUUtvxIgR6N+/P9q1a4eBAwdi3759OHXqFCIiIsrcd0OvkypyHwy0X1hyuZkb0GOX+nWihsh9sPp/wKyx9vJa+t+YMGECHjx4gODgYK1zlg8//BAdOnRAcHAwAgMD4ezs/NQJnB8nl8uxZ88e5ObmonPnznj99ddLTPDVv39//Oc//8GUKVPg6+uLY8eOiRNyawwZMgS9e/dGz5494eDgUOo8FGZmZti/fz/u37+PTp06YejQoejVqxdWr15duR9GKbKyskr085ov6X/66SfY2triueeeQ1BQEJo2bYodO3YAUA+mSk1NxejRo9GyZUsMGzYMffr0EUt5FhcX46233hITvy1bthS/aK8Phg8fjk8++QShoaHw9fVFdHQ0wsLCxC81EhMTta5S6NatG7Zu3Yq1a9fCx8cHu3btwt69e7Ump3vnnXcwdepUTJo0CZ06dUJWVhbCwsK0LovfsmULWrdujV69eqFv37549tlntZLfhoaGWLp0KTp37oz27dtjwYIFmDJlCr755ptKxUIlDfYajF3DdsFIrl1ywcbEBruG7cJgL/bzRKXR/O80ttI+DnCzcqvx/52IiIgSfdyCBQvg6uqKo0ePori4GC+++CLatWuHGTNmwMbGBnK5HHK5HNu3b8fp06fRtm1b/Oc//xEn9ZSCp6cndu3ahd27d6N9+/b46quvxC/uKztw2dvbGy+++CJCQ0MBqM8LHzx4gA4dOuC1117DtGnTSkxivXz5chw4cADu7u7w8/MDAAQHB2Pfvn34448/0KlTJzzzzDNYsWIFPDw8dPCOSycTyhrCXQsiIiLQs2fPEsvHjBmDjRs3YuzYsYiPj9c6cf7888+xZs0axMXFwcbGBs8//zyWLl2Kxo0bl9hOaTIyMmBtbY309PRqXQJWrBJwMu4+7mTmwdTIALN+iEZmfjEWD2yLV5+puV8YEem3vLw8xMXFwdPTs1p1uB7/jHG0VJeJ0ocR6A1Veb9XXfUr+kwmk2HPnj3lJnfGjBmDo0eP4tq1a+KyixcvwtvbG1euXEGLFi3E5dnZ2XB1dcXChQsxffr0p+7fwcEBixcvxhtvvFHq66WNRHd3d6/Xv5My/bsBODHh0fP2HwHe73IEOtVpuupboSoG7h5WT7Br6qIub8T/DQL7+bqoof5eCooLYP6ROYqEIgR4BCAyIRLD2gzDjqE7pA6NqEbo7BgAQLGqGIcTDyMpMwkuli7o0aQHr96oho8++ghr1qypVtns2qSLvl7Sci6BgYFllmEBIF4a8LipU6fqxWQwBnIZujazF5/PfLEVFvwSi+V/XEZIe1dYmxmVszYRUfme/Iwh0nfdu3fHzp07kZWVBQsLCwDAlStXIJfL4ebmptV2586dyM/Px6uvvvrU7d68eROpqalak5w9SZel2+q8zKvaz40smCQk0pAbAE6BUkdBRFRlsXdjUSQUwcbEBvMD56Pnpp44nHAYgiDU6HxIRPWBgdwAgcpAqcOos7788kt06tQJ9vb2OHr0KD7++GNMmTJF6rBqVZ2aWFSfvfqMB1o4WuBBTiFW/FnxCYGIiIj0UWVLrr3yyiuwt7fHuHHjEBsbi0OHDmH27NkYP358iZp269evx8CBA2Fvr/1FUVZWFmbPno2///4b8fHxCA8Px4ABA9C8eXMEBwfX7BuuLzRJdMOHk7VmxUkXCxEREelUTHIMAMDX2RfPuD0DhYECSVlJuHr/6lPWJCKqnqtXr2LAgAHw9vbGokWLMGvWLMyfP1/qsGoVk+g6YmQgx7yQNgCA7/5OwOXkTIkjIiIiqrqoqCixbh+gnsDMz89PrF2XlJQkJtQB9eR5Bw4cQFpaGvz9/TFq1CiEhITgs88+09ru5cuXceTIEUyYMAFPMjAwwNmzZ9G/f3+0bNkSEyZMQMeOHXH48GGONK8oTRLdMVB9n80kOhERUX0RnRwNAPB18oWJoQm6uHUBAETER0gXFBE1CCtWrMDt27eRl5eHK1euYO7cuTA0lLTASa1rWO+2hj3bohGC2zhh/4UULNx3Ad9P6MJLqoiIqE6qSsm11q1b48CBA+Vut1WrVmVu19TUFPv3769UnPQYQfUoie7yInD7VyArXtKQiIiISHeiU6IBAD7OPgCAQI9AHEo4hMiESEzqOEnCyIiI6j+ORNexD/t5w9hQjqPXUrH/QrLU4RAREVFDkXsbKM4FZAaA08OJ27PjAOnmkCciIiIdEQTh0Uh0Z18AEOs7R8RHlDv4gYiIqo9JdB1ztzPDpB5NAQCLf72IvMJiiSMiIinwILZ+UalUUodA9HSaUejmnoBFc/Xjwgyg4IF0MRHpED+LqabwuI3qghsZN5CWlwYjuRG8HbwBAM+4PQNjA2PczryNa/evSRwhUc3hMQBVly7+hljOpQZM7tkMu07fxM0HuVh36Dqm9mohdUhEVEuMjIwgk8lw9+5dODg4sKRTHScIAgoKCnD37l3I5XIYGxtLHRJR2TRJdMsWgKEpYOIE5KUA2fGAwk7S0Iiqw9jYGHK5HLdv34aDgwOMjY3Zv5LOCIKAu3fvQiaTwcjISOpwiMqkGYXu7eANYwP1MampkSm6NO6Cw4mHEZkQiRb2zD1Q/cJjAKouXZ7TM4leA8yMDTGnb2tM3x6NLyP+xVB/N7hYm0odFhHVAgMDA7i5ueHmzZuIj4+XOhzSETMzMzRp0gRyOS/gIj2mSaJbtVTfm3uqk+hZcYBdB+niIqomuVwOT09PJCUl4fbt21KHQ/WQTCaDm5sbDAwMpA6FqEyaJLqmHrpGoDIQhxMPIyI+Aq93eF2CyIhqDo8BSFd0cU7PJHoN6e/jiu//TsCp+AdY8tslfDbST+qQiKiWWFhYoEWLFigsLJQ6FNIBAwMDGBoacsQD6b+MK+p7y4ej0Cw8gdS/1XXRieo4Y2NjNGnSBEVFRSguZrlE0i0jIyMm0EnvifXQnXy1lgd4BGARFol10XnMSvUNjwGounR1Ts8keg2RyWSYF9IGIauP4OeY23itqwc6KXkpNVFDYWBgwJMxIqpdj5dzAdRJdEA9Ep2oHtCU22DJDSJqiGJSYgA8mlRUo6t7VxjJjXAr8xauP7iOZnbNJIiOqGbxGID0Aa9Lr0FtG1tjRCd3AMC8ny6gWMUJa4iIiKgGqIqBrH/VjzVJdHOl+j47XoqIiIiISEfS89Jx/cF1ACXLuZgZmaGLWxcAQER8RG2HRkTUYDCJXsPefrEVLE0MEZuUgR2nbkgdDhEREdVHOTcAVQEgNwbMmqiXcSQ6ERFRvXA25SwAwN3KHXamJa9wD/AIAABEJETUZlhERA0Kk+g1zN5Cgf8EqSf4+uSPy0jPYY1kIiIi0rHMh/XQLZoB8oelpMwfJtGz4wGBV8MRERHVVWI99CdKuWgEKgMBAJHxkRDY5xMR1Qgm0WvBa1090MLRAvezC7Ay/IrU4RAREVF982Q9dAAwcwcgA4pzgbw7koRFRERE1VdWPXSNrm7quug3Mm4gLo1XoBER1QQm0WuBkYEcoSHeAIDNxxNwNSVT4oiIiIioXiktiW5gDJi5qR9n84SaiIiornraSHRzY3N0atwJgHo0OhER6R6T6LWkRwsHvODthGKVgAW/xPISKyIiItKd0pLoAOuiExER1XFFqiKcv3MeAODj5FNmu0CPQACsi05EVFOYRK9FH/bzgrGBHEeu3cMfsSlSh0NERET1hSaJbtVSe/njddGJiIiozrl87zLyi/NhaWwJT1vPMttp6qJHxEfUTmBERA0Mk+i1yMPeHK/3UHd6i3+NRV5hscQRERERUZ2nKgSyrqsfPzkS3VypvudIdCIiojpJU8rFx9kHclnZKZxu7t1gKDdEYnoi4tPiayc4IqIGhEn0WvZWz+ZwslLgxv1crD/CE1oiIiKqpqx4QCgGDEwBU1ft1zTlXFgTnYiIqE4S66E7+ZbbztzYHJ1c1XXRORqdiEj3mESvZeYKQ8zp4wUA+OLgNSSn50kcEREREdVpYj305sCTI9RYE52IiKhOi06JBqAeif40LOlCRFRzmESXwABfV3T0sEVOQTH+9/tFqcMhIiKiukxMorcs+ZqmnEtOIqBiGTkiIqK6RBAExCTHAAB8nX2f2j7AIwAAEJkQWZNhERE1SEyiS0Amk2F+SBvIZMDe6NuIir8vdUhERERUV2VeUd8/WQ8dAEwbA3Ijdd303Nu1GxcRERFVS1JWEu7m3IWBzABtHNo8tX33Jt1hIDNAfFo866ITEekYk+gSaedmjWEd3QEA83+5gGKVIHFEREREVCeJI9FLSaLLDQCzJurHrItORERUp2jqobdq1AqmRqZPbW9hbAF/V38AQGQ8R6MTEekSk+gSmt27FSwVhjh/KwM7o25IHQ4RERHVReUl0YFHJV2y4msjGiIiItIRcVLRCpRy0dDURWdJFyIi3WISXUKNLBSYHqQ+4f14/2Wk5xZKHBERERHVKcX56nrnQNlJdM3kohyJTkREVKfEpDysh+7kW+F1OLkoEVHNYBJdYmO6KdHMwRyp2QX4LPyq1OEQERFRXZJ1HRBUgKElYOJUehtNEj2LSXQiIqK6pCoj0bu7q+uix6XFITE9sWYCIyJqgJhEl5iRgRyhIeoJQjYdi8e1O5kSR0RERER1xuOTispkpbcx50h0IiKiuiarIAtXU9UD7XycfSq8nqXCEh1dOwJgXXQiIl1iEl0PBLR0QJCXI4pUAhb8EgtB4CSjREREVAFPq4cOsCY6ERFRHXQu5RwECHCxcIGjuWOl1g30CATAki5ERLrEJLqe+LCfN4wN5Dh89R7+vHhH6nCIiIioLqhIEl1TziX3JqDi/CtERER1gVgPvRKlXDQClAEAgIiECB1GRETUsDGJrieUjcwxoYf6JHfxr7HILyqWOCIiIiLSe5okulXLstuYOAEGJura6dmsjUpERFQXVKUeusazTZ6FXCbH9QfXcSP9hm4DIyJqoJhE1yNv9WwOR0sFElJzsP4I65YSERHRU2Q8VhO9LDLZo5Iu2fE1HRERERHpgCaJ7uNU8XroGlYKK3R0eVgXPYF10YmIdIFJdD1ioTDEe31aAwBW/3UNKRl5EkdEREREeqsoB8i9pX5cXhIdeDS5aBa/pCciItJ3xapinE05C6BqI9EBIMBDXdKFk4sSEekGk+h6ZqBvY/g1sUFOQTGW/n5J6nCIiIhIX2VeU98b2wIK+/LbauqiZzOJTkREpO+u3b+G3KJcmBmZobld8yptI1AZCIB10YmIdIVJdD0jl8swP6QNAGD3P7dwOuGBxBERERGRXqrIpKIaFhyJTkREVFdoSrm0d2oPA7lBlbahqYt+7f413Mq4pcPoiIgaJibR9ZCPuw2G+bsBABb8cgEqlSBxRERERKR3xCR6OZOKarAmOhERUZ1RnXroGtYm1vBz9gPAuuhERLrAJLqemh3cGpYKQ5y9mY5dp29KHQ4RERHpm8wKTCqqwZHoREREdUZ0SjSAqtdD1xBLusRHVGs7RETEJLrecrBUYFov9Unxsv2XkJFXKHFEREREpFcqU85FM7FoXjJQlFtzMREREVG1xSTHAGASnYhInzCJrsfGdFOiqYM57mUV4PPwq1KHQ0RERPqkMkl0Y1vA0FL9ODuh5mIiIiKiaknJSkFSVhJkkKGdY7tqbevZJs9CBhmu3r+K25m3dRQhEVHDxCS6HjM2lGPuS94AgG+PxuPanSyJIyIiIiK9UJgB5KWoH1ckiS6TPSrpks2SLkRERPoqJkU9Cr2FfQuYG5tXa1s2Jjbwc3lYFz2eddGJiKpD0iT6oUOHEBISAldXV8hkMuzdu7fc9mPHjoVMJitxa9OmTe0ELIGerRzRq7UjilQCFu2LhSBwklEiIqIGL/Oa+t7EETC2rtg6rItORESk93RVykUj0CMQAEu6EBFVl6RJ9OzsbPj4+OCLL76oUPtVq1YhKSlJvN24cQN2dnZ4+eWXazhSaX34kjeMDGSIvHIXf126I3U4REREJLWMSkwqqmGuVN9nx+s6GiIiItIRcVJRJ1+dbC9AGQAAiEzgSHQiouowlHLnffr0QZ8+fSrc3traGtbWj0Zb7d27Fw8ePMC4ceNqIjy94dnIHOOf9cTXkdexaF8snm3RCApDA6nDIiIiIqlUph66hjlHohMREem76ORoALobid6jSQ/IIMPl1MtIykyCi6WLTrZLRNTQ1Oma6OvXr0dQUBA8PDzKbJOfn4+MjAytW1009fkWcLBUID41B98ejZc6HCIiIpJSVZLorIlORESk13ILc3Hp3iUAgI+zj062aWtqKybkORqdiKjq6mwS/fbt2/j999/x+uuvl9tuyZIl4gh2a2truLu711KEumWhMMS7vVsDAD4Pv4o7GXkSR0RERESSEZPoLSu+DmuiExER6bULdy9AJajgYOYAFwvdjRgP8HhY0oWTixIRVVmdTaJv2rQJNjY2GDhwYLnt5syZg/T0dPF248aN2gmwBgz2awwfdxtkFxTjf2GXpA6HiIiIpJJZjZroBfeBwrp5ZR4REVF99ngpF5lMprPtBioDAQARCRE62yYRUUNTJ5PogiBgw4YNeO2112BsbFxuW4VCASsrK61bXSWXy7CgfxsAwO4zt/BP4gOJIyIiIqJal39fnQgHAMvmFV/PyBJQ2KsfZ8XrPCwiIiKqHk0S3cdJN6VcNHp4qOuiX7p3CclZyTrdNhFRQ1Enk+iRkZG4du0aJkyYIHUotc7X3QZDO7oBAOb/fAEqlSBxREREVB8dOnQIISEhcHV1hUwmw969e5+6Tn5+Pj744AN4eHhAoVBAqVRiw4YN4usbN26ETCbTupmYmGhtQxAEhIaGwsXFBaampggKCsLVq1d1/fbqNk0pF1NXwNC8cuuasy46ERGRvtL1pKIadqZ2aO/UHgBwKOGQTrdNRNRQSJpEz8rKQnR0NKKjowEAcXFxiI6ORmJiIgB1KZbRo0eXWG/9+vXo0qUL2rZtW5vh6o13ereChcIQMTfT8eOZm1KHQ0RE9VB2djZ8fHzwxRdfVHidYcOGITw8HOvXr8fly5exbds2tGrVSquNlZUVkpKSxFtCQoLW68uWLcNnn32GNWvW4MSJEzA3N0dwcDDy8jgXiKgq9dA1NCVdOBKdiIhIr6gEFc6mnAWg+yQ68FhJl/gInW+biKghMJRy51FRUejZs6f4fObMmQCAMWPGYOPGjUhKShIT6hrp6en48ccfsWrVqlqNVZ84Wppg6vPNseT3S1gadhm92zrD0sRI6rCIiKge6dOnD/r06VPh9mFhYYiMjMT169dhZ2cHAFAqlSXayWQyODs7l7oNQRCwcuVKfPjhhxgwYAAAYPPmzXBycsLevXsxYsSIyr+R+khMoleiHrqGBUeiExER6aO4B3HILMiEwkCBVo1aPX2FSgrwCMCqE6sQmcDJRYmIqkLSkeiBgYEQBKHEbePGjQDUl31HRERorWNtbY2cnBxMnDix9gPWI+O6e8KzkTnuZeVj9V/XpA6HiIgauJ9//hn+/v5YtmwZGjdujJYtW+Ltt99Gbm6uVrusrCx4eHjA3d0dAwYMwIULF8TX4uLikJycjKCgIHGZtbU1unTpguPHj9fae9F7VZlUVEOTRM9iEp2IiEifaEq5tHVsC0O57sc7PufxHAAg9m4s7mTf0fn2iYjquzpZE50AY0M5Ql/yBgBsOBqH63ezJI6IiIgasuvXr+PIkSM4f/489uzZg5UrV2LXrl2YPHmy2KZVq1bYsGEDfvrpJ3z//fdQqVTo1q0bbt5UlyZLTlZPdOXk5KS1bScnJ/G10uTn5yMjI0PrVq9VZyQ6a6ITERHppZqqh65hb2Yv1kWPjOdodCKiymISvQ7r2doRPVs5oLBYwKJ9sVKHQ0REDZhKpYJMJsOWLVvQuXNn9O3bF59++ik2bdokjkbv2rUrRo8eDV9fXwQEBGD37t1wcHDA119/Xa19L1myBNbW1uLN3d1dF29JPwlCNZPoSvV9Vrx6W0REVGd98cUXUCqVMDExQZcuXXDy5Mly2+/cuROtW7eGiYkJ2rVrh99++03r9YpM7n3//n2MGjUKVlZWsLGxwYQJE5CV9WhAV0REBAYMGAAXFxeYm5vD19cXW7Zs0dpGRSYab4hiUmIA1FwSHVCXdAHAki5ERFXAJHodN/clbxgZyHDw8l0cvMRLsoiISBouLi5o3LgxrK2txWVeXl4QBEEcaf4kIyMj+Pn54do1dVkyTa30lJQUrXYpKSll1lEH1BORp6eni7cbN25U9+3or/y7QGEGABlg2azy61so1fdFmUDBfV1GRkREtWjHjh2YOXMm5s2bhzNnzsDHxwfBwcG4c6f0c8Jjx45h5MiRmDBhAv755x8MHDgQAwcOxPnz58U2FZnce9SoUbhw4QIOHDiAffv24dChQ5g0aZLWftq3b48ff/wRZ8+exbhx4zB69Gjs27dPK56nTTTeENX0SHSAk4sSEVUHk+h1XFMHC4zrrr40e9G+WBQUqSSOiIiIGqLu3bvj9u3bWqPRrly5ArlcDjc3t1LXKS4uxrlz5+Di4gIA8PT0hLOzM8LDw8U2GRkZOHHiBLp27VrmvhUKBaysrLRu9VbGw3ro5k0AgyqM2jMwAUzVP2/WRSciqrs+/fRTTJw4EePGjYO3tzfWrFkDMzMzbNiwodT2q1atQu/evTF79mx4eXlh0aJF6NChA1avXg2g5OTe7du3x+bNm3H79m3s3bsXAHDx4kWEhYXhm2++QZcuXfDss8/i888/x/bt23H79m0AwPvvv49FixahW7duaNasGaZPn47evXtj9+7dWvFoJhrX3J4s5dbQpOak4kaGehCApuRKTdDURb9w9wLuZt+tsf0QEdVHTKLXA1Ofb45GFgpcv5eNjcd4QkxERNWXlZWF6OhoREdHA1BP+hkdHY3ExEQA6tHfo0ePFtu/8sorsLe3x7hx4xAbG4tDhw5h9uzZGD9+PExNTQEACxcuxB9//IHr16/jzJkzePXVV5GQkIDXX38dgPqEesaMGVi8eDF+/vlnnDt3DqNHj4arqysGDhxYq+9fb1WnlIuGpqRLdnx1oyEiIgkUFBTg9OnTWhNxy+VyBAUFlTkR9/Hjx7XaA0BwcLDYviKTex8/fhw2Njbw9/cX2wQFBUEul+PEiRNlxpueng47OzutZeVNNF6a+j7/iaaUS1PbprBS1NxggEZmjdDWsS0A4FDCoRrbDxFRfcQkej1gaWKEd3u3AgB8Fn4NdzLznrIGERFR+aKiouDn5wc/Pz8AwMyZM+Hn54fQ0FAAQFJSkphQBwALCwscOHAAaWlp8Pf3x6hRoxASEoLPPvtMbPPgwQNMnDgRXl5e6Nu3LzIyMnDs2DF4e3uLbd555x1MnToVkyZNQqdOnZCVlYWwsDDWStXQSRL94eSiHIlORFQn3bt3D8XFxZWaiDs5Obnc9hWZ3Ds5ORmOjo5arxsaGsLOzq7M/f7www84deoUxo0bJy572kTjpanv85/EJNd8PXSNQI9AACzpQkRUWYZSB0C6MaSDG74/kYiYG2lYFnYZn7zsI3VIRERUhwUGBkIoZ+LJjRs3lljWunVrHDhwoMx1VqxYgRUrVpS7X5lMhoULF2LhwoUVjrVBEZPoLau+DYuHSfRsJtGJiKjmHDx4EOPGjcO6devQpk0bcXnXrl21yrR169YNXl5e+Prrr7Fo0aJStzVnzhzMnDlTfJ6RkVGvEunRKdEAAF8n3xrfV6AyEKtPrUZEQkSN74uIqD7hSPR6Qi6XYX6IeiTfrtM3EX0jTdqAiIiISPd0Wc6FI9GJiOqkRo0awcDAoFITcTs7O5fbviKTezs7O5eYuLSoqAj3798vsd/IyEiEhIRgxYoVWuXfSvPkROOlqe/zn2gmFfVxrvnBcJq66OfvnMe9nHs1vj8iovqCSfR6xK+JLQZ3aAwAmP/zBahUZY8gJCIiojpGEHSTRBdHosdXOyQiIqp9xsbG6Nixo9ZE3CqVCuHh4WVOxN21a1et9gBw4MABsX1FJvfu2rUr0tLScPr0abHNX3/9BZVKhS5duojLIiIi0K9fPyxduhSTJk166vt5cqLxhia/KB+xd2MB1E45FwdzB7RxUF8ZwLroREQVxyR6PfNe79YwNzZA9I007PnnltThEBERka7k3gaKcwCZwaNEeFU8nkQvp2QPERHpr5kzZ2LdunXYtGkTLl68iDfffBPZ2dli7fHRo0djzpw5Yvvp06cjLCwMy5cvx6VLlzB//nxERUVhypQpACo2ubeXlxd69+6NiRMn4uTJkzh69CimTJmCESNGwNXVFYC6hEu/fv0wbdo0DBkyBMnJyUhOTsb9+/fFWJ420XhDc/HeRRSpimBrYgt3q9opUROoDATAuuhERJXBJHo942hlginPq0en/S/sErLyiySOiIiIiHRCMwrdXAnIjaq+HTN3QCYHivOAvNIngiMiIv02fPhwfPLJJwgNDYWvry+io6MRFhYmTgyamJiIpKQksX23bt2wdetWrF27Fj4+Pti1axf27t2Ltm3bim0qMrn3li1b0Lp1a/Tq1Qt9+/bFs88+i7Vr14qvb9q0CTk5OViyZAlcXFzE2+DBg8U2FZlovCHRlHLxdfaFTCarlX0GeAQAACITImtlf0RE9YFMKG/WsHooIyMD1tbWSE9Pr3d11DTyi4oRvOIQ4lNz8EZAU8zp4yV1SERE9VZD6Ffqmnr7O7m2Djg5CXDpA/T8rXrb2usB5CQCLxwDHEq/9J+IiOpxn1LH1affy4ywGVh1YhVmdJmBFb3Ln4BdV+5k34HTJ+ovXO7Nvgd7M/ta2S8RkT6qaJ/Ckej1kMLQAHNfUn+Lv+FIHOLuZUscEREREVVb5hX1fXXqoWuIJV04uSgREZGUYlJiANROPXQNR3NHeDuocwasi05EVDFMotdTz7d2REBLBxQWC1i8L1bqcIiIiKi6dDGpqIYmiZ7FJDoREZFUBEHQKudSm1jShYiocphEr6dkMhnmvuQNQ7kM4ZfuIOLyHalDIiIiourQZRLdXKm+z46v/raIiIioShLTE5GWlwYjuRG8HGq3DCsnFyUiqhwm0eux5o4WGNtNCQBYuC8WBUUqaQMiIiKiqhFUQOa/6sdWLau/PXOORCciIpKaZhS6t4M3jA2Ma3Xfz3k8BwA4m3IW93Pv1+q+iYjqIibR67lpQS3QyMIY1+9mY/PxeKnDISIioqrIuQGo8gG5MWDWpPrbY010IiIiyUlRD13D2cIZrRu1hgABhxMO1/r+iYjqGibR6zkrEyO8E9waALDqz6u4m5kvcURERERUaRkPJxW1aArIDaq/PTGJngioiqu/PSIiIqo0qeqhawR6BAJgSRcioopgEr0BGNrRDe3drJGZX4SlYRdx/N9U/BR9C8f/TUWxSpA6PCIiInoaXdZDBwATF0BuBAhFQO4t3WyTiIiIKkWTRPdx8pFk/wFKTi5KRFRRhlIHQDVPLpdhXkgbDPnqGHadvoVdpx+dLLtYm2BeiDd6t3WRMEIiIiIql66T6HIDwMwDyLqmroturoMSMURERFRh6XnpiEtTl1XzcZYoie6hTqJHJ0fjQe4D2JraShIHEVFdwJHoDcTdzLxSlyen5+HN788g7HxSLUdEREREFSYm0XUwqagG66ITERFJ5mzKWQBAE+smsDO1kyQGF0sXtLJvpa6Lnsi66ERE5WESvQEoVglY8Etsqa9pirks+CWWpV2IiIj0la5HogOAuVJ9nxWvu20SERFRhUhdD11DMxo9Mp4lXYiIysMkegNwMu4+ktJLH4kOqBPpSel5OBl3v/aCIiIioopRFQFZ19WPdZlE50h0IiIiyUhdD10jUBkIAIhIiJA0DiIifcckegNwp4xSLlVtR0RERLUoO149AaiBCWDWWHfbNX+YRM9iEp2IiKi2RadEA9CDkegPJxf9J+kfpOWlSRoLEZE+YxK9AXC0NNFpOyIiIqpFj5dykenw0M1Cqb7nSHQiIqJaVVhciAt3LgCQPonuaumKFnYtIEDAkcQjksZCRKTPmERvADp72sHF2gSyMl6XAXCxNkFnT2kmMyEiIqJy1EQ9dODRSPScW0BxgW63TURERGW6nHoZ+cX5sFJYQWmjlDqcRyVd4iMkjYOISJ8xid4AGMhlmBfiDQBlJtLnhXjDQF7Wq0RERCSZjCvqe10n0U0cAQMzAAKQk6jbbRMREVGZNPXQ2zu1h1yXV5lVEZPoRERPJ/2nNdWK3m1d8NWrHeBsXbJky8dD26N3WxcJoiIiIqKnqqmR6DLZo5IurItORERUazRJdF8nX0nj0AjweFgXPfkfpOelSxwNEZF+YhK9Aend1gVH3n0e2yY+g1XDfaG0NwMA3MvmJdxERER6q6aS6ABgrlTfZ8frfttERERUqpiUGADS10PXaGzVGM3tmkMlqFgXnYioDEyiNzAGchm6NrPHAL/GmNyzOQDgu+MJKFYJEkdGREREJRQXADkJ6seWLXW/fU1ddI5EJyIiqhWCIDwaia4nSXQACPQIBABEJkRKGwgRkZ5iEr0B6+/jClszI9xKy0X4xRSpwyEiIqInZV0HBBVgaAGYOOl++xYPk+jZTKITERHVhtuZt3Ev5x4MZAZo49hG6nBEAUp1SRfWRSciKh2T6A2YiZEBhndqAgDYdDxe2mCIiIiopMzHJhWV1cAE4JpyLhyJTkREVCs0pVxaN2oNE8OSc5ZJRVMX/XTSaWTkZ0gcDRGR/mESvYF79ZkmkMuAo9dScTUlU+pwiIiI6HE1WQ8deGwkenzNbJ+IiIi06GMpFwBwt3ZHM9tmUAkqHE08KnU4RER6h0n0Bs7N1gwveKsvD+dodCIiIj0jJtFroB468CiJnpcCFOXUzD6IiIhIpK9JdODRaHSWdCEiKolJdMKYbkoAwO4zt5CRVyhtMERERPRITY9EN7YFjKzVjzkanYiIqMZpkug+Tj7SBlKKQGUgACAiIULSOIiI9BGT6ISuTe3R0skCOQXF2BV1U+pwiIiISOPxmug1RayLHl9z+yAiIiJkFWTh2v1rAAAfZ/1LomsmFz19+zQy81nulYjocUyiE2QyGUZ3VQIANh+Ph0olSBsQERERqcur5Dz8crsmk+hiXXROLkpERFSTzqWcgwABrpaucDR3lDqcEppYN4GnjSeKhWIcvcG66EREj5M0iX7o0CGEhITA1dUVMpkMe/fufeo6+fn5+OCDD+Dh4QGFQgGlUokNGzbUfLD13CC/xrA0MUR8ag4ir96VOhwiIiLK+ld9b2QDKOxrbj/mD5PoWUyiExER1SR9LuWiIZZ0YV10IiItkibRs7Oz4ePjgy+++KLC6wwbNgzh4eFYv349Ll++jG3btqFVq1Y1GGXDYK4wxDB/dwDApmPx0gZDREREj+qhW7UEZLKa24+FUn3PmuhEREQ1Sp8nFdXQTC4amRApcSRERPrFUMqd9+nTB3369Klw+7CwMERGRuL69euws7MDACiVyhqKruF57RkPbDgah4jLdxF3LxuejcylDomIiKjhqulJRTU4Ep2IiKhWxKTEANDzJPrDuuinbp1CVkEWLIwtJI6IiEg/1Kma6D///DP8/f2xbNkyNG7cGC1btsTbb7+N3NxcqUOrF5SNzBHY0gEA8N3xBImjISIiauAyamFSUYA10YmIiGpBsaoYZ1POAtDvJLrSRgmljVJdFz2RddGJiDTqVBL9+vXrOHLkCM6fP489e/Zg5cqV2LVrFyZPnlzmOvn5+cjIyNC6UdnGdFMCAHZG3UB2fpG0wRARETVktTYSXam+L3gAFKTX7L6IiIgaqKv3ryK3KBdmRmZoZttM6nDKxZIuREQl1akkukqlgkwmw5YtW9C5c2f07dsXn376KTZt2lTmaPQlS5bA2tpavLm7u9dy1HXLcy0c4NnIHJn5Rdj9zy2pwyEiImq4xCR6y5rdj5EFoGikfsy66ERERDVCUw+9vVN7GMgNpA3mKTi5KBFRSXUqie7i4oLGjRvD2tpaXObl5QVBEHDz5s1S15kzZw7S09PF240bN2or3DpJLpdhdFcPAMDmY/EQBEHiiIiIiBqgwkwgL1n9uKZHogOsi05ERFTDYpIf1kN38pU2kArQJNFP3T6F7IJsaYMhItITdSqJ3r17d9y+fRtZWVnisitXrkAul8PNza3UdRQKBaysrLRuVL4hHd1gZmyAq3eycOzfVKnDISIiang0o9AVDoCxdfltdYF10YmIiGpUdEo0AP2uh66htFGiiXUTFKmKcOzGManDISLSC5Im0bOyshAdHY3o6GgAQFxcHKKjo5GYmAhAPYp89OjRYvtXXnkF9vb2GDduHGJjY3Ho0CHMnj0b48ePh6mpqRRvoV6yMjHCkA7qLyU2HYuXNhgiIqKGqLbqoWto6qJnxdfO/oiIiBoYTTkXH2cfaQOpIJZ0ISLSJmkSPSoqCn5+fvDz8wMAzJw5E35+fggNDQUAJCUliQl1ALCwsMCBAweQlpYGf39/jBo1CiEhIfjss88kib8+G9NNXdLlz4spuPkgR+JoiIiIGpjaTqJzJDoREVGNSclKQXJWMmSQoZ1jO6nDqZBAj0AAnFyUiEjDUMqdBwYGlltze+PGjSWWtW7dGgcOHKjBqAgAmjta4tnmjXDk2j1893cC5vTxkjokIiKihkOTRLeq4UlFNVgTnYiIqMbEpKjrobe0bwlzY3OJo6mYAGUAAODkrZPILsiuM3ETEdWUOlUTnWrXmG5KAMCOUzeQV1gsbTBEREQNSa2PRFeq77PjAE4qTkREpFOaUi51oR66hqeNJ9yt3FGoKsTxm8elDoeISHJMolOZnm/tCDdbU6TlFOKn6FtSh0NERLXo0KFDCAkJgaurK2QyGfbu3fvUdfLz8/HBBx/Aw8MDCoUCSqUSGzZsEF9ft24devToAVtbW9ja2iIoKAgnT57U2sbYsWMhk8m0br1799b129N/mVfU97VWE11dxg1F2UA+JxUnIiLSJbEeulPdqIcOADKZTKyLHhnPki5EREyiU5kM5DK89oz6pHrTsYRyS+8QEVH9kp2dDR8fH3zxxRcVXmfYsGEIDw/H+vXrcfnyZWzbtg2tWrUSX4+IiMDIkSNx8OBBHD9+HO7u7njxxRdx65b2F7W9e/dGUlKSeNu2bZvO3ledUPDgUSLbonnt7NPABDB1VT9mXXQiIiKdqosj0QEgwENd0iUiIULaQIiI9ICkNdFJ/w3v5I4Vf15BbFIGohIeoJPSTuqQiIioFvTp0wd9+vSpcPuwsDBERkbi+vXrsLNT9xVKpVKrzZYtW7Sef/PNN/jxxx8RHh6O0aNHi8sVCgWcnZ2rHnxdl/GwlIupK2BkUXv7tfAEcm+r66Lbd6q9/RIREdVjuYW5uJx6GUDdS6JrRqKfuHkCOYU5MDMykzYgIiIJcSQ6lcvGzBgDfRsDADYei5c2GCIi0ls///wz/P39sWzZMjRu3BgtW7bE22+/jdzc3DLXycnJQWFhoZh014iIiICjoyNatWqFN998E6mp5ZcXyc/PR0ZGhtatTqvteuga5kr1fXZ87e6XiIioHjt/5zxUggqO5o5wtqhbgwSa2jaFm5UbClWF+Pvm31KHQ0QkKSbR6alGd1UCAMLOJyM5PU/aYIiISC9dv34dR44cwfnz57Fnzx6sXLkSu3btwuTJk8tc591334WrqyuCgoLEZb1798bmzZsRHh6OpUuXIjIyEn369EFxcdkTXC9ZsgTW1tbizd3dXafvrdZJlkT3VN9nsZwLERGRrjxeD10mk0kbTCXJZLJHJV3iI6QNhohIYkyi01N5u1qhs9IOxSoBW04kSB0OERHpIZVKBZlMhi1btqBz587o27cvPv30U2zatKnU0ej/+9//sH37duzZswcmJibi8hEjRqB///5o164dBg4ciH379uHUqVOIiIgoc99z5sxBenq6eLtx40ZNvMXaU9uTimpYPEyisyY6ERGRzsSkxACoe6VcNDQlXZhEJ6KGjkl0qpAx3ZQAgG0nE5FfVPZoQCIiaphcXFzQuHFjWFtbi8u8vLwgCAJu3ryp1faTTz7B//73P/zxxx9o3759udtt2rQpGjVqhGvXrpXZRqFQwMrKSutWp0ldzoUj0YmIiHSmrk4qqiHWRb91ArmFZZfpIyKq75hEpwp5sY0TnK1McC+rAL+dS5I6HCIi0jPdu3fH7du3kZWVJS67cuUK5HI53NzcxGXLli3DokWLEBYWBn9//6du9+bNm0hNTYWLi0uNxK13BOGxJHrL2t23OBI9ARBUtbtvIiKiekglqMSR6D5OPhJHUzXNbJvB1dIVBcUFrItORA0ak+hUIUYGcrz6TBMAwMZjLOlCRFTfZWVlITo6GtHR0QCAuLg4REdHIzExEYC6hMro0aPF9q+88grs7e0xbtw4xMbG4tChQ5g9ezbGjx8PU1NTAMDSpUsxd+5cbNiwAUqlEsnJyUhOThYT71lZWZg9ezb+/vtvxMfHIzw8HAMGDEDz5s0RHBxcuz8AqeTfAwrTAcgAy2a1u28zd0BmAKjygdzk2t03ERFRPXT9wXVkFWRBYaBAq0atpA6nSmQyGUu6EBGBSXSqhBGdm8DYQI6YG2mIvpEmdThERFSDoqKi4OfnBz8/PwDAzJkz4efnh9DQUABAUlKSmFAHAAsLCxw4cABpaWnw9/fHqFGjEBISgs8++0xs89VXX6GgoABDhw6Fi4uLePvkk08AAAYGBjh79iz69++Pli1bYsKECejYsSMOHz4MhUJRi+9eQpp66GbugIFJ+W11TW4ImD28aoB10YmIiKotJlk9Cr2dUzsYyg0ljqbqNJOLRiZEShwJEZF06u6nONW6RhYKvNTeBbv/uYVNx+LhO9xX6pCIiKiGBAYGQhCEMl/fuHFjiWWtW7fGgQMHylwnPj6+3H2amppi//79FQ2xfpKqHrqGuae6nEtWPODQXZoYiIiI6gmxHrqTr6RxVJdmJPrfN/9GXlEeTAxr+Yt+IiI9wJHoVCmaCUZ/PZuEu5n50gZDRERU32iS6Fa1XA9dQ6yLzpHoRERE1RWdEg0A8HGum/XQNVrYtYCLhQvyi/NZF52IGiwm0alSfNxt4Otug4JiFbafTHz6CkRERFRx+jASHQCymEQnIiKqLnEkurOvpHFUl0wmQ4DyYUmXeJZ0IaKGiUl0qrSxD0ejf38iAYXFKmmDISIiqk+kTqJbKNX32fHS7J+IiKieSM1Jxc2MmwCA9k7tJY6m+gI9AgEAEQkRksZBRCQVJtGp0vq0c0YjC2OkZORj/4VkqcMhIiKqHwRB+iQ6R6ITEdUZX3zxBZRKJUxMTNClSxecPHmy3PY7d+5E69atYWJignbt2uG3337Tel0QBISGhsLFxQWmpqYICgrC1atXtdrcv38fo0aNgpWVFWxsbDBhwgRkZWWJr0dERGDAgAFwcXGBubk5fH19sWXLlkrHUh/EpKgnFW1m2wxWCiuJo6m+J+uiExE1NEyiU6UpDA3wSucmAIBNx+KlDYaIiKi+yE0CirIBmfxRMru2aWqi5yQCqiJpYiAioqfasWMHZs6ciXnz5uHMmTPw8fFBcHAw7ty5U2r7Y8eOYeTIkZgwYQL++ecfDBw4EAMHDsT58+fFNsuWLcNnn32GNWvW4MSJEzA3N0dwcDDy8h4lTEeNGoULFy7gwIED2LdvHw4dOoRJkyZp7ad9+/b48ccfcfbsWYwbNw6jR4/Gvn37KhVLfaAp5VLX66FrtLRvCSdzJ+QV5eHkrfK/sCEiqo9kgiAIUgdRmzIyMmBtbY309HRYWdX9b4OlkpKRh+7/+wtFKgG/TnsWbVytpQ6JiEgS7Ff0T539naREAuGBgEUzoP81aWIQVMAOU0BVAPSPe1TehYiogdLXPqVLly7o1KkTVq9eDQBQqVRwd3fH1KlT8d5775VoP3z4cGRnZ2sls5955hn4+vpizZo1EAQBrq6umDVrFt5++20AQHp6OpycnLBx40aMGDECFy9ehLe3N06dOgV/f38AQFhYGPr27YubN2/C1dW11Fj79esHJycnbNiwoUKxVIS+/l4eN3rPaHx39jssDFyIuQFzpQ5HJ0bsGoEdF3ZgQeAChAaESh0OEZFOVLRP4Uh0qhInKxP0busMANh8LEHiaIiIiOoBqUu5AA9HwXuoH7MuOhGRXiooKMDp06cRFBQkLpPL5QgKCsLx48dLXef48eNa7QEgODhYbB8XF4fk5GStNtbW1ujSpYvY5vjx47CxsRET6AAQFBQEuVyOEydOlBlveno67OzsKhxLafLz85GRkaF103eaci51fVLRx2lKukQmcHJRImp4mESnKtNMMLo3+hYeZBdIGwwREVFdl3lFfS9lEh1gXXQiIj137949FBcXw8nJSWu5k5MTkpNLn7MqOTm53Paa+6e1cXR01Hrd0NAQdnZ2Ze73hx9+wKlTpzBu3LgKx1KaJUuWwNraWry5u7uX2VYf5BflI/ZuLID6lUQP8AgAABy7cQz5RfkSR0NEVLuYRKcq6+hhC28XK+QXqbAj6obU4RAREdVt+jASHXhUFz2bSXQiIqq6gwcPYty4cVi3bh3atGlTrW3NmTMH6enp4u3GDf0+/4y9G4siVRFsTWzhZuUmdTg607pRaziaO7IuOhE1SEyiU5XJZDJxNPp3xxNQrGpQ5fWJiIh0S1+S6OZK9X1WvJRREBFRGRo1agQDAwOkpKRoLU9JSYGzs3Op6zg7O5fbXnP/tDZPTlxaVFSE+/fvl9hvZGQkQkJCsGLFCowePbpSsZRGoVDAyspK66bPNJOK+jr7QiaTSRuMDslkMpZ0IaIGi0l0qpb+vq6wNTPCrbRchF9MefoKREREVJKgArL+VT+2ailtLByJTkSk14yNjdGxY0eEh4eLy1QqFcLDw9G1a9dS1+natatWewA4cOCA2N7T0xPOzs5abTIyMnDixAmxTdeuXZGWlobTp0+Lbf766y+oVCp06dJFXBYREYF+/fph6dKlmDRpUqVjqQ/qYz10DU1Jl4j4CGkDISKqZUyiU7WYGBlgeKcmAIBNx+OlDYaIiKiuyrkJFOcBciPArIm0sbAmOhGR3ps5cybWrVuHTZs24eLFi3jzzTeRnZ0t1h4fPXo05syZI7afPn06wsLCsHz5cly6dAnz589HVFQUpkyZAkA9wnjGjBlYvHgxfv75Z5w7dw6jR4+Gq6srBg4cCADw8vJC7969MXHiRJw8eRJHjx7FlClTMGLECLi6ugJQl3Dp168fpk2bhiFDhiA5ORnJycm4f/9+hWOpDx4fiV7faEaiH7txDAXFnBuNiBoOJtGp2l59pgnkMuDotVRcTcmUOhwiIqK6RzOpqEVTQG4obSwWSvV97m2gmJOGERHpo+HDh+OTTz5BaGgofH19ER0djbCwMHHCzsTERCQlJYntu3Xrhq1bt2Lt2rXw8fHBrl27sHfvXrRt21Zs884772Dq1KmYNGkSOnXqhKysLISFhcHExERss2XLFrRu3Rq9evVC37598eyzz2Lt2rXi65s2bUJOTg6WLFkCFxcX8TZ48OBKxVKXCYIgJtF9nHykDaYGeDXygoOZA3KLcnHq1impwyEiqjUyQRAaVCHrjIwMWFtbIz09Xe/rqNUlkzZH4Y/YFLz6TBMsHthO6nCIiGoN+xX9Uyd/J1e/Ak5NBlxfAgJ/kTYWQQB+sACKc4CXrgBWEtdoJyKSUJ3sUxoAff69xKfFw3OVJ4zkRsh6PwvGBsZSh6RzL+98Gbtid2Fxz8X44LkPpA6HiKhaKtqncCQ66YRmgtHdZ24hI69Q2mCIiIjqmoyHk4pKXQ8dAGQy1kUnIiKqophkdT30No5t6mUCHQACPQIBABEJEZLGQURUm5hEJ53o2sweLZ0skFNQjF1RN6UOh4iIqG7JfJhEt9STUd/mSvU966ITERFVSn2uh67BuuhE1BAxiU46IZPJMLqrEgCw+Xg8VKoGVSWIiIioerL0LIkujkSPlzQMIiKiuiY6JRpA/ayHruHt4I1GZo2QU5iDqNtRUodDRFQrmEQnnRnk1xiWJoaIT81B5NW7UodDRERUN6iKgMx/1Y/1JYlu/jCJzpHoRERElaIp51KfR6LLZDIEeAQAACLiI6QNhoioljCJTjpjrjDEyx3dAQCbjsVLGwwREVFdkZ0ACEWAgQlg5iZ1NGqsiU5ERFRpaXlpiEtT9531eSQ68KikS2RCpLSBEBHVEibRSadGd/WATAZEXL6LuHvZUodDRESk/zT10C2aAzI9OTRjTXQiIqJKO5tyFgDQxLoJbE1tJY6mZmlGoh9NPIrC4kKJoyEiqnl6cqZG9YWykTkCWzoAAL47niBxNERERHWAvk0qCjwaiZ5/Fyjil+JERLqUl5cndQhUQxrCpKIabRzbwN7UHtmF2TiddFrqcIiIahyT6KRzY7opAQA7o24gO79I2mCIiIj0XeYV9b0+JdGNbQAjG/XjrHgJAyEiqh9UKhUWLVqExo0bw8LCAtevXwcAzJ07F+vXr5c4OtIVsR66k6+0gdQCuUyO5zyeA8C66ETUMDCJTjr3XAsHeDYyR2Z+EXb/c0vqcIiIiPSbPo5EBwALpfqeddGJiKpt8eLF2LhxI5YtWwZjY2Nxedu2bfHNN99IGBnpUnRKNICGMRIdeFQXnUl0ImoImEQnnZPLZXjtGQ8AwOZj8RAEQeKIiIiI9JgmiW7VUto4nmT+sKQLR6ITEVXb5s2bsXbtWowaNQoGBgbich8fH1y6dEnCyEhXCosLcf7OeQCAj3P9nlRUQ5NEP3qDddGJqP5jEp1qxFB/N5gZG+DqnSwc+zdV6nCIiIj0U3EBkB2vfqx3I9EfJtE5Ep2IqNpu3bqF5s2bl1iuUqlQWMjkY31w6d4lFBQXwEphBaWNUupwakVbx7awM7VDVkEWziSdkTocIqIaJWkS/dChQwgJCYGrqytkMhn27t1bbvuIiAjIZLISt+Tk5NoJmCrMysQIQzq4AQA2HYuXNhgiIiJ9lR0HCCrA0AIwcZY6Gm3iSHQm0YmIqsvb2xuHDx8usXzXrl3w8/OTICLStZgUdT10HycfyGUNY7wi66ITUUMi6Sd7dnY2fHx88MUXX1RqvcuXLyMpKUm8OTo61lCEVB1juqlLuvx5MQU3H+RIHA0REZEeytBMKtockMmkjeVJYk30eCmjICKqF0JDQzFlyhQsXboUKpUKu3fvxsSJE/HRRx8hNDRU6vBIB6KTowE0nHroGoEegQCAyIRIaQMhIqphhlLuvE+fPujTp0+l13N0dISNjY3uAyKdau5oie7N7XH0Wiq++zsBc/p4SR0SERGRftHXSUUBjkQnItKhAQMG4JdffsHChQthbm6O0NBQdOjQAb/88gteeOEFqcMjHdAk0X2cGkY9dI0AZQAA4HDiYRSpimAolzTNRERUY+rkNUa+vr5wcXHBCy+8gKNHj0odDpVjTFclAGDHqRvIKyyWNhgiIiJ9IybR9WxSUeDRSPTCNKAgTcJAiIjqhx49euDAgQO4c+cOcnJycOTIEbz44otSh0U6IAhCgx2J3t6pPWxNbFkXnYjqvTqVRHdxccGaNWvw448/4scff4S7uzsCAwNx5kzZH9T5+fnIyMjQulHt6eXlBDdbU6TlFOKn6FtSh0NERKRf9HkkuqE5oHBQP+ZodCKiamnatClSU1NLLE9LS0PTpk0liIh06XbmbaTmpsJAZoA2jm2kDqdWPV4XPTKeJV2IqP6qU0n0Vq1a4Y033kDHjh3RrVs3bNiwAd26dcOKFSvKXGfJkiWwtrYWb+7u7rUYMRnIZXjtGXVt9E3HEiAIgsQRERER6ZFMTU10PUyiA4DFw5IurItORFQt8fHxKC4ueWVufn4+bt3iYKO6TjMK3cvBCyaGJtIGI4EAD3VJl4iECGkDISKqQXW+WFXnzp1x5MiRMl+fM2cOZs6cKT7PyMhgIr2WDe/kjk8PXEFsUgaiEh6gk9JO6pCIiIikV5QL5NxQP9bXJLq5J5B6kiPRiYiq6OeffxYf79+/H9bW1uLz4uJihIeHQ6lUShAZ6VJDrYeuEagMBAAcTmBddCKqv+r8J1t0dDRcXFzKfF2hUEChUNRiRPQkGzNjDPRtjB1RN7DxWDyT6ERERACQ9a/63sgGUDSSNJQyaeqiZzOJTkRUFQMHDgQAyGQyjBkzRus1IyMjKJVKLF++XILISJeiU6IBNLx66BrtndrDxsQGaXlpiE6Ohr+rv9QhERHpnKRJ9KysLFy7dk18HhcXh+joaNjZ2aFJkyaYM2cObt26hc2bNwMAVq5cCU9PT7Rp0wZ5eXn45ptv8Ndff+GPP/6Q6i1QBY3ppsSOqBsIO5+M5PQ8OFs3vEvciIiItDxeD10mkzaWspg/LOeSFS9pGEREdZVKpQIAeHp64tSpU2jUSE+/NKVqiUmOAdBwk+gGcgP0aNIDv1z5BRHxEUyiE1G9JGlN9KioKPj5+cHPzw8AMHPmTPj5+SE0NBQAkJSUhMTERLF9QUEBZs2ahXbt2iEgIAAxMTH4888/0atXL0nip4rzdrVCZ6UdilUCtpxIkDocIiIi6enzpKIaYk10jkQnIqqOuLg4JtDrqcz8TFy7rx4c2FDLuQCPSrpEJnByUSKqnyQdiR4YGFjuRJMbN27Uev7OO+/gnXfeqeGoqKaM6abEyfj72HYyEVOebw6FoYHUIREREUlH3ycVBR4biR4HCIL+jpgnIqoDsrOzERkZicTERBQUFGi9Nm3aNImiouo6d+ccBAhwtXSFg7mD1OFIRpNEP5RwCMWqYhjIeb5PRPVLna+JTnXHi22c4GxlguSMPPx2LgmD/NykDomIiEg6dWEkunkTADKgOAfIvwuYOEodERFRnfTPP/+gb9++yMnJQXZ2Nuzs7HDv3j2YmZnB0dGRSfQ6rKGXctHwcfKBtcIa6fnpiE6ORkfXjlKHRESkU5KWc6GGxchAjlFdmgAANh5jSRciImrgNEl0q5bSxlEeAwVg6qp+zLroRERV9p///AchISF48OABTE1N8ffffyMhIQEdO3bEJ598InV4VA3RydEAAF8nX0njkJqB3AA9PHoAYEkXIqqfmESnWjWySxMYG8gRcyMN0TfSpA6HiIhIGoVZQG6S+rE+j0QHWBediEgHoqOjMWvWLMjlchgYGCA/Px/u7u5YtmwZ3n//fanDo2qITokGAPg4N9x66BqBHoEAgIj4CEnjICKqCUyiU61qZKHAS+1dAACbjsVLGwwREZFUNKPQFY0AYxtJQ3kqc6X6PotJdCKiqjIyMoJcrj79dnR0RGJiIgDA2toaN27ckDI0qoZiVTHOpZwDwHIuABCgDADwqC46EVF9wiQ61box3ZQAgF/PJuFuZr60wRAREUmhLtRD1xBHosdLGgYRUV3m5+eHU6dOAQACAgIQGhqKLVu2YMaMGWjbtq3E0VFVXb1/FblFuTA3Mkcz22ZShyM5X2dfWCmskJ6fjrMpZ6UOh4hIp5hEp1rn424DH3cbFBSrsP1kotThEBFRKQ4dOoSQkBC4urpCJpNh7969T10nPz8fH3zwATw8PKBQKKBUKrFhwwatNjt37kTr1q1hYmKCdu3a4bffftN6XRAEhIaGwsXFBaampggKCsLVq1d1+db0g5hE1+N66BrmD5PoHIlORFRl//3vf+Hior4i96OPPoKtrS3efPNN3L17F19//bXE0VFVaeqht3dqDwO5gbTB6AFDuSGebfIsAJZ0IaL6h0l0ksTYbh4AgO9PJKCwWCVxNERE9KTs7Gz4+Pjgiy++qPA6w4YNQ3h4ONavX4/Lly9j27ZtaNWqlfj6sWPHMHLkSEyYMAH//PMPBg4ciIEDB+L8+fNim2XLluGzzz7DmjVrcOLECZibmyM4OBh5eXk6fX+Sq5Mj0ZlEJyKqKn9/f/Ts2ROAupxLWFgYMjIycPr0afj6+kobHFWZJonu48R66BpiXfSECEnjICLSNSbRSRJ927mgkYUxUjLysf9CstThEBHRE/r06YPFixdj0KBBFWofFhaGyMhI/PbbbwgKCoJSqUTXrl3RvXt3sc2qVavQu3dvzJ49G15eXli0aBE6dOiA1atXA1CPQl+5ciU+/PBDDBgwAO3bt8fmzZtx+/btCo2Er1PqUhJdUxM9OwEQ+MU3EZEunTlzBi+99JLUYVAVaZLorIf+SKAyEABwOOEwVDxuIKJ6hEl0koTC0ACvdG4CgBOMEhHVBz///DP8/f2xbNkyNG7cGC1btsTbb7+N3Nxcsc3x48cRFBSktV5wcDCOHz8OAIiLi0NycrJWG2tra3Tp0kVsU29kXlHf14UkupkbIDMAVAVAbpLU0RAR1Tn79+/H22+/jffffx/Xr18HAFy6dAkDBw5Ep06doFIx0VhXxaTEAGAS/XF+Ln6wNLbEg7wHrItORPUKk+gkmVHPeMBQLsOp+Ae4cDtd6nCIiKgarl+/jiNHjuD8+fPYs2cPVq5ciV27dmHy5Mlim+TkZDg5OWmt5+TkhOTkZPF1zbKy2pQmPz8fGRkZWje9VpAG5N9TP7ZsLmkoFSI3BMzUX3yzLjoRUeWsX78effr0wcaNG7F06VI888wz+P7779G1a1c4Ozvj/PnzJeYHobohOSsZyVnJkMvkaOfUTupw9AbrohNRfcUkOknGycoEwW2dAQCbjyVIHA0REVWHSqWCTCbDli1b0LlzZ/Tt2xeffvopNm3apDUavSYsWbIE1tbW4s3d3b1G91dtmlIupi6AkaW0sVSUhVJ9z7roRESVsmrVKixduhT37t3DDz/8gHv37uHLL7/EuXPnsGbNGnh5eUkdIlVRTLJ6FHoLuxYwMzKTOBr9oinpEpkQKW0gREQ6xCQ6SWpsNyUAYG/0LTzILpA2GCIiqjIXFxc0btwY1tbW4jIvLy8IgoCbN28CAJydnZGSkqK1XkpKCpydncXXNcvKalOaOXPmID09XbzduHFDJ++pxtSleuga5g8nF82KlzQMIqK65t9//8XLL78MABg8eDAMDQ3x8ccfw83NTeLIqLpYD71sAR4BAIDI+EjWRSeieoNJdJKUv4ctvF2skF+kwo4oPU96EBFRmbp3747bt28jKytLXHblyhXI5XIxUdC1a1eEh4drrXfgwAF07doVAODp6QlnZ2etNhkZGThx4oTYpjQKhQJWVlZaN71WF5PoFg+T6ByJTkRUKbm5uTAzU49SlslkUCgUcHFxkTgq0gXWQy9bB5cOsDC2wIO8BziXck7qcIiIdMJQ6gCoYZPJZBjbTYl3fjyL744nYGKPpjCQy6QOi4iowcvKysK1a9fE53FxcYiOjoadnR2aNGmCOXPm4NatW9i8eTMA4JVXXsGiRYswbtw4LFiwAPfu3cPs2bMxfvx4mJqaAgCmT5+OgIAALF++HP369cP27dsRFRWFtWvXAlD3CTNmzMDixYvRokULeHp6Yu7cuXB1dcXAgQNr/WdQYzLq0KSiGuZK9T1rohMRVdo333wDCwsLAEBRURE2btyIRo0aabWZNm2aFKFRNXAketmMDIzwbJNnEXYtDJEJkfBx9pE6JCKiamMSnSTX39cV//39Im6l5SL8YgpebFP2JftERFQ7oqKi0LNnT/H5zJkzAQBjxozBxo0bkZSUhMTERPF1CwsLHDhwAFOnToW/vz/s7e0xbNgwLF68WGzTrVs3bN26FR9++CHef/99tGjRAnv37kXbtm3FNu+88w6ys7MxadIkpKWl4dlnn0VYWBhMTExq4V3XEnEkektp46gMcSR6vKRhEBHVNU2aNMG6devE587Ozvjuu++02shkMibR65icwhxcTr0MAPBxYoK4NAEeAQi7FoaI+AhM68K/byKq+2SCIAhSB1GbMjIyYG1tjfT0dP2/3LsBWfL7RXwdeR3dm9tjy+vPSB0OEVGFsV/RP3r9OxEEYJcdUJgG9D0H2LR96ip6Iec2sLcxIDMAhucBco7DIKKGQa/7lAZM6t/LyVsn0eWbLnA0d0TyrGTIZLya+kl/3/wbXdd3hb2pPe7MvgO5jNWEiUg/VbRP4acY6YXXnvGAXAYcvZaKqymZUodDRERUM/JT1Ql0ALBoJmkolWLqDMgVgFAM5HAOEyIiathikh/VQ2cCvXQdXTrC3MgcqbmpuHDngtThEBFVG5PopBfcbM0Q5OUEANh0PF7aYIiIiGpK5sN66GbugKGptLFUhkwOmHuoH7MuOhERNXBiPXQnX0nj0GdGBkbo3qQ7ACAiPkLaYIiIdIBJdNIbY7spAQC7z9xCRl6htMEQERHVBLEeeh2aVFSDddGJiIgAANEp0QDACTOfItAjEAAQmRApbSBERDrAJDrpja7N7NHC0QI5BcXYFXVT6nCIiIh0ry5OKqph/jCJzpHoRETUgKkElVY5FypboDIQgDqJrhJU0gZDRFRNVUqi37hxAzdvPkpynjx5EjNmzMDatWt1Fhg1PDKZDKMfjkbffDweKlWDmvOWiEhn2E/rsTo9El2pvs9mEp2IiBqu6w+uI7swGyaGJmhpXwe/FK9F/q7+MDMyw72ce4i9Gyt1OERE1VKlJPorr7yCgwcPAgCSk5Pxwgsv4OTJk/jggw+wcOFCnQZIDctgv8awNDFEfGoOIq/elTocIqI6if20HqvLSXRzlnMhIqqqjIyMUm+ZmZkoKCiQOjyqBE099LaObWEoN5Q2GD1nZGCE7u7quuiR8SzpQkR1W5WS6OfPn0fnzp0BAD/88APatm2LY8eOYcuWLfh/9u48Lspyf+P4ZwZkFVDcAEFBc1+Q3HLH1NyyzFazn2Wlp7LStFPRorbarlamWZbtm5lldSiXzDXXMM0lNRRUUFNZFRDm+f0xMoqCggLPDFzv83pewzxzz8w1TMcbvtzzvefMmVOa+aSS8fV058a2YQB8uGqPuWFERFyU5mknZRinNxZ1xSJ6VbVzERG5WNWqVaN69ernHNWqVcPb25v69eszceJEbDa1vHB22lS0ZPJbuizdu9TUHCIil+qiiugnT57E09MTgEWLFnHNNdcA0LRpU5KSkkovnVRKwzvVB2DpjsPE/5tpchoREdejedpJZSVDbiZYrFC1gdlpSi5/JfqJA5CXZW4WEREXM2fOHEJCQnj88ceZP38+8+fP5/HHH6du3brMmDGDUaNG8cYbb/Diiy+aHVUuYNNB9UMviR71ewD2leiGoZatIuK6LqqI3qJFC2bOnMny5ctZuHAh/fr1A+DAgQPUqFGjVANK5RNe05foJrUA+Hj1XpPTiIi4Hs3TTiq/lYtvOLh5mBrlonjWAHdf+9eZmp9FREriww8/5LXXXuPZZ59l0KBBDBo0iGeffZZXX32VL7/8kieeeII33niDjz76yOyocgGOlegqohdL+7rt8Xb35vDxw2z7d5vZcURELtpFFdFfeukl3nnnHaKjoxk6dCiRkZEAfP/9946Pj4tcittPbTD69fpEMrNzzQ0jIuJiNE87KVfuhw5gsZxejZ6xx9QoIiKuZtWqVURFRZ1zPioqitWrVwPQtWtXEhISyjualMC/x/9lX5p98/bWdVqbnMY1eLh50KWevS/60j1LzQ0jInIJLmoXjOjoaP7991/S0tKoXr264/yoUaPw8fEptXBSefVoVIuImr7E/5vJvD/2839X1Dc7koiIy9A87aTSXLgfer6qEZC6BTLVF11EpCTCwsKYPXv2Oe1aZs+eTViYfU+oI0eOFJi3xflsSra3cmlYvSF+nn4mp3EdPer3YNE/i1i6Zyn3tb/P7DgiIhflooroJ06cwDAMxwS/d+9evv32W5o1a0bfvn1LNaBUTlarhf+7oj7P/LCVj1bt4baO9bBYLGbHEhFxCZqnnZSrr0QHeysa0OaiIiIl9Oqrr3LjjTfyv//9j/bt2wOwfv16tm/fzty5cwFYt24dN998s5kx5QLUD/3i5G8u+ttee190/W4vIq7ootq5XHvttY5ebSkpKXTs2JHXXnuNwYMHM2PGjFINKJXXDe1C8fFwY+ehDFbtPmJ2HBERl6F52kk5iuiNzc1xKaqeaueSucfUGCIiruaaa65h+/bt9O/fn6NHj3L06FH69+/P9u3bufrqqwG49957ef3114v9mNOnTyc8PBwvLy86duzI2rVrzzv+66+/pmnTpnh5edGqVSt++umnArcbhsGECRMIDg7G29ub3r17s3PnzgJjjh49yrBhw/D396datWrcddddZGRkOG7PysrijjvuoFWrVri7uzN48OBzcixduhSLxXLOkZycXOzXbhb1Q7847UPa4+nmyaHMQ7y2+jWW7llKni3P7FgiIiVyUUX0jRs30q1bNwDmzp1LnTp12Lt3Lx999BFvvPFGqQaUysvfqwpDLq8LwIer9pgbRkTEhWiedkKGDTJ22b926ZXo+T3RtRJdRKSkIiIiePHFF5k3bx7z5s1j8uTJhIeHX9Rjffnll4wbN46JEyeyceNGIiMj6du3L4cOHSp0/KpVqxg6dCh33XUXf/zxB4MHD2bw4MFs2bLFMebll1/mjTfeYObMmaxZswZfX1/69u1LVlaWY8ywYcP466+/WLhwIT/88APLli1j1KhRjtvz8vLw9vbmwQcfpHfv3ud9DTt27CApKclx1K5d+6K+F+Upv4geWSfS3CAu5sedPzq+/u/C/9Lzw56ETwtn3rZ5JqYSESkZi2EYRknv5OPjw/bt26lXrx433XQTLVq0YOLEiSQmJtKkSROOHz9eFllLRVpaGgEBAaSmpuLv7292HLmAnQfT6TNlGRZg2tA2GAbU9vOiQ0QgblZ9BExEzOeM84orz9OlwRnfEzIT4bt6YHGHm0+A9aI66pnvWBz8Lwo8a8L1h81OIyJS5kpzTklJSWHt2rUcOnQIm81W4Lbhw4eX6LE6duxI+/bteeuttwCw2WyEhYXxwAMP8Nhjj50z/uabbyYzM5MffvjBce6KK66gTZs2zJw5E8MwCAkJYfz48Tz88MMApKamUqdOHebMmcMtt9zCtm3baN68OevWraNdu3YAxMbGMmDAAPbt20dISEiB57zjjjtISUlh/vz5Bc4vXbqUnj17cuzYMapVq1ai153PjLk+OzebqpOrkmvLJWFsAmEBYeXyvK5u3rZ53PDVDRgULD1ZsP8+P/emuQxpNsSMaCIiQPHnlItaiX7ZZZcxf/58EhMT+fnnn7nqqqsAOHTokPP8sioVQqM6fjQNqooBPPh5HGO+iGPou7/T9aUlxG5JMjueiIhT0jzthNJPbSpatYHrFtDh9Er07H/hZMb5x4qIiMOCBQuoV68e/fr14/7772fMmDGOY+zYsSV6rJycHDZs2FBgpbfVaqV3796sXr260PusXr36nJXhffv2dYyPj48nOTm5wJiAgAA6duzoGLN69WqqVavmKKAD9O7dG6vVypo1a0r0GgDatGlDcHAwffr0YeXKlSW+f3nbengrubZcAr0DCfUPNTuOS8iz5TEmdsw5BXTAcW5s7Fi1dhERl3BRRfQJEybw8MMPEx4eTocOHejUqRMAv/zyC1FRUaUaUCq32C1JbE8+95f05NQs7v1kowrpIiKF0DzthCpCP3QAjwDwsG9Yq77oIiLFN378eO68804yMjJISUnh2LFjjuPo0aMleqx///2XvLw86tSpU+B8nTp1iuwrnpycfN7x+ZcXGnN2yxV3d3cCAwNL1M88ODiYmTNn8s033/DNN98QFhZGdHQ0GzduLPI+2dnZpKWlFTjK25n90LUxZvEsT1jOvrR9Rd5uYJCYlsjyhOXlmEpE5OJc1FKoG264ga5du5KUlERk5OleYL169eK6664rtXBSueXZDJ5esLXQ2wzAAjy9YCt9mgeptYuIyBk0TzshRxHdhfuh5/ONgJxj9r7o1VqanUZExCXs37+fBx98EB8fH7OjmK5JkyY0adLEcb1z587s3r2bKVOm8PHHHxd6n8mTJ/P000+XV8RCqR96ySWlF2/RW3HHiYiY6aJWogMEBQURFRXFgQMH2LfP/pfFDh060LRp01ILJ5Xb2vijJKVmFXm7ASSlZrE2vmQrN0REKgPN004mv4juXwGK6FXD7ZeZ2lxURKS4+vbty/r160vlsWrWrImbmxsHDx4scP7gwYMEBQUVep+goKDzjs+/vNCYszcuzc3N5ejRo0U+b3F16NCBXbt2FXl7TEwMqampjiMxMfGSnu9ixB2MA+wr0aV4gv2CS3WciIiZLqqIbrPZeOaZZwgICKB+/frUr1+fatWq8eyzz56zQYrIxTqUXnQB/WLGiYhUFpqnnVB+T/SKshIdIGOPqTFERFzJwIED+e9//8ukSZP45ptv+P777wscJeHh4UHbtm1ZvHix45zNZmPx4sWOFm5n69SpU4HxAAsXLnSMj4iIICgoqMCYtLQ01qxZ4xjTqVMnUlJS2LBhg2PMkiVLsNlsdOzYsUSv4WxxcXEEBxddSPX09MTf37/AUZ4Mw2BT8iZARfSS6FavG6H+oY5NRM9mwUKYfxjd6nUr52QiIiV3Ue1cnnjiCWbPns2LL75Ily5dAFixYgWTJk0iKyuL559/vlRDSuVU28+rVMeJiFQWmqedjC0XMv6xf10RiuhVTxXRtRJdRKTYRo4cCcAzzzxzzm0Wi4W8vJJtrDhu3Dhuv/122rVrR4cOHZg6dSqZmZmMGDECgOHDh1O3bl0mT54MwJgxY+jRowevvfYaAwcO5IsvvmD9+vXMmjXLkWHs2LE899xzNGrUiIiICJ566ilCQkIYPHgwAM2aNaNfv36MHDmSmTNncvLkSe6//35uueUWQkJCHNm2bt1KTk4OR48eJT09nbi4OMC+kSjA1KlTiYiIoEWLFmRlZfHee++xZMkSfvnllxJ9D8rT3tS9pGan4uHmQdOa+lRfcblZ3ZjWbxo3fHUDFiyFbjA6td9U3KxuJqQTESmZiyqif/jhh7z33ntcc801jnOtW7embt263HffffrlXEpFh4hAggO8SE7NKmSqtfdEDwrwokNEYHlHExFxapqnnczxBLCdBKsn+ISZnebS+YbbLzNURBcRKa7S/iTYzTffzOHDh5kwYQLJycm0adOG2NhYx8agCQkJWK2nP3jeuXNnPvvsM5588kkef/xxGjVqxPz582nZ8vTeFo888giZmZmMGjWKlJQUunbtSmxsLF5epxctffrpp9x///306tULq9XK9ddfzxtvvFEg24ABA9i7d6/jev6m5oZh/60uJyeH8ePHs3//fnx8fGjdujWLFi2iZ8+epfo9Kk35/dCb12qOh5uHuWFczJBmQ5h701zGxI45Z5PRnuE9GdJsiEnJRERKxmLkz2Ql4OXlxZ9//knjxo0LnN+xYwdt2rThxIkTxXqcZcuW8corr7BhwwaSkpL49ttvHX/lvpCVK1fSo0cPWrZs6fjLdnGkpaUREBBAampquX8ETEoudksS935i36W9sP9QZ952Of1aqn+aiJjHGeeV0pqnXZXTvScHfoal/SCgBQzcYnaaS5e6FX5sAVUC4MYUs9OIiJQpp5tTBCj/92XS0kk8/dvT3NHmDj649oMyf76KKM+Wx/KE5SSlJ3Es6xijfxqNu9WdHffvoEH1BmbHE5FKrLhzykWtRI+MjOStt9465y/Ob731Fq1bty7242RmZhIZGcmdd97JkCHF/+tjSkoKw4cPp1evXudsfCIVS7+Wwcy47XKeXrD1nE1Gq/tUoVujWiYlExFxXqU1T0spyd9UtCK0coHTK9FPpkLOMfCobmocERFn9cYbbzBq1Ci8vLzOmZPP9uCDD5ZTKrkYmw6e6odep425QVyYm9WN6PBox/Xvd3zPz7t/5oXlL/DeNe+ZF0xEpJguqoj+8ssvM3DgQBYtWuTYZGT16tUkJiby008/Fftx+vfvT//+/Uv8/Pfccw+33norbm5uzJ8/v8T3F9fSr2UwfZoHsTb+KIfSs6jmXYUn5m9m37EsXvvlbyYMam52RBERp1Ja87SUkoq0qSiAuw941YGsg/aWLoEqoouIFGbKlCkMGzYMLy8vpkyZUuQ4i8WiIrqTy2/nok1FS8/EHhP5effPfLjpQ57s/iTh1cLNjiQicl7WCw85V48ePfj777+57rrrSElJISUlhSFDhvDXX3/x8ccfl3bGAj744AP++ecfJk6cWKzx2dnZpKWlFTjE9bhZLXRqWINr29SlR5PaPH+dfSXlnFXx/LkvxdxwIiJOxsx5WgrhWIne+PzjXIn6oouIXFB8fDw1atRwfF3U8c8//5icVM4nJSuFPSl7AGhdR5/oKy2dwjrRp0Efcm25vLD8BbPjiIhc0EUV0QFCQkJ4/vnn+eabb/jmm2947rnnOHbsGLNnzy7NfAXs3LmTxx57jE8++QR39+Itop88eTIBAQGOIyysAmzoJfRoXItr24RgM+CxbzaTm1e6G/WIiLg6M+ZpKUJFa+cCUDXCfpm5x9QYIiIiZW1Tsr2VS/2A+lT31qevStPEHvbFkR/EfcDelL0XGC0iYq6LLqKXt7y8PG699VaefvrpczZKO5+YmBhSU1MdR2JiYhmmlPL01NXNCfCuwtakND5YucfsOCIiIueynTxdaK5IRXTfU0V0rUQXESmWvLw8Zs+eza233krv3r258sorCxzivBz90NXKpdR1qdeF3g16azW6iLgElymip6ens379eu6//37c3d1xd3fnmWeeYdOmTbi7u7NkyZJC7+fp6Ym/v3+BQyqGmlU9eWJAMwBeX/g3iUePm5xIRETkLBnxYOSBuy94B5udpvRUDbdfZqqILiJSHGPGjGHMmDHk5eXRsmVLIiMjCxzivPL7oUfW0ftUFs5cjZ6QmmByGhGRol3UxqJm8Pf3Z/PmzQXOvf322yxZsoS5c+cSERFhUjIx043tQvlm4z7WxB/lyflbmDOiPRaLxexYIiIidvmbila9DCrS/OSrdi4iIiXxxRdf8NVXXzFgwACzo0gJaVPRstW1Xld6RfRicfxiJi+fzIyrZ5gdSUSkUCUqog8ZMuS8t6ekpJToyTMyMti1a5fjenx8PHFxcQQGBlKvXj1iYmLYv38/H330EVarlZYtWxa4f+3atfHy8jrnvFQeFouFF4a0ov/U5fz292EW/JnENZEhZscSETFFac/TUgry+6H7V6BNReF0T/SMPWAYFesPBCIiZcDDw4PLLrvM7BhSQifzTvLX4b8AFdHL0sQeE1kcv5jZf8wmplsM9QLqmR1JROQcJWrncuYGnYUd9evXZ/jw4cV+vPXr1xMVFUVUVBQA48aNIyoqigkTJgCQlJREQoI+ziPn17BWVUb3tP9A+syCv0g9ftLkRCIi5ijteVpKQUXcVBTAJwywQN5xyDpkdhoREac3fvx4pk2bhmEYZkeREtj+73Zy8nLw9/QnvFq42XEqrG71u9EzvCcnbSd5ccWLZscRESmUxahks3haWhoBAQGkpqaqP3oFkp2bx4Bpy9l9OJOhHcKYPKS12ZFEpJLQvOJ8nOo9WdIHkhfBFR9AgzvMzVLa5ofB8X1w1WqoeYXZaUREykRpzSnXXXcdv/76K4GBgbRo0YIqVaoUuH3evHmXGrVSKa+5/uNNHzN8/nC61evGshHLyux5BH7b8xvRH0bj4ebBrgd2ERYQZnYkEakkijunuMzGoiLn4+nu5iicf742kbXxR01OJCIiAqSd6ole0Vaiw+m+6Bl7TI0hIuIKqlWrxnXXXUePHj2oWbPmOZ8WE+ekfujlp0d4D6LDo8nJy9FqdBFxSi6zsajIhXSICGRohzA+X5tIzLw/+WlMNzzd3cyOJSIilVVeFhxPtH/tV8F6ooO9L/rh5ZAZb3YSERGnlpubS8+ePbnqqqsICgoyO46UwKaDmwAV0cvLxB4TWbpnKe/98R4x3WII9Q81O5KIiINWokuF8li/ZtSs6snuw5nMWLrb7DgiIlKZpe8GDKgSAJ41zU5T+nzD7ZcZKqKLiJyPu7s799xzD9nZ2WZHkRIwDEMr0ctZdHg03et3Jycvh5dWvGR2HBGRAlRElwolwKcKEwc1B+DtX3ez61CGyYlERKTSOnNTUYvF3Cxloeqpdi6Ze0yNISLiCjp06MAff/xhdgwpgf3p+zly4ghuFjea12pudpxKY1KPSQC8u/Fd9qftNzeMiMgZVESXCufq1sFEN6lFTp6Nx7/djM1WqfbOFRERZ3FmEb0icvRE10p0EZELue+++xg/fjxvvfUWq1ev5s8//yxwiPPJX4XerFYzvNy9zA1TiUSHR9OtXjey87J5aaVWo4uI81ARXSoci8XCs9e2xLuKG2vjj/L1hkSzI4mISGWUXoE3FQWoGm6/PL4XbHmmRhERcXa33HIL8fHxPPjgg3Tp0oU2bdoQFRXluBTnsylZ/dDNYLFYmNhjIgCzNsziQPoBkxOJiNipiC4VUligD+P62Ddxe+Gn7RxOV/9BEREpZ46V6BVwU1EA71CwuIPtJJzQL7giIucTHx9/zvHPP/84LsX5xB2MA6BNnTam5qiMroy4kq71upKdl83LK182O46ICKAiulRgI7qE0yLEn9QTJ3n2h61mxxERkcqmordzsbqBbz371+qLLiJyXvXr1z/vIc4nv51LZFCkuUEqoTNXo7+z4R2S0pNMTiQioiK6VGDublYmD2mF1QLfbzrA0h2HzI4kIiKVxcmM06uz/StoER3UF11EpIS2bt1KbGws33//fYFDnEt6djq7ju4CILKOiuhm6BXRi85hncnKzdJqdBFxCiqiS4XWOrQad3S2/4L/5PwtHM/JNTmRiIhrWLZsGYMGDSIkJASLxcL8+fPPO37p0qVYLJZzjuTkZMeY8PDwQseMHj3aMSY6Ovqc2++5556yepllJ8P+izeeNcCjurlZylJ+X/RMFdFFRM7nn3/+ITIykpYtWzJw4EAGDx7M4MGDue6667juuuvMjidn2XxoMwB1/epSy7eWyWkqJ4vFwqQekwCYuWEmyRnJ57+DiEgZUxFdKrzxVzWmbjVv9h07wbRFO82OIyLiEjIzM4mMjGT69Oklut+OHTtISkpyHLVr13bctm7dugK3LVy4EIAbb7yxwGOMHDmywLiXX3bB1UcVvR96vvyV6GrnIiJyXmPGjCEiIoJDhw7h4+PDX3/9xbJly2jXrh1Lly41O56cJb+VizYVNVfvBr3pFNpJq9FFxCmoiC4Vnq+nO89c2wKA91bE89eBVJMTiYg4v/79+/Pcc8+VeHVc7dq1CQoKchxW6+kfNWrVqlXgth9++IGGDRvSo0ePAo/h4+NTYJy/v3+pvKZyVdH7oeerqnYuIiLFsXr1ap555hlq1qyJ1WrFarXStWtXJk+ezIMPPmh2PDmLox+6WrmY6sze6DPXz+RgxkGTE4lIZaYiulQKvZrVYUCrIPJsBo/P20yezTA7kohIhdSmTRuCg4Pp06cPK1euLHJcTk4On3zyCXfeeScWi6XAbZ9++ik1a9akZcuWxMTEcPz48fM+Z3Z2NmlpaQUO01WWIrpvuP1SRXQRkfPKy8vDz88PgJo1a3LggH3fjPr167Njxw4zo0khtBLdeVzV8Co61u3IidwTvLLqFbPjiEglpiK6VBqTBrXAz8udTftS+Wj1HrPjiIhUKMHBwcycOZNvvvmGb775hrCwMKKjo9m4cWOh4+fPn09KSgp33HFHgfO33norn3zyCb/++isxMTF8/PHH3Hbbbed97smTJxMQEOA4wsLCSutlXbzKUkTPX4l+Yh/YTpqbRUTEibVs2ZJNmzYB0LFjR15++WVWrlzJM888Q4MGDUxOJ2fKteU6eqKriG4+i8XCpOhJALy97m0OZR4yN5CIVFruZgcQKS+1/b14tF9Tnpy/hVd/3kHfFkGEVPM2O5aISIXQpEkTmjRp4rjeuXNndu/ezZQpU/j444/PGT979mz69+9PSEhIgfOjRo1yfN2qVSuCg4Pp1asXu3fvpmHDhoU+d0xMDOPGjXNcT0tLM7+Qnva3/bKiF9G9gsDNC/Ky4HgiVFUhSESkME8++SSZmZkAPPPMM1x99dV069aNGjVq8OWXX5qcTs6088hOsnKz8K3iS8PAwn/2kPLVt2FfOtTtwNr9a3ll5Su8cpVWpItI+dNKdKlUbu1Qj7b1q5OZk8eE7/7CMNTWRUSkrHTo0IFdu3adc37v3r0sWrSIu++++4KP0bFjR4BCHyefp6cn/v7+BQ5T5aRC9mH71xW9iG6xgG99+9dq6SIiUqS+ffsyZMgQAC677DK2b9/Ov//+y6FDh7jyyitNTidnym/l0rpOa6wWlUycwZm90d9er9XoImIOzQhSqVitFiYPaUUVNwuLth3k57+SzY4kIlJhxcXFERwcfM75Dz74gNq1azNw4MBiPQZQ6OM4rfxWLl5BUMXP3CzlwVebi4qIFNeuXbv4+eefOXHiBIGBgWbHkUJsOmhvu6NWLs6l/2X9aR/SnuMnj/PaqtfMjiMilZCK6FLpNK7jx3+62z+WN/H7v0jLUg9XEZGzZWRkEBcX5yhix8fHExcXR0JCAmBvoTJ8+HDH+KlTp/Ldd9+xa9cutmzZwtixY1myZAmjR48u8Lg2m40PPviA22+/HXf3gl3ldu/ezbPPPsuGDRvYs2cP33//PcOHD6d79+60bt26bF9waaos/dDz5fdFz9xjagwREWd25MgRevXqRePGjRkwYABJSUkA3HXXXYwfP97kdHImbSrqnM5cjf7Wurc4nHnY5EQiUtmoiC6V0v1XXkZETV8OpmXzSuwOs+OIiDid9evXExUVRVRUFADjxo0jKiqKCRMmAJCUlOQoqAPk5OQwfvx4WrVqRY8ePdi0aROLFi2iV69eBR530aJFJCQkcOedd57znB4eHixatIirrrqKpk2bMn78eK6//noWLFhQhq+0DKRXkn7o+bQSXUTkgh566CGqVKlCQkICPj4+jvM333wzsbGxJiaTs+UX0SPrRJobRM4xoNEA2oW0s69GX63V6CJSvixGJWsKnZaWRkBAAKmpqeb3TBVTrdr1L7e+twaLBebe05m29aubHUlEXJDmFedj+nuy6jbY8ym0eRGaP1r+z1/eEr6GFTdBzU5w1Sqz04iIlKrSmlOCgoL4+eefiYyMxM/Pj02bNtGgQQP++ecfWrduTUZGRimmrvjKaq5Pzkgm+LVgrBYr6THp+FTxufCdpFz98PcPDPp8EL5VfNkzdg81fWqaHUlEXFxx5xStRJdKq/NlNbmhbSiGAY/P28zJPJvZkUREpCKobO1cfNXORUTkQjIzMwusQM939OhRPD09TUgkhdmUbO+H3rhGYxXQndTARgNpG9yWzJOZ6o0uIuVKRXSp1J4Y0IxAXw92HExn1rJ/zI4jIiIVQWUrouf3RD+RBLknzM0iIuKkunXrxkcffeS4brFYsNlsvPzyy/Ts2dPEZHIm9UN3fhaLhQk97O0F31r3FkeOHzE5kYhUFiqiS6VW3deDJwc2A+CNxTvZ82+myYlERMSlZR+BnGP2r6s2NDdLefEIBPeq9q8z95qbRUTESb388svMmjWL/v37k5OTwyOPPELLli1ZtmwZL730ktnx5JS4g3GA+qE7u0GNBxEVFEVGTgavr37d7DgiUkmoiC6V3nVRdel6WU2yc208MX8zlWybABERKU1ppzYV9QkF90ryMXCL5fRq9ExtLioiUpiWLVvy999/07VrV6699loyMzMZMmQIf/zxBw0bVpI/uroArUR3DRaLhYk9JgLw5to3tRpdRMqFiuhS6VksFp6/riWe7lZW7jrCt3/sNzuSiIi4Kkcrl8bm5ihv6osuInJBAQEBPPHEE3z11Vf89NNPPPfcc+Tl5TFq1Cizowlw/ORx/j5i/2O4iujO75om19AmqA3pOelM+X2K2XFEpBJQEV0EqF/Dlwd72XvXPvvDVo5m5picSEREXFJl64eeL38leoZWoouIlMSRI0eYPXu22TEE2HJoCzbDRh3fOgRVDTI7jlyAxWJhQnd7b/Q31rzB0RNHTU4kIhWdiugip4zq3oAmdfw4dvwkz/+4zew4IiLiiiprEd033H6pIrqIiLio/FYukUHqh+4qrm16LZF1IknPSWfq71PNjiMiFZyK6CKnVHGzMvn6Vlgs8M3Gfaza9a/ZkURExNVU1iJ6VbVzERER1+boh16njak5pPisFisTethXo09bM41jJ46ZnEhEKjIV0UXOcHm96vzfFfUBePzbzWSdzDM5kYiIuAzDgPRTG4tW2p7oWokuIiKuadPBTYD6obuawU0H06p2K9Ky07QaXUTKlLvZAUSczX/7NuHnv5LZc+Q4by3ZxcN9m5gdSUREXEHWQcjNAIsVqjYwO035qhpuv8w+AifToYqfqXFERJzFkCFDznt7SkpK+QSR87IZNjYlq4juiqwWKxN7TOSGr29g2pppPNTpIap5VTM7lohUQFqJLnIWP68qPH1NCwBm/rabHcnpJicSERGXkN/Kxac+uHmYm6W8VfEHj0D71+qLLiLiEBAQcN6jfv36DB8+3OyYld7uo7vJPJmJl7sXjWpUspZsFcB1za6jZe2WpGanajW6iJQZrUQXKUTfFkH0aV6HhVsP8vi3m/n6P52wWi1mxxIREWdWWfuh56saAUeP2vuiV29tdhoREafwwQcfmB1BiiG/H3qr2q1wt6pM4mqsFisTuk/gprk3MfX3qYy9YqxWo4tIqdNKdJFCWCwWnr6mBb4ebmzYe4zP1iaYHUlERJydox96JS2i+4bbL7USXUREXIz6obu+65tfT4taLUjNTuWNNW+YHUdEKiAV0UWKEFLNm/+e6of+0v+2czAty+REIiLi1PJXovtXsk1F81XV5qIiIuKa8leiq4juuqwWKxN6TABgyu9TSM1KNTmRiFQ0KqKLnMf/dQonMqwa6dm5PL3gL7PjiIiIM6vs7Vx884voe0yNISIiUlL5RfTIOpHmBpFLckPzG2heqzkpWSlajS4ipU5FdJHzcLNamHxdK9ysFn7anMyirQfNjiQiIs7IsEH6LvvXlbWInr8SXe1cRETEhfx7/F/2p+8HoHUd7enhyqwWK091fwqwr0ZPy04zOZGIVCQqootcQPMQf+7uZi8MTPhuC5nZuSYnEhERp3PiAOSdAIv76d7glc2ZPdENw9QoIiIixbUp2d4P/bLAy/Dz9DM5jVyqG5vfSLOazTiWdYw317xpdhwRqUBMLaIvW7aMQYMGERISgsViYf78+ecdv2LFCrp06UKNGjXw9vamadOmTJkypXzCSqU2tldjwgK9OZCaxWu//G12HBERcTZpp+aGqg3A6m5uFrPkF9Fz0yHnmKlRREREikutXCoWN6ubYzX6a6tf02p0ESk1phbRMzMziYyMZPr06cUa7+vry/3338+yZcvYtm0bTz75JE8++SSzZs0q46RS2Xl7uPHc4FYAzFkVz5/7UswNJCIizqWy90MHcPcGryD719pcVEREXETcwThAm4pWJDe1uImmNZtyLOsYb619y+w4IlJBmFpE79+/P8899xzXXXddscZHRUUxdOhQWrRoQXh4OLfddht9+/Zl+fLlZZxUBHo0rsW1bUKwGfDYN5vJzbOZHUlERJyFiuh2Z7Z0ERERcQH57VxURK84zl6Nnp6dbnIiEakIXLon+h9//MGqVavo0aOH2VGkknjq6uYEeFdha1IaH6zcY3YcERFxFiqi22lzURERcSFZuVls+3cboCJ6RXNzi5tpUqMJR08c1Wp0ESkVLllEDw0NxdPTk3bt2jF69GjuvvvuIsdmZ2eTlpZW4BC5WDWrevLEgGYAvL7wbxKPHjc5kYiIOIX0Uz3RVUS3X2buMTWGiEhlMH36dMLDw/Hy8qJjx46sXbv2vOO//vprmjZtipeXF61ateKnn34qcLthGEyYMIHg4GC8vb3p3bs3O3fuLDDm6NGjDBs2DH9/f6pVq8Zdd91FRkaG4/asrCzuuOMOWrVqhbu7O4MHDy40y9KlS7n88svx9PTksssuY86cORf1PbgUebY8Ptr0Ebm2XPw8/AjyDSr3DFJ23KxuPNn9ScC+Gj0jJ+MC9xAROT+XLKIvX76c9evXM3PmTKZOncrnn39e5NjJkycTEBDgOMLCwsoxqVREN7YLpWNEICdO5vHk/C0YhmF2JBERMZMtDzL+sX/t39jcLGbz1Up0EZHy8OWXXzJu3DgmTpzIxo0biYyMpG/fvhw6dKjQ8atWrWLo0KHcdddd/PHHHwwePJjBgwezZcsWx5iXX36ZN954g5kzZ7JmzRp8fX3p27cvWVlZjjHDhg3jr7/+YuHChfzwww8sW7aMUaNGOW7Py8vD29ubBx98kN69exeaJT4+noEDB9KzZ0/i4uIYO3Ysd999Nz///HMpfXcubN62eYRPC+c/P/wHgPScdCLeiGDetnnllkHK3i0tb6FRYCOOnDjC9LXF24tPRKQoFsNJKoAWi4Vvv/22yL9UF+W5557j448/ZseOHYXenp2dTXZ2tuN6WloaYWFhpKam4u/vfymRpRLbfTiD/lOXk5Nn442hUVwTGWJ2JBExSVpaGgEBAZpXnEi5vycZ8fB9A7B6ws3HweKSaxRKR/IiWNIH/JvC1dvMTiMicsmcdZ7v2LEj7du356237G0qbDYbYWFhPPDAAzz22GPnjL/55pvJzMzkhx9+cJy74ooraNOmDTNnzsQwDEJCQhg/fjwPP/wwAKmpqdSpU4c5c+Zwyy23sG3bNpo3b866deto164dALGxsQwYMIB9+/YRElLwd6I77riDlJQU5s+fX+D8o48+yo8//liggH/LLbeQkpJCbGxssV7/pbwv87bN44avbsCgYCnEggWAuTfNZUizISV6THFeH2/6mOHzh1PDuwZ7xu6hqkdVsyOJiJMp7pzi8r/l2Wy2AkXys3l6euLv71/gELlUDWtVZXTPywB4ZsFfpB4/aXIiERExjaMfesPKXUCH0yvRM/eAc6zTEBGpcHJyctiwYUOBld5Wq5XevXuzevXqQu+zevXqc1aG9+3b1zE+Pj6e5OTkAmMCAgLo2LGjY8zq1aupVq2ao4AO0Lt3b6xWK2vWrCl2/gtlKUt5tjzGxI45p4AOOM6NjR1Lni2vzLNI+RjaaiiXBV7GkRNHeHvd22bHEREXZupvehkZGcTFxREXFwfYJ+64uDgSEhIAiImJYfjw4Y7x06dPZ8GCBezcuZOdO3cye/ZsXn31VW677TYz4ksld090AxrW8uXfjBxejNVqOxGRSkubip7mE2b/Q0JeFmQdNDuNiEiF9O+//5KXl0edOnUKnK9Tpw7JycmF3ic5Ofm84/MvLzSmdu3aBW53d3cnMDCwyOctSZa0tDROnDhR6H1Ka6+z5QnL2Ze2r8jbDQwS0xJZnrD8oh5fnI+71Z0nu9l7o7+66lUyczJNTiQirsrUIvr69euJiooiKioKgHHjxhEVFcWECRMASEpKchTUwb7qPCYmhjZt2tCuXTumT5/OSy+9xDPPPGNKfqncPN3dmDykNQCfr01kbfxRkxOJiIgp0vI3Fa3k/dAB3DzAu679a/VFFxGRUlJae50lpSeV6jhxDcNaD6Nh9YYcPn6YGetnmB1HRFyUqUX06OhoDMM458jfmXvOnDksXbrUMf6BBx5gy5YtZGZmkpqaysaNG7n33nuxWiv5R6fFNB0iAhnawf4DXMy8P8nO1cf+REQqHa1EL6hqfksXFdFFRMpCzZo1cXNz4+DBgp/4OXjwIEFBQYXeJygo6Lzj8y8vNObsjUtzc3M5evRokc9bkiz+/v54e3sXep+YmBhSU1MdR2JiYrGf70zBfsGlOk5cg7vVnSe721ejv7zyZa1GF5GLouqzyCV6rF8zalb1ZPfhTGYu/cfsOCIiUt5URC/ozL7oIiJS6jw8PGjbti2LFy92nLPZbCxevJhOnToVep9OnToVGA+wcOFCx/iIiAiCgoIKjElLS2PNmjWOMZ06dSIlJYUNGzY4xixZsgSbzUbHjh2Lnf9CWQpTWnuddavXjVD/UMcmomezYCHMP4xu9bpd1OOL87qt9W00qN6Aw8cPM3P9TLPjiIgLUhFd5BIF+FRh4qDmAEz/dRe7DmWYnEhERMqN7eTpFdcqotv5htsv1c5FRKTMjBs3jnfffZcPP/yQbdu2ce+995KZmcmIESMAGD58ODExMY7xY8aMITY2ltdee43t27czadIk1q9fz/333w+AxWJh7NixPPfcc3z//fds3ryZ4cOHExISwuDBgwFo1qwZ/fr1Y+TIkaxdu5aVK1dy//33c8sttxASEuJ4rq1btxIXF8fRo0dJTU0tsA8awD333MM///zDI488wvbt23n77bf56quveOihh8r8++ZmdWNav2n213xWIT3/+tR+U3GzupV5Filf7lZ3nuj2BAAvr3qZ4yePm5xIRFyNiugipeDq1sFEN6lFTp6Nx7/djM127m7vIiJSAWXEg5EHbj7gHXLh8ZVBfjsXFdFFRMrMzTffzKuvvsqECRNo06YNcXFxxMbGOjbsTEhIICnpdF/vzp0789lnnzFr1iwiIyOZO3cu8+fPp2XLlo4xjzzyCA888ACjRo2iffv2ZGRkEBsbi5eXl2PMp59+StOmTenVqxcDBgyga9euzJo1q0C2AQMGEBUVxYIFC1i6dGmBfdDAvur9xx9/ZOHChURGRvLaa6/x3nvv0bdv37L6dhUwpNkQ5t40l7r+dQucD/UPZe5NcxnSbEi55JDy93+t/4+IahEcyjyk1egiUmIWwzAqVbUvLS2NgIAAUlNTL/ojYCKFSTx6nKumLOPEyTxeur4VN7evZ3YkESkHmlecT7m+J/t/hN+uhmqRMCCubJ/LVRxaBot6QNWGcM0us9OIiFwSzfPOqTTelzxbHssTlpOUnkSwXzDd6nXTCvRKYPbG2dy94G7q+NbhnzH/4FPFx+xIImKy4s4pWokuUkrCAn0Y16cxAC/8tJ1/M7JNTiQiImVO/dDPld8T/XgC2LThtoiIOCc3qxvR4dEMbTWU6PBoFdArieGRwwmvFs7BzIPM2jDrwncQETlFRXSRUjSiSzgtQvxJPXGSZ3/YanYcEREpayqin8s7BKxV7P3iT+w3O42IiIiIQxW3Ko7e6C+tfIkTJ0+YnEhEXIWK6CKlyN3NyotDWmO1wHdxB1iy7SCrdx/hu7j9rN59hDz1ShcRqVhURD+X1Q18TrU0U190ERERcTLDI4dTP6A+yRnJWo0uIsWmIrpIKWsVGsAdne0fZR/50XqGvvs7Y76IY+i7v9P1pSXEbkm6wCOIiIjLSP/bfunf2NwcziZ/c9HMPabGEBERETmbh5sHj3d7HLCvRs/KzTI5kYi4AhXRRcpA69AAAPLOWnienJrFvZ9sVCFdRKQiyMuCzAT711qJXpBvuP1SK9FFRETECd3R5g7qBdQjKSOJdze8a3YcEXEBKqKLlLI8m8FLsdsLvS2/pv70gq1q7SIi4uoy/gEMqOIPnrXMTuNcHCvRVUQXERER5+Ph5sHjXe2r0V9c+aJWo4vIBamILlLK1sYfJSm16AnYAJJSs1gbf7T8QomISOk7sx+6xWJuFmfjq3YuIiIi4txGRI0gzD+MA+kHeG/je2bHEREnpyK6SCk7lF68v2AXd5yIiDgpbSpatPyV6GrnIiIiIk7Kw82DmK4xALy4QqvRReT8VEQXKWW1/bxKdZyIiDiptFObivppU9Fz5PdEP74P8nJMjSIiIiJSlDuj7iTUP5T96fuZvXG22XFExImpiC5SyjpEBBIc4MX5PtgfHOBFh4jAcsskIiJlQCvRi+ZVB9y8AQOOJ5qdRkRERKRQnu6ep1ejr3yR7NxskxOJiLNSEV2klLlZLUwc1BygyEJ6HX9PbIY2FhUR57Vs2TIGDRpESEgIFouF+fPnn3f80qVLsVgs5xzJycmOMZMmTTrn9qZNmxZ4nKysLEaPHk2NGjWoWrUq119/PQcPHiyLl3jpVEQvmsVyejW6NhcVERERJ3ZX1F3U9avLvrR9vP/H+2bHEREnpSK6SBno1zKYGbddTlBAwZYtgb4euFstxCWmMvaLOHLzbCYlFBE5v8zMTCIjI5k+fXqJ7rdjxw6SkpIcR+3atQvc3qJFiwK3r1ixosDtDz30EAsWLODrr7/mt99+48CBAwwZMuSSX0+py82EE/vtX6uIXrj8Irr6oouIiIgTO3M1+gsrXtBqdBEplLvZAUQqqn4tg+nTPIi18Uc5lJ5FbT97C5dlfx9m1Mfr+XFzEu5uFl6/qQ1u1vM1fxERKX/9+/enf//+Jb5f7dq1qVatWpG3u7u7ExQUVOhtqampzJ49m88++4wrr7wSgA8++IBmzZrx+++/c8UVV5Q4T5lJ32W/9KwBnmrPVShtLioiIiIu4q7L7+KFFS+wL20fH8R9wD3t7jE7kog4Ga1EFylDblYLnRrW4No2denUsAZuVgs9m9bm7WFtcbda+C7uAI/M/RObTa1dRKRiaNOmDcHBwfTp04eVK1eec/vOnTsJCQmhQYMGDBs2jISEBMdtGzZs4OTJk/Tu3dtxrmnTptSrV4/Vq1cX+ZzZ2dmkpaUVOMpcfiuXqlqFXqT8InrmHlNjiIiIiFyIl7sXj3V5DIDJKyaTo43RReQsKqKLmKBP8zq8OTQKN6uFbzbuI2beZhXSRcSlBQcHM3PmTL755hu++eYbwsLCiI6OZuPGjY4xHTt2ZM6cOcTGxjJjxgzi4+Pp1q0b6enpACQnJ+Ph4XHOSvY6deoU6K1+tsmTJxMQEOA4wsLCyuQ1FqB+6Bemdi4iIiLiQka2HUlw1WASUhOYEzfH7Dgi4mRURBcxSf9WwUy9uQ1WC3y5PpGnvtuCoc1GRcRFNWnShP/85z+0bduWzp078/7779O5c2emTJniGNO/f39uvPFGWrduTd++ffnpp59ISUnhq6++uqTnjomJITU11XEkJiZe6su5MBXRL8yxEl1FdBEREXF+Xu5ePNbVvhr9+eXPazW6iBSgIrqIiQZFhvDaTZFYLPDpmgSeXrBVhXQRqTA6dOjArl27iry9WrVqNG7c2DEmKCiInJwcUlJSCow7ePBgkX3UATw9PfH39y9wlDkV0S/M91QRPesg5J4wN4uIiIhIMYy8fCRBVYNISE3gw7gPzY4jIk5ERXQRk10XFcrL17cGYM6qPTz/4zYV0kWkQoiLiyM4OLjI2zMyMti9e7djTNu2balSpQqLFy92jNmxYwcJCQl06tSpzPOWSPrf9kv/xubmcGYe1aHKqT9oqC+6iIiIuADvKt482uVRAF5Y8YJWo4uIg4roIk7gxnZhTB7SCoD3VsTzUuwOFdJFxFQZGRnExcURFxcHQHx8PHFxcY6NQGNiYhg+fLhj/NSpU/nuu+/YtWsXW7ZsYezYsSxZsoTRo0c7xjz88MP89ttv7Nmzh1WrVnHdddfh5ubG0KFDAQgICOCuu+5i3Lhx/Prrr2zYsIERI0bQqVMnrrjiivJ78RdyMg2yDtm/1kr0olks6osuIiIiLuc/bf9DUNUg9qTs4aNNH5kdR0SchIroIk5iaId6PHttCwBm/rabKQv/NjmRiFRm69evJyoqiqioKADGjRtHVFQUEyZMACApKclRUAfIyclh/PjxtGrVih49erBp0yYWLVpEr169HGP27dvH0KFDadKkCTfddBM1atTg999/p1atWo4xU6ZM4eqrr+b666+ne/fuBAUFMW/evHJ61cWU38rFqw5U8TM3i7NTX3QRERFxMd5VvHmk8yOAvTf6ybyTJicSEWdgMSrZcte0tDQCAgJITU0tn56pIiX0wcp4nl6wFYBxfRrzYC+tchRxZppXnE+Zvyd7voBVQ6FWV+izvPQfvyLZ8BDsmArNHoaoV8xOIyJSYprnnZPeFylrx08ep8G0BhzMPMh/O/+XqKAogv2C6VavG25WN7PjiUgpKu6c4l6OmUSkGEZ0iSA3z+D5n7bx+sK/cXezcF/0ZWbHEhGRfPn90P3UD/2C1M5FREREXJBPFR/6XdaPDzd9yCurTi8ECPUPZVq/aQxpNsTEdCJiBrVzEXFCI7s34L99mwDwcuwO3l32j8mJRETEIb+di/qhX1h+OxcV0UVERMSFzNs2r9B+6PvT9nPDVzcwb5uTtRsUkTKnIrqIkxrd8zIe6m1f5fj8T9v4YKUKECIiTkFF9OJz9ETfY2oMERERkeLKs+UxJnYMBud2P84/NzZ2LHm2vPKOJiImUhFdxImN6d2IB660t3J5esFWPv59r8mJRERERfQSyG/nknMUTqaZGkVERESkOJYnLGdf2r4ibzcwSExLZHmC9sYRqUxURBdxcuP6NOaeHg0BeGr+Fj5fm2ByIhGRSiz7iL0gDOCn/SouqIofeNawf62WLiIiIuICktKTSnWciFQMKqKLODmLxcKj/ZpwV1f7R+If/3YzX69PNDmViEgllb8K3ScU3H3MzeIqfNUXXURERFxHsF9wqY4TkYpBRXQRF2CxWHhyYDPu6ByOYcAj3/zJ/D/2mx1LRKTyUSuXklNfdBEREXEh3ep1I9Q/FAuWIsf4VvGlS1iXckwlImZTEV3ERVgsFiYOas6wjvUwDBj3VRwLNh0wO5aISOWiInrJ5fdF10p0ERERcQFuVjem9ZsGUGQhPfNkJqN/Go3NsJVnNBExkYroIi7EYrHw7LUtubldGDYDxn4ZR+wW9WETESk3KqKXnGMluoroIiIi4hqGNBvC3JvmUte/boHzYf5hjO04FqvFyrsb3+XeH+5VIV2kknA3O4CIlIzVamHykFactNmYt3E/93/2BzNus9KneR2zo4mIVHxpf9sv/Rqbm8OV+Kqdi4iUM1seHF4OJ5LAOxhqdQOrm9mpRMTFDGk2hGubXMvyhOUkpScR7BdMt3rdcLO60S6kHcPnD2fWxllYLVamD5yO1aJ1qiIVmYroIi7IarXwyg2R5NkMvos7wH2fbmDW/7WjZ9PaZkcTEam4DEMr0S/Gme1cDAMsRfcXFRG5ZInzYMMYOL7v9DmfUGg7DcKGmJdLRFySm9WN6PDoc84Paz0MA4Ph3w5n5oaZWCwWpg+YjkU/54hUWPozmYiLcrNaeO3GSAa2CuZknsF/PtnAsr8Pmx1LRKTiyjoEuelgsULVBmancR1Vw+2XuRmQfcTUKCJSwSXOg+U3FCygAxzfbz+fOM+cXCJSId3W+jY+HPwhFizMWD+D+3+6H8MwzI4lImVERXQRF+buZmXqLW3o26IOObk2Rn60nlW7/jU7lohIxZS/Ct2nHrh5mpvFlbh52dspgPqii0jZseXZV6BTWAHr1LkNY+3jRERKyf9F/h8fXPsBFiy8vf5tHvjfAyqki1RQphbRly1bxqBBgwgJCcFisTB//vzzjp83bx59+vShVq1a+Pv706lTJ37++efyCSvipKq4WXlz6OX0blab7Fwbd324njX/aKWfiEipUyuXi6e+6CJSFk6mw9GNsPdLWDvq3BXoBRhwPNHeK11EpBTd3uZ23r/2fSxYmL5uOmNix6iQLlIBmVpEz8zMJDIykunTpxdr/LJly+jTpw8//fQTGzZsoGfPngwaNIg//vijjJOKODcPdyvTh11OdJNanDiZx4g561i/56jZsUREKpZ0bSp60c7siy4iUhK5JyBlCyR+C1tfhjV3w6IeMC8YvvaH2Law8hb45/3iPd6JpLLNKyKV0h1t7mD2NbOxYOHNtW8yNnasCukiFYypG4v279+f/v37F3v81KlTC1x/4YUX+O6771iwYAFRUVGlnE7EtXi6uzHztraM/Gg9y3f+yx0frOPjuzoQVa+62dFERCoGrUS/eFVPrURXEV1ECmM7af/3IX2n/Q+W6TvtR9rf9tXjhbZoOcWzlv3fZXc/SC7Gp5Tz20uJiJSyEVEjMDC46/u7eGPtG1gsFqb0naLNRkUqCFOL6JfKZrORnp5OYGBgkWOys7PJzs52XE9LSyuPaCKm8Krixqz/a8edc9ax+p8jDH9/LZ/e3ZHWodXMjiYi4vpURL94VdXORcQl2fLs7U9OJNmLz7W6gdXt4h/reGLhhfLMeDDO06u8SoD9316/xqcuG4H/qa89qp1+/O/D7ZuIFlp0t4BPqP01iIiUkTuj7sRm2Bi5YCTT1kzDarHy2lWvqZAuUgG4dBH91VdfJSMjg5tuuqnIMZMnT+bpp58ux1Qi5vL2cGP2He244/11rN1zlP+bbS+kt6wbYHY0ERHXZRiQvsv+tYroJZffzkUbi4q4jsR59o06z+wz7hMKbadB2JDC72MY9oJ7gUJ5/uVusGUXfj8AN++ChXL/MwrmnrXgQgUoq5s92/IbAAsFC+mn7tt26sX/EUBEpJjuvvxuDMNg1A+jmPL7FCxYePWqV1VIF3FxLltE/+yzz3j66af57rvvqF27dpHjYmJiGDdunON6WloaYWFh5RFRxDQ+Hu68P6I9w2evYWNCCv83ew2fj7qCpkH+ZkcTEXFNJw5A3nGwuEPVcLPTuB5HO5c9YNjAYuq2PCJyIYnzThWjz1rRfXy//XzH98G/SSGF8p2Qm1n041qrQNWGhRfKvUMu/d+GsCHQbW4Rxf+pRRf/RURK2ci2IzEw+M8P/+H131/HYrHwSp9XVEgXcWEuWUT/4osvuPvuu/n666/p3bv3ecd6enri6elZTslEnEdVT3fm3NmB/5u9lk2JKQx7dw1fjLqCRnX8zI4mIuJ68jcVrRphLwJJyfiE2YtjtmzIOqiexCLOzJZnL0IX2hLl1Lk1I4q+v8Vq//SJo/XKGQVzn3plvxI8bAjUvbb02tCIiFykUW1HYRgG9/x4D6+tfg2rxcpLvV9SIV3ERblcEf3zzz/nzjvv5IsvvmDgwIFmxxFxav5eVfjozg4Me+93tuxPY+i7a/jyP1fQsFZVs6OJiLgW9UO/NNYq9kJ65l775oEqoos4F8OA4wlwdAMkfFNwFXdRPGtBtVbnFsp9I8DNo+wzn4/VDepEm5tBRAT4T7v/YDNs3PfTfbyy6hUsWHix94sqpIu4IFOL6BkZGezatctxPT4+nri4OAIDA6lXrx4xMTHs37+fjz76CLC3cLn99tuZNm0aHTt2JDk5GQBvb28CAtTvWaQwAd5V+OSujgx9dw3bktK49d3f+XJUJ8Jr+podTUTEdaiIful8w08X0Wt1NjuNSOVlGPYWVUfXw5H19suj6yH735I9TttpED60bDKKiFQg97a/FwOD0T+N5uVVL2O1WHmh1wsqpIu4GFMbUq5fv56oqCiioqIAGDduHFFRUUyYMAGApKQkEhISHONnzZpFbm4uo0ePJjg42HGMGTPGlPwirqKajwef3t2RJnX8OJiWzdB3fyfx6HGzY4mIuA4V0S9dfl90bS4qUr5OJMP+H+DPSbD0avg2BOaHwrLB8NdzkBRrL6Bb3KF6FIQU89O++kSJiEix3df+Pt7q/xYAL658kSeWPIFhFNY2S0Sclakr0aOjo8/7j8acOXMKXF+6dGnZBhKpwAJ9Pfjk7o7cMms1uw9ncsus3/nyP1cQWt3H7GgiIs4v7VRPdL/G5uZwZb75RfQ9psYQqdCyDp9eYX5sg/3yxP5zx1ncIKAFBLaFwHb2o3prcPOy90T/Pty+iWihfdEt9o06a3Ur4xcjIlKxjO4wGpth48HYB5m8YjIWLDx35XNakS7iIlyuJ7qIXLxafp58PvIKbpn1O//8m8mtp3qkBwd4mx1NRMR52fIgY7f9a61Ev3i+4fbLDK1EFykV2UftPczz27EcWW/va34OCwQ0O10sD2wH1SPBvYiFFFY3e6uW5TfY71ugkH6q0NN2qjbqFBG5CA90fAADgzGxY3hhxQtYLVae6fmMCukiLkBFdJFKpra/F5+NvIKbZ61m75HjDJ31O1/+pxN1/L3MjiYi4pyOJ4ItB6we9s0x5eLkt3NREV0qI1seHF4OJ5LsbVBqdStZETonBY5uLFgwL6o1kn+TswrmbaBKCTeVDxsC3ebChjEFNxn1CbUX0MOGlOzxRETE4cGOD2IYBmN/Hstzy+0r0Z+OflqFdBEnpyK6SCUUFHCqkP7OavYcOc7QU5uN1vLzNDuaiIjzye+HXrWhVl5eivwi+vFEsOWCVT+GSiWROK+IYvS0wovRJ9Pg6B+nC+ZHN5z+d+hsVS+DGu1Ot2WpHgUeAaWTO2wI1L320or/IiJSqDFXjMFm2Bj3yzieXfYsVouVSdGTzI4lIueh315EKqm61bz5/FQh/Z/Dmdz67u98MeoKalRVIV1EpID84pW/+qFfEq9gsFYB20l7j2bf+mYnEil7ifNOtUU5q7f48f32850/AZ96p4vlR9dD2o5zx4O9JVJgu1NF83YQeDl4VC/b/FY3qBNdts8hIlJJPdTpIQwMxv8ynqd/exoLFiZGTzQ7logUQUV0kUosLNCHz0ddwc3v/M7OQxkMe28Nn4+8An/vKqyNP8qh9Cxq+3nRISIQN6s+WiYilVR6/qai6od+Saxu4FMfMnbZW7qoiC4VnS3PvgK90M05T51bNazw+/qEnVUwbwueNcoqqYiImGRcp3EYhsHDCx9m0m+TsFgsTOgxwexYIlIIFdFFKrn6NXz5bGRHbp71O9uT07nmrRXk5Nk4mJbtGBMc4MXEQc3p1zLYxKQiIibJX4muIvqlqxpxuoiu1a1S0R1eXrCFS1E8akCtLqeL5YFtwbtO2ecTERGnML7zeGyGjUcWPcLEpROxWqw82f1Js2OJyFmsZgcQEfM1qFWVz0d2xM/LncRjJwoU0AGSU7O495ONxG5JMimhiIiJVEQvPfl90TP3mBpDpFz8+3vxxrV7E3p8B62egroDVECXYps+fTrh4eF4eXnRsWNH1q5de97xX3/9NU2bNsXLy4tWrVrx008/FbjdMAwmTJhAcHAw3t7e9O7dm507C/bjP3r0KMOGDcPf359q1apx1113kZGRUWDMn3/+Sbdu3fDy8iIsLIyXX365wO1z5szBYrEUOLy8vC7hOyHi+v7b5b+81PslAJ769SmeX/a8yYlE5GwqoosIABE1q+LpXvg/CfkfQn56wVbybIV9JFlEpIKynbSvmgYV0UuDb7j9Mv97KlLRGAYkL4Ff+8GmmOLdx1uf9JOS+/LLLxk3bhwTJ05k48aNREZG0rdvXw4dOlTo+FWrVjF06FDuuusu/vjjDwYPHszgwYPZsmWLY8zLL7/MG2+8wcyZM1mzZg2+vr707duXrKwsx5hhw4bx119/sXDhQn744QeWLVvGqFGjHLenpaVx1VVXUb9+fTZs2MArr7zCpEmTmDVrVoE8/v7+JCUlOY69e/eW8ndIxPU80uURXuz1IgBP/vokLyx/weREInImFdFFBIC18Uf5NyOnyNsNICk1i7XxR8svlIiI2TL2gJELbj7gHWJ2Gtfnm78SXUV0qWBsubD3S4htB0t6QdLPgAXcvM9zJ4u993mtbuWVUiqQ119/nZEjRzJixAiaN2/OzJkz8fHx4f333y90/LRp0+jXrx///e9/adasGc8++yyXX345b731FmBfhT516lSefPJJrr32Wlq3bs1HH33EgQMHmD9/PgDbtm0jNjaW9957j44dO9K1a1fefPNNvvjiCw4cOADAp59+Sk5ODu+//z4tWrTglltu4cEHH+T1118vkMdisRAUFOQ46tTRJzBEAB7t+igvXGkvnj+x5AleXPGiyYlEJJ+K6CICwKH0rAsPKsE4EZEKwdHK5TKw6MemS6Z2LlLR5B6Hv6fDgsaw8hY4ttFeOG80Gq7ZBZ0/ASynjjOdut52qn3TXZESyMnJYcOGDfTu3dtxzmq10rt3b1avXl3ofVavXl1gPEDfvn0d4+Pj40lOTi4wJiAggI4dOzrGrF69mmrVqtGuXTvHmN69e2O1WlmzZo1jTPfu3fHw8CjwPDt27ODYsWOOcxkZGdSvX5+wsDCuvfZa/vrrr/O+5uzsbNLS0gocIhVVTLcYnr/S3s4lZnEML614yeREIgIqoovIKbX9iteHsLjjREQqBPVDL1357VyO74e87PMOFXFqWYfhz0nwXT1Yf7/90xWeNaDVJLg2Adq/BVUbQNgQ6DYXfOoWvL9PqP182BATwour+/fff8nLyztn9XadOnVITk4u9D7JycnnHZ9/eaExtWvXLnC7u7s7gYGBBcYU9hhnPkeTJk14//33+e677/jkk0+w2Wx07tyZffuK3oh38uTJBAQEOI6wsLAix4pUBI93e5xnez4LwGOLH+OVla+YnEhE3M0OICLOoUNEIMEBXiSnZnG+ruc//HmAFnX98feqUm7ZRERMoyJ66fKqbW+Nk3ccMhPAX99XcTEZ/8C21+Gf9yHvhP2cbwQ0exga3AHuPufeJ2wI1L0WDi+HE0n2Hui1umkFulRanTp1olOnTo7rnTt3plmzZrzzzjs8++yzhd4nJiaGcePGOa6npaWpkC4V3pPdn7Rv+Lt0Ao8segSLxcLDnR82O5ZIpaUiuogA4Ga1MHFQc+79ZCMWKFBIP/P6p2sSWLTtIJMGtaBfyyAslrM/niwiUoE4iuiNzc1RUVgsUDUcUrfaV+6qiC6u4sh62PYKJM4Fw2Y/F9gWmj1iL5JbL/BrldUN6kSXeUypHGrWrImbmxsHDx4scP7gwYMEBQUVep+goKDzjs+/PHjwIMHBwQXGtGnTxjHm7I1Lc3NzOXr0aIHHKex5znyOs1WpUoWoqCh27dpV5Gv29PTE09OzyNtFKqqnejyFzbAx6bdJ/Hfhf7FgYXzn8WbHEqmU1M5FRBz6tQxmxm2XExRQsGVLUIAXM2+7nM/u7kh4DR8OpmVz76cbGfnReg6knDAprYhIOUj/236pleilx1d90cVFGAYciIXFV8LP7SHhK3sBPbgf9FoCfddB/ZsuXEAXKWUeHh60bduWxYsXO87ZbDYWL15cYIX3mTp16lRgPMDChQsd4yMiIggKCiowJi0tjTVr1jjGdOrUiZSUFDZs2OAYs2TJEmw2Gx07dnSMWbZsGSdPnizwPE2aNKF69eqFZsvLy2Pz5s0FivcictrE6IlM7DERgIcXPsyU1VNMTiRSOeknPhEpoF/LYPo0D2Jt/FEOpWdR28+LDhGBuFntK85jx3Zn+q+7mPnbbhZtO8Sq3b8x/qom3NE53DFGRMTl2fLg4GLI3Gu/XrWBuXkqkvy+6BnxpsYQKZLtJOz9Era9DCmb7ecs7lB/qL1tS/XW5uYTAcaNG8ftt99Ou3bt6NChA1OnTiUzM5MRI0YAMHz4cOrWrcvkyZMBGDNmDD169OC1115j4MCBfPHFF6xfv55Zs2YBYLFYGDt2LM899xyNGjUiIiKCp556ipCQEAYPHgxAs2bN6NevHyNHjmTmzJmcPHmS+++/n1tuuYWQkBAAbr31Vp5++mnuuusuHn30UbZs2cK0adOYMuV00e+ZZ57hiiuu4LLLLiMlJYVXXnmFvXv3cvfdd5fjd1DEtUyKnoRhGDyz7BnG/TLO/v/ZK8aaHUukUlERXUTO4Wa10KlhjUJv86rixvirmnBNZAgx8zazfu8xnv1hK/P/2M/kIa1oWTegnNOKiJSyxHmwYQwcP2ODs587Qrtp2gSwNFQ9tRJdRXRxNifTYfd7sH0KHE+0n3OvCg1HQtOx4FvP1HgiZ7r55ps5fPgwEyZMIDk5mTZt2hAbG+vYxDMhIQGr9fQHzzt37sxnn33Gk08+yeOPP06jRo2YP38+LVu2dIx55JFHyMzMZNSoUaSkpNC1a1diY2Px8jr9KdVPP/2U+++/n169emG1Wrn++ut54403HLcHBATwyy+/MHr0aNq2bUvNmjWZMGECo0aNcow5duwYI0eOJDk5merVq9O2bVtWrVpF8+bNy/JbJuLyJkVPwmbYeG75czz080NYsDDmijFmxxKpNCyGYZxvD8EKJy0tjYCAAFJTU/H39zc7johLs9kMvliXyOT/bSM9KxerBe7sEsFDfRrj66m/0UnloHnF+VzSe5I4D5bfAOdssXzqkzbd5qqQfqkS58Hy66FGR+j7u9lpROBEMvz9Jvz9NpxMsZ/zqgNNxkCje8Cj8BYUUjlonndOel+ksjIMg6d+fYrnlz8PwLR+03iw44MmpxJxbcWdU9QTXUQumtVq4daO9Vg8vgdXtw7GZsB7K+K5asoylmw/eOEHEBGntWzZMgYNGkRISAgWi4X58+efd/zSpUuxWCznHMnJyY4xkydPpn379vj5+VG7dm0GDx7Mjh07CjxOdHT0OY9xzz33lMVLPJctz74C/ZwCOqfPbRhrHycXL7+dS6ZWoovJ0nbAmlHwXX346wV7Ad2vMXSYBdfugRYxKqCLiIhTsVgsPNvzWWK6xgAwJnYMb619y+RUIpWDiugicslq+3nx1q2X88GI9tSt5s3+lBPcOWc9oz/dyKG0LLPjichFyMzMJDIykunTp5fofjt27CApKclx1K5d23Hbb7/9xujRo/n9999ZuHAhJ0+e5KqrriIzM7PAY4wcObLAY7z88sul8pou6PDygi1czmHYWzwcXl4+eSqq/HYuWYcgN/P8Y0XKwuHVsGwI/NAMdr8Lthyo2Qm6fQtXb4PLRoKb14UfR0RExAQWi4Xnr3yex7o8BsAD/3uA6WtL9jO7iJSc+i2ISKnp2aQ2C8d1Z9qinby3Ip4fNyexbOdhHu3XlFs71MOqjUdFXEb//v3p379/ie9Xu3ZtqlWrVuhtsbGxBa7PmTOH2rVrs2HDBrp37+447+PjQ1BQUImf+5KdSCrdcVI4j+pQJQBOpto3bg1QD1wpB4YN9v9o3yz08IrT5+teA80fgVpdzMsmIiJSQhaLhRd6vYDNsPHyqpe5/3/3Y7FYuK/9fWZHE6mwtBJdREqVj4c7MQOa8f39XYgMDSA9K5cn52/hhpmr2JGcbnY8ESljbdq0ITg4mD59+rBy5crzjk1NTQUgMDCwwPlPP/2UmjVr0rJlS2JiYjh+/HiZ5S3AO7h0x0nR8lu6aHNRKWt52bD7ffixJSy7xl5At3pAw7tg4Fbo8Z0K6CIi4pIsFgsv9n6R/3b+LwCjfxrNjHUzTE4lUnFpJbqIlIkWIQHMu68LH6/ewys/72BjQgoD31jOqO4NeLBXI7yquJkdUURKUXBwMDNnzqRdu3ZkZ2fz3nvvER0dzZo1a7j88svPGW+z2Rg7dixdunShZcuWjvO33nor9evXJyQkhD///JNHH32UHTt2MG/evCKfOzs7m+zsbMf1tLS0i3sRtbqBTygc30/hfdEt9ttrdbu4x5fTqkZAyiYV0aXs5KTCrndgx9TTnx6p4g+N7oXGD4JPiKnxRERESoPFYuGl3i9hGAavrn6V+366D6vFyt2X383yhOUkpScR7BdMt3rdcLPqd3CRS6EiuoiUGTerhTu6RNC3ZRATv/uLX7Ye5O2lu/lxcxLPD25F10Y1zY4oIqWkSZMmNGnSxHG9c+fO7N69mylTpvDxxx+fM3706NFs2bKFFStWFDg/atQox9etWrUiODiYXr16sXv3bho2bFjoc0+ePJmnn3760l+E1Q3aToPlNwAWChbST7WjajvVPk4uje+pvujaXFRKypZn35fgRJL9UyG1uhX8/+Tx/fbC+c53IPfUJ+C860LTh+y9zqv4mxJbRESkrFgsFl7u8zI2w8brv7/OPT/eQ8ziGI5lHXOMCfUPZVq/aQxpNsTEpCKuTe1cRKTMBQd4M2t4O975v7YE+Xux98hxbpu9hoe+jONIRvaFH0BEXFKHDh3YtWvXOefvv/9+fvjhB3799VdCQ0PP+xgdO3YEKPRx8sXExJCamuo4EhMTLz502BDoNhd86hY87xNqPx+mXzxKRf7mopl7TI0hLiZxHnwfDot7wqpb7Zffh9vPp/wFv4+A7yNg26v2AnpAC7hiDlzzDzQbrwK6iIhUWBaLhVevepWrG18NUKCADrA/bT83fHUD87YV/elOETk/rUQXkXLTt0UQnRvW4LVf/ubD1Xv49o/9/LrjEI8PaMaNbUOxWLTxqEhFEhcXR3Dw6f7hhmHwwAMP8O2337J06VIiIiKK9RhAgcc5m6enJ56enpec1yFsCNS99vyrXeXSqCe6lFTivFOfEjmr1dLxfbD8+oLnaveAZo9ASH/QzxYiIlJJ2Awbcclxhd5mYGDBwtjYsVzb5Fq1dhG5CCqii0i58vOqwqRrWjA4qi4x8zazLSmNR+b+ybyN+3j+ulY0rFXV7IgiAmRkZBRY/R0fH09cXByBgYHUq1ePmJgY9u/fz0cffQTA1KlTiYiIoEWLFmRlZfHee++xZMkSfvnlF8djjB49ms8++4zvvvsOPz8/kpOTAQgICMDb25vdu3fz2WefMWDAAGrUqMGff/7JQw89RPfu3WndunX5fgOsblAnunyfszLJX4muIroUhy0PNoyh8L0KzhB6PTR/BGp2KJdYIiIizmR5wnL2pe0r8nYDg8S0RJYnLCc6PLr8golUEGrnIiKmaBNWje/v70JM/6Z4VbHy+z9H6T91OdMW7SQ7N8/seCKV3vr164mKiiIqKgqAcePGERUVxYQJEwBISkoiISHBMT4nJ4fx48fTqlUrevTowaZNm1i0aBG9evVyjJkxYwapqalER0cTHBzsOL788ksAPDw8WLRoEVdddRVNmzZl/PjxXH/99SxYsKAcX7mUi/yV6CdTICfFxCDiEg4vt684v5Am96uALiIilVZSelKpjhORgrQSXURMU8XNyn96NGRAq2CenL+F3/4+zJRFf/P9pv1MHtKaDhGBZkcUqbSio6MxjKJXfc6ZM6fA9UceeYRHHnnkvI95vscDCAsL47fffit2RnFhVaqCZ03I/tfeF92jjdmJxJkdP1C8cSdUFBARkcor2K/o9odnmv3HbKKCo2has2kZJxKpWLQSXURMFxbow5wR7XlzaBQ1q3qy+3AmN72zmse++ZPU4yfNjiciImXBVy1dpBgOLYOtk4s31rt4xQMREZGKqFu9boT6h2Lh/PuBLI5fTIu3W3DbvNv4+8jf5ZROxPWpiC4iTsFisTAoMoTF43owtEM9AL5Yl0iv15fyXdz+C65gFRERF6O+6HI+R/+AX/vDoh6QuuUCgy3gE2bfAFhERKSScrO6Ma3fNIBzCumWU/97pc8rXNvkWmyGjU83f0qz6c0Y/u1wFdNFikFFdBFxKgE+VZg8pBVf39OJy2pX5d+MHMZ8EcftH6wj4chxs+OJiEhpyS+iZ+4xNYY4mbQdsOJmiL0ckmLB4g6N7oUO7wGWU8eZTl1vO9W+IbCIiEglNqTZEObeNJe6/nULnA/1D2XuTXN5uPPDzL9lPhtGbeCaJtdgM2x8/OfHNJvejNvn387OIztNSi7i/CxGJVvemZaWRkBAAKmpqfj7+5sdR0TOIyfXxju/7ebNX3eRk2vDq4qVMb0ac3e3CKq46W+A4hw0rzgfvScuYudMWHcvhFwN0do8ttLLTIQtT8M/c8DIAywQPgxaPw1VG9jHJM6DDWMKbjLqE2YvoIcNMSG0VAaaU5yT3heR88uz5bE8YTlJ6UkE+wXTrV433Ar5Y/OGAxuY9Nskfvj7BwDcLG7c1vo2nur+FA0DG5Z3bBFTFHdOURFdRJzeP4czeOLbLaz+5wgATYP8mDykFVH1qpucTETzijPSe+IiDvwMS/tBQAsYeKF2HVJhZR2GvybDzrfBlm0/V/caiHwOqrU6d7wtDw4vt28i6h1sb+GiFehShjSnOCe9LyKla/2B9UxaOokfd/4I2IvpwyOH82T3J2lQvYHJ6UTKVnHnFC3lFBGn16BWVT4b2ZFXb4ykuk8VtienM2TGKiZ8t4X0rNMbj+bZDFbvPsJ3cftZvfsIebZK9TdCERHXcmY7l8q1pkMATqbBn5Pg+wawY4q9gF47Gvqsgh7fFV5AB3vBvE40hA+1X6qALiIicsnahbTjh1t/YM3daxjQaAB5Rh4fxH1A4zcbc9d3dxF/THvYiGgluoi4lKOZOTz341bmbdwPQB1/T56+pgWGAc/8sJWk1CzH2OAALyYOak6/lsFmxZVKQPOK89F74iLysuBLb/vXQw6BVy1z80j5yD1hX3W+dTJk2z9hRmBbiHwBgvqA5eye5yLm0pzinPS+iJStNfvWMOm3ScTuigXA3erOHZF38ET3JwivFm5uOJFSppXoIlIhBfp68PpNbfj07o6E1/DhYFo293yykXs/3ViggA6QnJrFvZ9sJHZLkklpRUSkSG5e4B1i/zpDq5sqPFsu7HoXFjSCPx62F9D9m0DXr6HvOgi+SgV0ERERJ9ExtCP/G/Y/Vt25ir4N+5Jry+W9P96j0ZuNGLVgFHtT9podUaTcqYguIi6py2U1iR3bnfuii97sJP9jNk8v2KrWLiIizsjR0kVF9ArLsMHeL+HH5rB2FJzYDz71oOP7MGAL1LtBxXMREREn1SmsE7G3xbLyzpX0adCHXFsu7258l0ZvNuI/C/5DQmqC2RFFyo2pRfRly5YxaNAgQkJCsFgszJ8//7zjk5KSuPXWW2ncuDFWq5WxY8eWS04RcU5eVdzo1uj8H/83gKTULNbGHy2fUCIiUny+4fbLzD1mppCyYBiw/yeIbQsrb4H0neBZCy6fCoP+hoYjwOpudkoREREphs5hnfnl/35hxYgV9G7Qm5O2k8zaOIvL3riMe3+4V8V0qRRMLaJnZmYSGRnJ9OnTizU+OzubWrVq8eSTTxIZGVnG6UTEFRxKz7rwICAp9UQZJxERkRLzPbUSXe1cKpZDK2BRd/htIByLgyr+0OoZuGY3NB0Dbp5mJxQREZGL0KVeFxb+30KWj1hOr4henLSdZOaGmVz2xmXc9+N97EvbZ3ZEkTJj6vKP/v37079//2KPDw8PZ9q0aQC8//77ZRVLRFxIbT+vYo2b9P1fbNmfxpDL69IixB+LPjouImK+qiqiVyjH4mDTE3DgJ/t1Ny9o/AA0fxQ8a5gaTUREREpP13pdWTR8Ecv2LmPS0kn8uudXZqyfwew/ZjPy8pHEdI2hrn9ds2OKlKoK3xM9OzubtLS0AoeIVBwdIgIJDvDifCVxqwXSsnJ5f2U8V7+5gv7TlvPusn+KvYpdRETKiKMn+h5TY8glStsJK4fC/6LsBXSLG1z2Hxi0C6JeVgFdRESkgupevztLbl/C0tuX0qN+D3Lycpi+bjoN3mjAAz89wP60/WZHFCk1Fb6IPnnyZAICAhxHWFiY2ZFEpBS5WS1MHNQc4JxCuuXU8ebQKN6/ox0DWwXj4WZle3I6z/+0jSteWMwdH6xlwaYDZJ3MK+/oIiJyZk90w2ZmErkYx/fBmlHwYzPY+4X9XP2hcPV26DATfLQCTUREpDLoEd6DpXcs5dfbf6V7/e7k5OXw1rq3aPhGQx7834McSD9gdkSRS1bhi+gxMTGkpqY6jsTERLMjiUgp69cymBm3XU5QQMHWLkEBXsy47XIGtg7hyqZ1mD7sctY90Zvnr2tJ2/rVsRmwdMdhHvj8D9o/v4iYeX+yfs9RDMMw6ZWIiFQyPmH2Vcu2HDiRZHYaKa6sf2Hjw/D9ZbD7XTDyIGQg9I+DLp+B32VmJxQRERETRIdHs/T2pSwZvoRu9bqRnZfNm2vfpOEbDRkbO5akdP28J67L1J7o5cHT0xNPT21eJFLR9WsZTJ/mQayNP8qh9Cxq+3nRISIQN2vB9ekBPlUY1rE+wzrWJ/7fTOZt3Me8jfvZn3KCz9cm8vnaROrX8GFIVChDLq9LWKCPSa9IRKQSsLrbC+mZe+yHVi47t5PpsH0KbHsVctPt52p1gzaToVYXc7OJiIiIU7BYLPSM6El0eDRL4pcwcelEViauZNqaabyz4R3uaXsPj3Z9lKCqQWZHFSmRCl9EF5HKw81qoVPD4vddjajpy/irmvBQ78asiT/KNxv38b/NSew9cpwpi/5myqK/6RgRyPWXh9K/VRB+XlXKML2ISCXlG24voGfEqxDrrPKyYOcM+OsFyP7Xfq56G4h8AYL7gTbrFhERkbNYLBZ6NejFlRFXsjh+MROXTmRV4iqmrpnKOxve4d529/JIl0eoU7WO4z55tjyWJywnKT2JYL9gutXrhpvVzcRXIXKaqUX0jIwMdu3a5bgeHx9PXFwcgYGB1KtXj5iYGPbv389HH33kGBMXF+e47+HDh4mLi8PDw4PmzZuXd3wRqSCsp4rvnRrW4JlrW/DzX8l8s2E/K3f/y5r4o6yJP8qE77fQr0UQQy4PpctlNc9Z4S4iIhepagQcWmovootzseVC/Iew+Wk4fqolol9jaP0s1LsBLBW+M6SIiIhcIovFQu8GvekV0YuF/yxk4tKJ/L7vd17//XVmrJ/Bfe3v45Euj7AiYQVjYsewL22f476h/qFM6zeNIc2GmPgKROwshonNf5cuXUrPnj3POX/77bczZ84c7rjjDvbs2cPSpUsdt1kKWelSv3599uzZU6znTEtLIyAggNTUVPz9/S82uohUAgdSTjA/bj/fbNjH7sOZjvNB/l4MjqrL9ZfXpVEdPxMTijPQvOJ89J64mM3PwuYJ0GAEXPG+2WkqD1seHF5u70XvHWxvy5K/0suwQeI38OdTkLbDfs4nFFpOhAZ32NvwiFQSmlOck94XEddlGAa/7P6FiUsnsmb/GgA83DzIycs5Z6wFew1w7k1zVUiXMlPcOcXUIroZNNmKSEkZhsGf+1L5ZuM+vt90gJTjJx23tQ4N4PrLQxkUGUKgr4eJKcUsmlecj94TFxP/Caz+P6jTE3otMTtN5ZA4DzaMgeOnV3rhEwqXTwV3X9j0BBzbaD/vWQOaPw6N7wM3r0IfTqQi05zinPS+iLg+wzD4effPTPh1AusOrCtynAULof6hxI+JV2sXKRPFnVO0jERE5AIsFguRYdWIDKvGEwOb8ev2Q3yzcT+/bj/En/tS+XNfKs/9uJWeTWpzfdtQejapjYe7PuIuIlIsvuH2S7VzKR+J82D5DcBZ62iO74MVN5y+7u4HzcZD04egigpUIiIiUrosFgv9LuuHp5snV350ZZHjDAwS0xJZnrCc6PDo8gsochYV0UVESsDT3Y1+LYPp1zKYIxnZfL/pAPM27mfz/lR+2XqQX7YepLpPFa6JDOH6tqG0qhtQaBsqERE5pWqE/fJ4or0Ht1qFlB1bnn0F+tkF9LM1GQstngCvmuWRSkRERCqx5IzkYo0bGzuWW1vdSs/wnkQFR+GunxmlnOm/OBGRi1SjqicjukQwoksEO5LTmbdxH9/+sZ9D6dl8uHovH67eS6PaVRlyeSjXRdUlKKDwj8Hn2QzWxh/lUHoWtf286BARqI1LRaTy8A4GqwfYcuyroauGm52o4jq8vGALl6KEXqsCuoiIiJSLYL/gYo3bdHATmw5uAsDPw49u9bvRM7wn0eHRRAVFqdWLlDkV0UVESkGTID9iBjTjv32bsHL3Eb7ZsI+f/0pm56EMXordzis/b6fLZTW5/vJQ+rYIwtvDPsHHbkni6QVbSUrNcjxWcIAXEwc1p1/L4v0wISLi0ixW8K0P6TshM15F9LKUv0nohZxIKtscIiIiIqd0q9eNUP9Q9qftxyjk03IWLNT2rc0jXR7ht72/sWzvMlKyUvhp50/8tPMnAPw9/elevzvR9aOJDo+mTVAbFdWl1GljURGRMpKedZKfNifxzYb9rN1z1HHe18ONAa2CCQv0YcrCv8/5MSF/DfqM2y5XId0FaF5xPnpPXNCSvpD8C3ScDQ3vNDtNxWLLg+SFsHs27PsWjLwL36fXr1AnusyjibgCzSnOSe+LSMUyb9s8bvjKvjfLmYV0y6nfjufeNJchzYYAkGfL48+Df/Lrnl9Zumcpy/YuIzU7tcDjBXgG2Ivq4dH0DO9J6zqtVVSXIhV3TlERXUSkHCQcOc68P/Yxb+N+Eo4ev+B4CxAU4MWKR69Uaxcnp3nF+eg9cUFr74Fd70CLJyHyWbPTVAyZe2H3B/DP+/Z+8/ksVcA4WcSdLOATCtfEg37RFAE0pzgrvS8iFc+8bfMYEzuGfWmnW8+F+Ycxtd9URwG9MHm2POKS41i6ZylL99qL6mnZaQXGVPOqRvf63R3tX1rXaY3VYi2z1yKuRUX0ImiyFREzGYbBuj3HmLF0F7/uOHzB8Z+PvIJODWuUQzK5WJpXnI/eExf014uwKQbCb4POH5udxnXlZcO+7+yrzpMX4thA1CPQ/r1teBdk7ILlN5y6w5m/Bpz6g223uRBW9C+qIpWN5hTnpPdFpGLKs+WxPGE5SelJBPsF061etxKvIM+15TqK6r/u+ZXle5eTnpNeYEx1r+r0CO9BdP1oekb0pGXtliqqV2LFnVPUE11EpBxZLBY6RASSlFq3WEX0x7/dTI/GtWhZN4DWoQE0rFVVK9NFpOKpGmG/zIw3N4erStliL5zv+Riyj5w+X6cXNLwbwgaD26nNrau3thfKN4wpuMmoTyi0naoCuoiIiJjGzepGdHj0JT2Gu9WddiHtaBfSjoc7P0yuLZc/kv5wtH9ZnrCcY1nHmL99PvO3zwcg0DuQHvV7OFaqt6jdQkV1OYeK6CIiJqjt51WscfH/ZhL/b6bjuncVN5qH+NOqbgAt6wbQqm4ADWv54u6mCV5EXJjvqSJ6horoxXYyHfZ+CbvfgyNrTp/3rgsNRkDDEVC1QeH3DRsCda+Fw8vtm4h6B0OtbmrhIiIiIhWOu9Wd9nXb075uex7p8gi5tlw2HNjgWKm+ImEFR08c5dvt3/Lt9m8BqOlTkx71exAdbt+otEWtFlgsRS9mK40V9OL81M5FRMQEeTaDri8tITk1q5D9x+0fqq/p58lj/Zrw14F0tuxP5a8DqWTmnLshnFcVKy1CAlRYN4nmFeej98QFZR2GebXtX1/xIfjWU1G3MIYB//5uL5wnfAm5p/7IanGH0GugwV0Q3FffN5FSpDnFOel9EZHScjLvJBuSChbVj58suI9ZLZ9aBdq/NKvZzFFUL6yXe6h/KNP6TTtvL3dxHuqJXgRNtiLiLGK3JHHvJxuBQrvSMuO2y+nXMthxPs9mEP9vJlv2p/LnvlQV1p2E5hXno/fEBSV8AytupMC/hj6h0Haa2ouA/Y8M8R/bi+dp206f929ib9cS/n/gXce8fCIVmOYU56T3RUTKysm8k6w7sM6+UemepaxIWMGJ3BMFxtTyqUV0eDTVvKrx3sb3MM5aGmc59Vv93JvmqpDuAlREL4ImWxFxJrFbknh6wVaSUrMc54IDvJg4qHmBAnpRbDaDf0pQWG8e7E/r0GqlUljPsxmsjT/KofQsavt50SEisFL2a9e84nz0nriYxHmnNro8+0fSSr7RpS3Pvjno7tmw/zuwnbSfd/OB+jfZV53X6gLn+WixiFw6zSnOSe+LiJSXnLwc1u1f51ipvipx1TlF9cJYsBDqH0r8mHi1dnFyKqIXQZOtiDib0i5Gn1lY37w/lc37Sr+wfqnF/4pE84rz0XviQmx58H14wQ0uC7DYV6RfE195WpRk7IF/PrAfxxNPnw9sD5fdDfVvgSr671qkvGhOcU56X0TELNm52aw7sI73N77PB5s+uOD4VrVb0SaoDeHVwh1HRLUIQv1DqeJWpRwSy4UUd07RxqIiIiZzs1ro1LBGqT2e1WrhstpVuax2VQZH1QUKKazvT+Wv/fbC+saEFDYmpDjun19Yb1U3gFah1c4prOe3oTn7L7DJqVnc+8nGc9rQiIgU6fDy8xTQAQx7IfnwcqgTXV6pyl9eNuz7zt6uJXkRjlX5HoEQfhs0vAuqtzY1ooiIiIiAp7snXet1JTE1sVhF9M2HNrP50OZzzlstVkL9Q08X1wPCiage4bge6h+Ku7Xsy7baFLX4VEQXEakELr6wvhc4XVhvEeLP95uSCt0M1cDefOHpBVvp0zyoUrZ2EZESOpFUvHHLroPqbcC/qb0PeP6lTz3XXqGessXermXPx5B95PT5Or3svc7DBoObl2nxRERERKRwwX7FWzj2VPen8K3iS3xKPHtS9jiO7LxsElITSEhNYNneZefcz83iRqh/6OnCekB4gdXsdf3rXnKRXZuilozauYiIiMP5Cusl8f4d7bmyae0ySulcNK84H70nLuTgUljc8+Lv7+YFfo3Ar8m5BfYqfqUWs1SdTIe9X9pXnR9Zc/q8d11oMAIajoCqDczLJyIFaE5xTnpfRMRsebY8wqeFsz9t/zkbi8L5e6LbDBuHMg8Rf6xgYX1P6umvc/Jyzvv87lZ3wvzDChTW81vFhFcLJ8Qv5Lwryudtm8cNX92gTVFRT/QiabIVESkZm80g/kgmm/elMj9uP0t3HC7W/fw83akT4EWQvxd1/L0ICvAkKMCbIP9T5wI8qenribWcV6yXdg96zSvOR++JC3H0RN/PuRuLAljAOwS6fg0ZuyBtO6TtsF+m7wTbeX658A6xF9PPLrD71gPLxW2oXORrOLzcvqreOxhqdTt3dbxhwL+r7avOE76E3MxTL88dQq+xbxIa3Ne1V9WLVFCaU5yT3hcRcQb5hWigQDH6UgvRNsNGckZywQJ7yh7Hava9KXs5mb/pfBHcre7UC6hXoLCef4T5h9H1/a7sSy+8raIrbIpamm1oVEQvgiZbEZGLt3r3EYa++3upPZ671UIdfy/q+HsSFHCq2O7vRVDA6cs6/l54VSmdibssNkTVvOJ89J64mMR5sPyGU1fO/LH01B+3us2FsEJ++bDlwfG9kLod0ncULLBnHSz6+dy8wK/x6aK6X5NTX1/E6vXEebBhTMG+7j6h0HaaPXPWYYj/2L7qPG3b6TH+TeztWsL/D7zrlOw5RaRcaU5xTnpfRMRZFNYSJcw/jKn9ppbZSm6bYSMpPemc4nr+kZCacMEie3G81f8troy4kmpe1ajmVQ3vKt6lkP7SlXYbGhXRi6DJVkTk4uXZDLq+tITk1Kyi1owSFOBF7NjuHE7P5mBaFsmpWSSfcZl/7nBGNsWdgar5VClQXK+T/3V+sd3fi2o+VbBYil5RXtSGqPn3uNgNUTWvOB+9Jy6o0GJ0GLSdWngB/UJyUk4V1HcULLAXa/V603ML7IWtXncU/wv7V8WAGp3g2HrI/wXGzQfq32RfdV6rC5zn3ysRcR6aU5yT3hcRcSbOtjlnni2PpIykQtvFxB+LZ2/qXmyGrcSP6+nm6SioF+eo7lW9wHVPd89Lfm1l0YZGRfQiaLIVEbk0+cVoKHTNaLGL0SfzbBxOz7YX1s8qtCenniq2p2WRdbJ4k7unu/V0cf2MVexB/l7U8vNk9GcbOZyeXeh984v/Kx69ssStXTSvOB+9Jy6qOG1RSuM5Mvec1RbmVLH9vKvXve291/ML7H6NYeN4yD504ecMbA+X3Q31b4Eq+u9RxNVoTnFOel9ERC7e4n8W0/vj3hccF1w1mKzcLFKzUy+q6H42L3evwgvunqeK7t7Vz1uUd7O4ET4tvMAK9DNdbBua4s4pl7aNq4iIVDr9WgYz47bLz2mLElTCtihV3KyEVPMmpFrRHwkzDIPUEycLFNaTUrPOWOFuX+1+NDOH7FwbCUePk3D0eIlfkwEkpWaxNv4onRrWKPH9RaQUWN2gTnTZP4dfQ/tRd2DB2xyr188qsKfvhLwTkPKn/SiJDu/BZXeVWnwRkTNNnz6dV155heTkZCIjI3nzzTfp0KFDkeO//vprnnrqKfbs2UOjRo146aWXGDBggON2wzCYOHEi7777LikpKXTp0oUZM2bQqFEjx5ijR4/ywAMPsGDBAqxWK9dffz3Tpk2jatWqjjF//vkno0ePZt26ddSqVYsHHniARx55pERZRESk7ESHRxPqH1rsTVFtho2MnAxSslIueBzLOnbOudSsVAwMsnKzSM5IJjkj+aJye1g9yDnPp0oNDBLTElmesJzo8OiLeo7zURFdRERKrF/LYPo0DyrVDToLY7FYqObjQTUfD5oGFf0X4ayTeRxKs69qtxfcT5Ccmu1Yzf7P4QyOHb9wT7hD6VkXHCMiFZRHNajZ0X6cyZZ7avX6GQX2Q8vsBfYLcfcpi6QiInz55ZeMGzeOmTNn0rFjR6ZOnUrfvn3ZsWMHtWvXPmf8qlWrGDp0KJMnT+bqq6/ms88+Y/DgwWzcuJGWLVsC8PLLL/PGG2/w4YcfEhERwVNPPUXfvn3ZunUrXl5eAAwbNoykpCQWLlzIyZMnGTFiBKNGjeKzzz4D7Kv5rrrqKnr37s3MmTPZvHkzd955J9WqVWPUqFHFziIiImXHzerGtH7TuOGrG7BgKXRT1Kn9pjpWc1stVvw9/fH39KdeQL0SP5/NsJGenV6iwnuBInx2KsB5C+hnSkpPKnHG4lA7FxERqfCKuyHq5yOvKPFK9Io6ryxbtoxXXnmFDRs2kJSUxLfffsvgwYOLHL906VJ69ux5zvmkpCSCgoIc1y+0ai4rK4vx48fzxRdfkJ2dTd++fXn77bepU6f4my9W1PdEnMjBpbD43P/ez9Hr17JfXS8iZcpZ55SOHTvSvn173nrrLQBsNhthYWE88MADPPbYY+eMv/nmm8nMzOSHH35wnLviiito06YNM2fOxDAMQkJCGD9+PA8//DAAqamp1KlThzlz5nDLLbewbds2mjdvzrp162jXrh0AsbGxDBgwgH379hESEsKMGTN44oknSE5OxsPDA4DHHnuM+fPns3379mJlKQ5nfV9ERFyJGZuiXow8Wx7pOenE7opl6DdDLzj+19t/LdFK9OLOKdYibxEREakgOkQEEhzgRVHr5C1AcIB9Nb3YZWZmEhkZyfTp00t0vx07dpCUlOQ4zlwNl79qbuLEiWzcuJHIyEj69u3LoUOn+0o/9NBDLFiwgK+//prffvuNAwcOMGSI8/wAJwLY+7X7hML5/lXxCbOPExEpZTk5OWzYsIHevU/3s7VarfTu3ZvVq1cXep/Vq1cXGA/Qt29fx/j4+HiSk5MLjAkICKBjx46OMatXr6ZatWqOAjpA7969sVqtrFmzxjGme/fujgJ6/vPs2LGDY8eOFStLYbKzs0lLSytwiIjIpRnSbAh7xuzh19t/5bMhn/Hr7b8SPybeqQroYF85X82rGjc2v5FQ/1DHavmzWbAQ5h9Gt3pl8zO4iugiIlLhuVktTBzUHDi35JV/feKg5qXejsaV9e/fn+eee47rrruuRPerXbs2QUFBjsNqPf2jxuuvv87IkSMZMWIEzZs3Z+bMmfj4+PD+++8D9hVvs2fP5vXXX+fKK6+kbdu2fPDBB6xatYrff7/wJwlEyo3VDdpOO3WliH9V2k4t/Y1RRUSAf//9l7y8vHM+pVWnTh2SkwvvM5ucnHze8fmXFxpzdqsYd3d3AgMDC4wp7DHOfI4LZSnM5MmTCQgIcBxhYWFFjhURkeJzs7oRHR7N0FZDiQ6PLtGGnOUtvw0NcE4hvbA2NKVNRXQREakU8jdEDQrwKnA+KMCLGbddXuwNUeX82rRpQ3BwMH369GHlypWO88VZNbdhwwZOnjxZYEzTpk2pV6+eVqeJ8wkbAt3mgk/dgud9Qu3nw5xrBY+IiCuLiYkhNTXVcSQmJpodSURETDCk2RDm3jSXuv4FfwYP9Q9l7k1zy3QVvTYWFRGRSqO8NkStjIKDg5k5cybt2rUjOzub9957j+joaNasWcPll19+3lVz+T1S8/unVqtW7ZwxF1qd9vTTT5f6axK5oLAhUPdaOLwcTiSBd7C9hYsTr+AREddXs2ZN3NzcOHjwYIHzBw8eLLAPyZmCgoLOOz7/8uDBgwQHBxcY06ZNG8eYM1uwAeTm5nL06NECj1PY85z5HBfKUhhPT088PT2LvF1ERCqPIc2GcG2Ta1mesJyk9CSC/YLpVq9bma+i10p0ERGpVNysFjo1rMG1berSqWENFdBLSZMmTfjPf/5D27Zt6dy5M++//z6dO3dmypQpZf7cWp0mprK62TcPDR9qv1QBXUTKmIeHB23btmXx4sWOczabjcWLF9OpU6dC79OpU6cC4wEWLlzoGB8REUFQUFCBMWlpaaxZs8YxplOnTqSkpLBhwwbHmCVLlmCz2ejYsaNjzLJlyzh58mSB52nSpAnVq1cvVhYREZELMaMNjYroIiIiUiY6dOjArl27gOKtmgsKCiInJ4eUlI+bSbQAABI5SURBVJQixxTG09MTf3//AoeIiEhFNm7cON59910+/PBDtm3bxr333ktmZiYjRowAYPjw4cTExDjGjxkzhtjYWF577TW2b9/OpEmTWL9+Pffffz8AFouFsWPH8txzz/H999+zefNmhg8fTkhICIMHDwagWbNm9OvXj5EjR7J27VpWrlzJ/fffzy233EJISAgAt956Kx4eHtx111389ddffPnll0ybNo1x48YVO4uIiIgzUhFdREREykRcXJzjI+HFWTXXtm1bqlSpUmDMjh07SEhI0Oo0ERGRM9x88828+uqrTJgwgTZt2hAXF0dsbKyjbVpCQgJJSUmO8Z07d+azzz5j1qxZREZGMnfuXObPn0/Lli0dYx555BEeeOABRo0aRfv27cnIyCA2NhYvr9P7yXz66ac0bdqUXr16MWDAALp27cqsWbMctwcEBPDLL78QHx9P27ZtGT9+PBMmTGDUqFElyiIiIuJsLIZhGGaHKE9paWkEBASQmpqqlWoiInLJKuq8kpGR4VhFHhUVxeuvv07Pnj0JDAykXr16xMTEsH//fj766CMApk6dSkREBC1atCArK4v33nuPN998k19++YVevXoB8OWXX3L77bfzzjvv0KFDB6ZOncpXX33F9u3bHb/033vvvfz000/MmTMHf39/HnjgAQBWrVpV7OwV9T0REZHypznFOel9ERGR0lLcOUUbi4qIiMg51q9fT8+ePR3X8z+GffvttzNnzhySkpJISEhw3J6Tk8P48ePZv38/Pj4+tG7dmkWLFhV4jJtvvpnDhw8zYcIEkpOTadOmTYFVcwBTpkzBarVy/fXXk52dTd++fXn77bfL4RWLiIiIiIiIFE4r0UVERC6B5hXno/dERERKi+YU56T3RURESktx5xT1RBcRERERERERERERKYKK6CIiIiIiIiIiIiIiRVARXURERERERERERESkCCqii4iIiIiIiIiIiIgUQUV0EREREREREREREZEiqIguIiIiIiIiIiIiIlIEd7MDlDfDMABIS0szOYmIiFQE+fNJ/vwi5tNcLyIipUXzvHPSXC8iIqWluHN9pSuip6enAxAWFmZyEhERqUjS09MJCAgwO4aguV5EREqf5nnnorleRERK24XmeotRyf6kbrPZOHDgAH5+flgslkt6rLS0NMLCwkhMTMTf37+UEpY95S5fyl2+lLt8Kbf9r9Xp6emEhIRgtapLmjMorbneVf/7BtfNrtzlS7nLl3KXr9LKrXneOVX2uV65y5dyly/lLn+umr285/pKtxLdarUSGhpaqo/p7+/vUv+R5VPu8qXc5Uu5y1dlz62Vac6ltOd6V/3vG1w3u3KXL+UuX8pdvkojt+Z556O53k65y5dyly/lLn+umr285nr9KV1EREREREREREREpAgqoouIiIiIiIiIiIiIFEFF9Evg6enJxIkT8fT0NDtKiSh3+VLu8qXc5Uu5pSJz5f9OXDW7cpcv5S5fyl2+XDW3lC9X/e9EucuXcpcv5S5/rpq9vHNXuo1FRURERERERERERESKSyvRRURERERERERERESKoCK6iIiIiIiIiIiIiEgRVEQXERERERERERERESmCiugXYdmyZQwaNIiQkBAsFgvz5883O1KxTJ48mfbt2+Pn50ft2rUZPHgwO3bsMDvWBc2YMYPWrVvj7++Pv78/nTp14n//+5/ZsUrkxRdfxGKxMHbsWLOjXNCkSZOwWCwFjqZNm5odq1j279/PbbfdRo0aNfD29qZVq1asX7/e7FjnFR4efs7322KxMHr0aLOjnVdeXh5PPfUUEREReHt707BhQ5599llcYZuN9PR0xo4dS/369fH29qZz586sW7fO7FjiZFxxrtc8by5Xmes1z5c/V5zrNc9LReeK8zxorjeb5vqy54pzvSvO86C5/mK4l/kzVECZmZlERkZy5513MmTIELPjFNtvv/3G6NGjad++Pbm5uTz++ONcddVVbN26FV9fX7PjFSk0NJQXX3yRRo0aYRgGH374Iddeey1//PEHLVq0MDveBa1bt4533nmH1q1bmx2l2Fq0aMGiRYsc193dnf+fimPHjtGlSxd69uzJ//73P2rVqsXOnTupXr262dHOa926deTl5Tmub9myhT59+nDjjTeamOrCXnrpJWbMmMGHH35IixYtWL9+PSNGjCAgIIAHH3zQ7Hjndffdd7NlyxY+/vhjQkJC+OSTT+jduzdbt26lbt26ZscTJ+GKc73mefO42lyveb58ueJcr3leKjpXnOdBc72ZNNeXPVed611xngfN9RfFkEsCGN9++63ZMS7KoUOHDMD47bffzI5SYtWrVzfee+89s2NcUHp6utGoUSNj4cKFRo8ePYwxY8aYHemCJk6caERGRpodo8QeffRRo2vXrmbHuGRjxowxGjZsaNhsNrOjnNfAgQONO++8s8C5IUOGGMOGDTMpUfEcP37ccHNzM3744YcC5y+//HLjiSeeMCmVODtXnes1z5cPV5vrNc+bzxXmes3zUpm46jxvGJrry4vm+vJRUeZ6V5jnDUNz/cVQO5dKLDU1FYDAwECTkxRfXl4eX3zxBZmZmXTq1MnsOBc0evRoBg4cSO/evc2OUiI7d+4kJCSEBg0aMGzYMBISEsyOdEHff/897dq148Ybb6R27dpERUXx7rvvmh2rRHJycvjkk0+48847sVgsZsc5r86dO7N48WL+/vtvADZt2sSKFSvo37+/ycnOLzc3l7y8PLy8vAqc9/b2ZsWKFSalEikbmufLhyvO9ZrnzeMqc73meRHXoLm+fGiuLx8VYa53lXkeNNdflDIt0VcCuOhfrfPy8oyBAwcaXbp0MTtKsfz555+Gr6+v4ebmZgQEBBg//vij2ZEu6PPPPzdatmxpnDhxwjAMwyX+Ym0YhvHTTz8ZX331lbFp0yYjNjbW6NSpk1GvXj0jLS3N7Gjn5enpaXh6ehoxMTHGxo0bjXfeecfw8vIy5syZY3a0Yvvyyy8NNzc3Y//+/WZHuaC8vDzj0UcfNSwWi+Hu7m5YLBbjhRdeMDtWsXTq1Mno0aOHsX//fiM3N9f4+OOPDavVajRu3NjsaOKkXHGu1zxfPlxxrtc8by5Xmes1z0tl4orzvGFori8vmuvLT0WY611lnjcMzfUXQ0X0S+SqE+4999xj1K9f30hMTDQ7SrFkZ2cbO3fuNNavX2889thjRs2aNY2//vrL7FhFSkhIMGrXrm1s2rTJcc4VJtvCHDt2zPD393f6j9pVqVLF6NSpU4FzDzzwgHHFFVeYlKjkrrrqKuPqq682O0axfP7550ZoaKjx+eefG3/++afx0UcfGYGBgS7xA86uXbuM7t27G4Dh5uZmtG/f3hg2bJjRtGlTs6OJk3LFuV7zfNmrKHO95vny5SpzveZ5qUxccZ43DM315UFzffmqCHO9q8zzhqG5/mKoiH6JXHHCHT16tBEaGmr8888/Zke5aL169TJGjRpldowiffvtt47/M+cfgGGxWAw3NzcjNzfX7Igl0q5dO+Oxxx4zO8Z51atXz7jrrrsKnHv77beNkJAQkxKVzJ49ewyr1WrMnz/f7CjFEhoaarz11lsFzj377LNGkyZNTEpUchkZGcaBAwcMwzCMm266yRgwYIDJicRZudpcr3m+fFSkuV7zfPlwpble87xUJq42zxuG5vryorm+fLn6XO9K87xhaK6/GOqJXokYhsH999/Pt99+y5IlS4iIiDA70kWz2WxkZ2ebHaNIvXr1YvPmzcTFxTmOdu3aMWzYMOLi4nBzczM7YrFlZGSwe/dugoODzY5yXl26dGHHjh0Fzv3999/Ur1/fpEQl88EHH1C7dm0GDhxodpRiOX78OFZrwSnEzc0Nm81mUqKS8/X1JTg4mGPHjvHzzz9z7bXXmh1J5JJoni9fFWWu1zxfflxprtc8L+KcNNeXL8315cvV53pXmudBc/3FcC/TR6+gMjIy2LVrl+N6fHw8cXFxBAYGUq9ePROTnd/o0aP57LPP+O677/Dz8yM5ORmAgIAAvL29TU5XtJiYGPr370+9evVIT0/ns88+Y+nSpfz8889mRyuSn58fLVu2LHDO19eXGjVqnHPe2Tz88MMMGjSI+vXrc+DAASZOnIibmxtDhw41O9p5PfTQQ3Tu3JkXXniBm266ibVr1zJr1ixmzZpldrQLstlsfPDBB9x+++24u7vGP8uDBg3i+eefp169erRo0YI//viD119/nTvvvNPsaBf0888/YxgGTZo0YdeuXfz3v/+ladOmjBgxwuxo4kRcca7XPF++XHWu1zxvDleb6zXPS0XnivM8aK4vb5rry5crz/WuNs+D5vqLUqbr3CuoX3/91QDOOW6//Xazo51XYZkB44MPPjA72nndeeedRv369Q0PDw+jVq1aRq9evYxffvnF7Fgl5iq9026++WYjODjY8PDwMOrWrWvcfPPNxq7/b+9+QqJq2zgA32N/Jh0KLCltESGFWVGbIqQ21SJtVRgRSNhKLBM37SyyRdtaCkK1igqDwogSailEbTIXJrzrkIqIUsiNz7d4Qd6h73xfvKij43XBgTnnzOj9rH7w48wzf/1V6rH+yLNnz9LevXtTPp9Pu3btSgMDA6Ue6Y8MDw+niEgTExOlHuWP/fjxI/X09KRt27aldevWpfr6+tTb25tmZmZKPdr/9ejRo1RfX5/Wrl2bamtrU1dXV/r+/Xupx2KJWY5ZL+dLbzlkvZwvjeWW9XKecrcccz4lWb8UyPqFtVyzfrnlfEqy/t/IpZTSwtb0AAAAAACwPNkTHQAAAAAAMijRAQAAAAAggxIdAAAAAAAyKNEBAAAAACCDEh0AAAAAADIo0QEAAAAAIIMSHQAAAAAAMijRAQAAAAAggxIdmFe5XC6ePn1a6jEAgAUi6wGgfMl5+O+U6FBGLly4ELlc7rejubm51KMBAPNA1gNA+ZLzsHStLvUAwPxqbm6Oe/fuFV3L5/MlmgYAmG+yHgDKl5yHpcmT6FBm8vl81NbWFh3V1dUR8ffXsvr7+6OlpSUqKyujvr4+Hj9+XPT5sbGxOHbsWFRWVsamTZuio6Mjpqamit5z9+7d2LNnT+Tz+airq4vLly8X3f/69WucPn06qqqqYufOnTE0NLSwiwaAFUTWA0D5kvOwNCnRYYW5du1atLa2xujoaLS1tcW5c+difHw8IiKmp6fjxIkTUV1dHe/evYvBwcF49epVUaD29/dHV1dXdHR0xNjYWAwNDcWOHTuK/seNGzfi7Nmz8eHDhzh58mS0tbXFt2/fFnWdALBSyXoAKF9yHkokAWWjvb09rVq1KhUKhaLj5s2bKaWUIiJ1dnYWfebQoUPp4sWLKaWUBgYGUnV1dZqampq7//z581RRUZEmJydTSilt3bo19fb2Zs4QEenq1atz51NTUyki0osXL+ZtnQCwUsl6AChfch6WLnuiQ5k5evRo9Pf3F13buHHj3Oumpqaie01NTfH+/fuIiBgfH4/9+/dHoVCYu3/48OGYnZ2NiYmJyOVy8enTpzh+/Pj/nGHfvn1zrwuFQmzYsCE+f/78b5cEAPyDrAeA8iXnYWlSokOZKRQKv30Va75UVlb+0fvWrFlTdJ7L5WJ2dnYhRgKAFUfWA0D5kvOwNNkTHVaYN2/e/Hbe2NgYERGNjY0xOjoa09PTc/dHRkaioqIiGhoaYv369bF9+/Z4/fr1os4MAPw5WQ8A5UvOQ2l4Eh3KzMzMTExOThZdW716ddTU1ERExODgYBw4cCCOHDkS9+/fj7dv38adO3ciIqKtrS2uX78e7e3t0dfXF1++fInu7u44f/58bNmyJSIi+vr6orOzMzZv3hwtLS3x8+fPGBkZie7u7sVdKACsULIeAMqXnIelSYkOZebly5dRV1dXdK2hoSE+fvwYEX//yvbDhw/j0qVLUVdXFw8ePIjdu3dHRERVVVUMDw9HT09PHDx4MKqqqqK1tTVu3bo197fa29vj169fcfv27bhy5UrU1NTEmTNnFm+BALDCyXoAKF9yHpamXEoplXoIYHHkcrl48uRJnDp1qtSjAAALQNYDQPmS81A69kQHAAAAAIAMSnQAAAAAAMhgOxcAAAAAAMjgSXQAAAAAAMigRAcAAAAAgAxKdAAAAAAAyKBEBwAAAACADEp0AAAAAADIoEQHAAAAAIAMSnQAAAAAAMigRAcAAAAAgAxKdAAAAAAAyPAf6pUG1Qdv9G4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 9, Train Loss: 1.0421, Val Loss: 1.5401, LR: 0.000002\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Training: 1%|██▏ | 22/1534 [00:21<24:57, 1.01it/s, loss=1.0921]" ] } ], "source": [ "#multiclass\n", "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "\n", "tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')\n", "\n", "config = DistilBertConfig.from_pretrained(\n", " 'distilbert-base-cased',\n", " num_labels=num_classes,\n", " problem_type=\"single_label_classification\"\n", ")\n", "\n", "model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-cased', config=config)\n", "\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "model.to(device)\n", "\n", "def soft_cross_entropy_loss(logits, target):\n", " log_probs = F.log_softmax(logits, dim=1)\n", " loss = -(target * log_probs).sum(dim=1).mean()\n", " return loss\n", "\n", "criterion = soft_cross_entropy_loss\n", "optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)\n", "\n", "\n", "\n", "def lr_lambda(epoch):\n", " if epoch == 0:\n", " return 1.0\n", " elif epoch == 1:\n", " return 3.0\n", " else:\n", " return 3.0 * (1/2) ** (epoch - 1)\n", "\n", "scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)\n", "\n", "\n", "train_losses = []\n", "val_losses = []\n", "lrs = []\n", "num_epochs = 10\n", "best_val_loss = float('inf')\n", "\n", "for epoch in range(num_epochs):\n", " avg_train_loss = run_train_epoch(model, train_loader, optimizer, criterion, device)\n", " avg_val_loss = run_val_epoch(model, val_loader, criterion, device)\n", " \n", " train_losses.append(avg_train_loss)\n", " val_losses.append(avg_val_loss)\n", " current_lr = optimizer.param_groups[0]['lr']\n", " lrs.append(current_lr)\n", " \n", " plot_metrics(list(range(1, epoch+2)), train_losses, val_losses, lrs, save_plot = True)\n", " print(f'Epoch {epoch+1}, Train Loss: {avg_train_loss:.4f}, Val Loss: {avg_val_loss:.4f}, LR: {current_lr:.6f}')\n", " \n", " \n", " \n", " # Сохранение текущей модели\n", " torch.save({\n", " 'epoch': epoch+1,\n", " 'model_state_dict': model.state_dict(),\n", " 'optimizer_state_dict': optimizer.state_dict(),\n", " 'train_losses': train_losses,\n", " 'val_losses': val_losses,\n", " 'lrs': lrs\n", " }, 'last_model.pt')\n", " \n", " # Сохранение лучшей модели по вал\n", " if avg_val_loss < best_val_loss:\n", " best_val_loss = avg_val_loss\n", " torch.save({\n", " 'epoch': epoch+1,\n", " 'model_state_dict': model.state_dict(),\n", " 'optimizer_state_dict': optimizer.state_dict(),\n", " 'train_losses': train_losses,\n", " 'val_losses': val_losses,\n", " 'lrs': lrs\n", " }, 'best_model.pt')\n", " \n", " scheduler.step()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-cased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", "Validation: 100%|██████████| 384/384 [02:34<00:00, 2.49it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Метрики по классам:\n", " Label 0: Precision: 0.6928, Recall: 0.2192, F1: 0.3330, Support: 8116\n", " Label 1: Precision: 0.8720, Recall: 0.5121, F1: 0.6453, Support: 785\n", " Label 2: Precision: 0.8684, Recall: 0.7285, F1: 0.7923, Support: 453\n", " Label 3: Precision: 0.8195, Recall: 0.7548, F1: 0.7859, Support: 1089\n", " Label 4: Precision: 0.7558, Recall: 0.7525, F1: 0.7541, Support: 695\n", " Label 5: Precision: 0.5461, Recall: 0.5992, F1: 0.5714, Support: 247\n", " Label 6: Precision: 0.4855, Recall: 0.9207, F1: 0.6357, Support: 290\n", " Label 7: Precision: 0.6667, Recall: 0.1429, F1: 0.2353, Support: 168\n", " Label 8: Precision: 0.6739, Recall: 0.3678, F1: 0.4759, Support: 590\n", " Label 9: Precision: 0.6126, Recall: 0.6413, F1: 0.6266, Support: 683\n", " Label 10: Precision: 0.6620, Recall: 0.3730, F1: 0.4772, Support: 126\n", " Label 11: Precision: 0.6095, Recall: 0.5664, F1: 0.5872, Support: 226\n", " Label 12: Precision: 0.4471, Recall: 0.2216, F1: 0.2963, Support: 343\n", " Label 13: Precision: 0.4643, Recall: 0.4362, F1: 0.4498, Support: 298\n", " Label 14: Precision: 0.3699, Recall: 0.8101, F1: 0.5079, Support: 79\n", " Label 15: Precision: 0.6450, Recall: 0.2683, F1: 0.3789, Support: 3914\n", " Label 16: Precision: 0.5132, Recall: 0.1931, F1: 0.2806, Support: 202\n", " Label 17: Precision: 0.2083, Recall: 0.0450, F1: 0.0741, Support: 111\n", " Label 18: Precision: 0.5405, Recall: 0.3200, F1: 0.4020, Support: 125\n", " Label 19: Precision: 0.6311, Recall: 0.8037, F1: 0.7070, Support: 2048\n", " Label 20: Precision: 0.6569, Recall: 0.5709, F1: 0.6109, Support: 748\n", " Label 21: Precision: 0.7684, Recall: 0.8480, F1: 0.8062, Support: 4757\n", " Label 22: Precision: 0.2743, Recall: 0.1574, F1: 0.2000, Support: 197\n", " Label 23: Precision: 0.3766, Recall: 0.4567, F1: 0.4128, Support: 127\n", " Label 24: Precision: 0.4520, Recall: 0.4148, F1: 0.4326, Support: 352\n", " Label 25: Precision: 0.2500, Recall: 0.0108, F1: 0.0207, Support: 185\n", " Label 26: Precision: 0.4250, Recall: 0.5472, F1: 0.4784, Support: 466\n", " Label 27: Precision: 0.1923, Recall: 0.1786, F1: 0.1852, Support: 28\n", " Label 28: Precision: 0.3849, Recall: 0.6328, F1: 0.4786, Support: 177\n", " Label 29: Precision: 0.4266, Recall: 0.3861, F1: 0.4053, Support: 158\n", " Label 30: Precision: 0.4578, Recall: 0.4882, F1: 0.4725, Support: 211\n", " Label 31: Precision: 0.6886, Recall: 0.2083, F1: 0.3199, Support: 552\n", " Label 32: Precision: 0.4093, Recall: 0.6244, F1: 0.4945, Support: 2822\n", " Label 33: Precision: 0.2216, Recall: 0.4526, F1: 0.2976, Support: 95\n", " Label 34: Precision: 0.0984, Recall: 0.0968, F1: 0.0976, Support: 62\n", " Label 35: Precision: 0.3333, Recall: 0.2414, F1: 0.2800, Support: 29\n", " Label 36: Precision: 0.2115, Recall: 0.0567, F1: 0.0894, Support: 194\n", " Label 37: Precision: 0.4231, Recall: 0.6091, F1: 0.4993, Support: 307\n", " Label 38: Precision: 0.3872, Recall: 0.5723, F1: 0.4619, Support: 159\n", " Label 39: Precision: 0.2946, Recall: 0.6129, F1: 0.3979, Support: 62\n", " Label 40: Precision: 0.3970, Recall: 0.6863, F1: 0.5030, Support: 306\n", " Label 41: Precision: 0.1071, Recall: 0.0492, F1: 0.0674, Support: 122\n", " Label 42: Precision: 0.3867, Recall: 0.7821, F1: 0.5176, Support: 179\n", " Label 43: Precision: 0.3442, Recall: 0.4953, F1: 0.4061, Support: 107\n", " Label 44: Precision: 0.4504, Recall: 0.4814, F1: 0.4654, Support: 349\n", " Label 45: Precision: 0.0631, Recall: 0.7407, F1: 0.1163, Support: 27\n", " Label 46: Precision: 0.1915, Recall: 0.2432, F1: 0.2143, Support: 74\n", " Label 47: Precision: 0.2833, Recall: 0.6355, F1: 0.3919, Support: 214\n", " Label 48: Precision: 0.0000, Recall: 0.0000, F1: 0.0000, Support: 0\n", " Label 49: Precision: 0.5981, Recall: 0.6221, F1: 0.6098, Support: 598\n", " Label 50: Precision: 0.8925, Recall: 0.5025, F1: 0.6430, Support: 595\n", " Label 51: Precision: 0.7397, Recall: 0.4696, F1: 0.5745, Support: 115\n", " Label 52: Precision: 0.5906, Recall: 0.6973, F1: 0.6395, Support: 664\n", " Label 53: Precision: 0.4663, Recall: 0.8079, F1: 0.5913, Support: 479\n", " Label 54: Precision: 0.1611, Recall: 0.1111, F1: 0.1315, Support: 216\n", " Label 55: Precision: 0.2824, Recall: 0.4000, F1: 0.3310, Support: 60\n", " Label 56: Precision: 0.2938, Recall: 0.6959, F1: 0.4132, Support: 171\n", " Label 57: Precision: 0.3281, Recall: 0.7064, F1: 0.4480, Support: 235\n", " Label 58: Precision: 0.1875, Recall: 0.3333, F1: 0.2400, Support: 36\n", " Label 59: Precision: 0.2000, Recall: 0.0606, F1: 0.0930, Support: 66\n", " Label 60: Precision: 0.3276, Recall: 0.8081, F1: 0.4662, Support: 521\n", " Label 61: Precision: 0.1852, Recall: 0.2778, F1: 0.2222, Support: 36\n", " Label 62: Precision: 0.2213, Recall: 0.6512, F1: 0.3304, Support: 86\n", " Label 63: Precision: 0.2424, Recall: 0.4746, F1: 0.3209, Support: 118\n", " Label 64: Precision: 0.2098, Recall: 0.3896, F1: 0.2727, Support: 77\n", " Label 65: Precision: 0.2434, Recall: 0.5670, F1: 0.3406, Support: 97\n", " Label 66: Precision: 0.1899, Recall: 0.7907, F1: 0.3063, Support: 43\n", " Label 67: Precision: 0.0000, Recall: 0.0000, F1: 0.0000, Support: 0\n", " Label 68: Precision: 0.2459, Recall: 0.5556, F1: 0.3409, Support: 54\n", " Label 69: Precision: 0.1800, Recall: 0.4286, F1: 0.2535, Support: 21\n", " Label 70: Precision: 0.0000, Recall: 0.0000, F1: 0.0000, Support: 0\n", " Label 71: Precision: 0.0150, Recall: 0.5714, F1: 0.0293, Support: 7\n", " Label 72: Precision: 0.2802, Recall: 0.7647, F1: 0.4101, Support: 170\n", " Label 73: Precision: 0.2680, Recall: 0.4181, F1: 0.3266, Support: 232\n", " Label 74: Precision: 0.2042, Recall: 0.6415, F1: 0.3098, Support: 106\n", " Label 75: Precision: 0.1346, Recall: 0.3684, F1: 0.1972, Support: 19\n", " Label 76: Precision: 0.3182, Recall: 0.2857, F1: 0.3011, Support: 49\n", " Label 77: Precision: 0.1429, Recall: 0.5312, F1: 0.2252, Support: 32\n", " Label 78: Precision: 0.2069, Recall: 0.0526, F1: 0.0839, Support: 114\n", " Label 79: Precision: 0.2233, Recall: 0.3485, F1: 0.2722, Support: 66\n", " Label 80: Precision: 0.2968, Recall: 0.7419, F1: 0.4240, Support: 62\n", " Label 81: Precision: 0.2059, Recall: 0.0933, F1: 0.1284, Support: 150\n", " Label 82: Precision: 0.6049, Recall: 0.4712, F1: 0.5297, Support: 104\n", " Label 83: Precision: 0.0769, Recall: 0.1429, F1: 0.1000, Support: 35\n", " Label 84: Precision: 0.3700, Recall: 0.6269, F1: 0.4654, Support: 134\n", " Label 85: Precision: 0.1084, Recall: 0.1286, F1: 0.1176, Support: 70\n", " Label 86: Precision: 0.5000, Recall: 0.0500, F1: 0.0909, Support: 20\n", " Label 87: Precision: 0.5504, Recall: 0.9107, F1: 0.6861, Support: 168\n", " Label 88: Precision: 0.2202, Recall: 0.4364, F1: 0.2927, Support: 55\n", " Label 89: Precision: 0.3958, Recall: 0.6333, F1: 0.4872, Support: 60\n", " Label 90: Precision: 0.3664, Recall: 0.7277, F1: 0.4874, Support: 213\n", " Label 91: Precision: 0.3246, Recall: 0.3558, F1: 0.3394, Support: 104\n", " Label 92: Precision: 0.2397, Recall: 0.5472, F1: 0.3333, Support: 53\n", " Label 93: Precision: 0.1979, Recall: 0.4872, F1: 0.2815, Support: 39\n", " Label 94: Precision: 0.2308, Recall: 0.0968, F1: 0.1364, Support: 31\n", " Label 95: Precision: 0.4257, Recall: 0.9481, F1: 0.5876, Support: 674\n", " Label 96: Precision: 0.3699, Recall: 0.1942, F1: 0.2547, Support: 139\n", " Label 97: Precision: 0.0526, Recall: 0.0256, F1: 0.0345, Support: 39\n", " Label 98: Precision: 0.3314, Recall: 0.5795, F1: 0.4216, Support: 195\n", " Label 99: Precision: 0.2221, Recall: 0.5781, F1: 0.3209, Support: 320\n", " Label 100: Precision: 0.0000, Recall: 0.0000, F1: 0.0000, Support: 0\n", "\n", "Общая Accuracy: 0.5082\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "import torch\n", "from transformers import DistilBertTokenizer, DistilBertConfig, DistilBertForSequenceClassification\n", "import torch.nn.functional as F\n", "from sklearn.metrics import precision_recall_fscore_support, accuracy_score\n", "from tqdm import tqdm\n", "\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "checkpoint = torch.load('best_model2.pt', map_location=device)\n", "num_classes = 101\n", "\n", "config = DistilBertConfig.from_pretrained(\n", " 'distilbert-base-cased',\n", " num_labels=num_classes,\n", " problem_type=\"single_label_classification\"\n", ")\n", "model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-cased', config=config)\n", "model.load_state_dict(checkpoint['model_state_dict'])\n", "model.to(device)\n", "model.eval()\n", "\n", "def evaluate_model(model, val_loader, device):\n", " all_preds = []\n", " all_labels = []\n", " val_progress = tqdm(val_loader, desc=\"Validation\")\n", " \n", " with torch.no_grad():\n", " for batch in val_progress:\n", " input_ids = batch['input_ids'].to(device)\n", " attention_mask = batch['attention_mask'].to(device)\n", " labels = batch['labels'].to(device)\n", " \n", " # преобразуем в индексы\n", " if labels.dim() == 2 and labels.size(1) == num_classes:\n", " labels = torch.argmax(labels, dim=1)\n", " \n", " outputs = model(input_ids=input_ids, attention_mask=attention_mask)\n", " preds = torch.argmax(outputs.logits, dim=1)\n", " \n", " all_preds.extend(preds.cpu().numpy())\n", " all_labels.extend(labels.cpu().numpy())\n", " \n", " precision, recall, f1, support = precision_recall_fscore_support(\n", " all_labels, all_preds, average=None, zero_division=0\n", " )\n", " accuracy = accuracy_score(all_labels, all_preds)\n", " \n", " print(\"Метрики по классам:\")\n", " for idx, (p, r, f, s) in enumerate(zip(precision, recall, f1, support)):\n", " print(f' Label {idx}: Precision: {p:.4f}, Recall: {r:.4f}, F1: {f:.4f}, Support: {s}')\n", " print(f'\\nОбщая Accuracy: {accuracy:.4f}')\n", "\n", "evaluate_model(model, val_loader, device)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAKyCAYAAAA6kpdwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FNX79/HPJiGNhNAJECCgIr0XEZHeQVFRekcURJEiAiq9iUpRkB5ABEGsKKBSLYBfpKv0EkA6IqEHSM7zB0/2l83upCwhG+D9uq65rsyZOTP3zG6m3HP2jM0YYwQAAAAAAAAAAJx4eToAAAAAAAAAAADSK5LoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAC4L3Ts2FHh4eEpqrNu3TrZbDatW7fursT0IJs7d65sNpsiIyPtZTVq1FCNGjU8FhMAAADgDpLoAAAAcEtckjRu8Pf3V+HChdWzZ0+dPn3a0+Hd92rUqOGw/wMCAlSqVClNnDhRsbGxng4PAAAAuG/4eDoAAAAA3NuGDx+uggUL6vr16/rtt980depULV++XH/99ZcCAwPTLI6ZM2emOHn85JNP6tq1a/L19b1LUd1dYWFhGjNmjCTp3LlzWrhwoXr37q2zZ89q1KhRHo4OAAAAuD+QRAcAAMAdadiwoSpUqCBJ6tq1q7Jly6bx48fr22+/VatWrVzWuXLlijJmzJiqcWTIkCHFdby8vOTv75+qcaSlkJAQtW3b1j7+8ssvq0iRIvroo480fPhweXt7ezA6AAAA4P5Ady4AAABIVbVq1ZIkHT58WNLtvsqDgoJ08OBBNWrUSMHBwWrTpo0kKTY2VhMnTlTx4sXl7++vXLly6aWXXtJ///3ntNwVK1aoevXqCg4OVqZMmVSxYkUtXLjQPt1Vn+iLFi1S+fLl7XVKliypSZMm2adb9Ym+ZMkSlS9fXgEBAcqePbvatm2r48ePO8wTt13Hjx9Xs2bNFBQUpBw5cqhfv36KiYlJcj+Fh4erY8eOTuu12Wwp7ts9jr+/vypWrKhLly7pzJkzDtM+/fRT+zZlzZpVLVu21LFjx5yW8b///U+NGjVSlixZlDFjRpUqVcphn+3cuVMdO3ZUoUKF5O/vr9DQUHXu3Fn//vuvWzG7Er+bmoRDwn1z5coV9e3bV/ny5ZOfn58effRRvf/++zLGJLqOhN3huBriS87+s1pmnTp17PPMmTNHtWrVUs6cOeXn56dixYpp6tSpTvGFh4fLZrPp9ddfd5pWv3592Ww2NWnSJIk9CQAAgNRAS3QAAACkqoMHD0qSsmXLZi+7deuW6tevryeeeELvv/++vZuXl156SXPnzlWnTp302muv6fDhw5o8ebK2bdum9evX21uXz507V507d1bx4sU1cOBAZc6cWdu2bdMPP/yg1q1bu4xj5cqVatWqlWrXrq13331XkrR7926tX79evXr1sow/Lp6KFStqzJgxOn36tCZNmqT169dr27Ztypw5s33emJgY1a9fX5UrV9b777+vVatW6YMPPtBDDz2k7t27p2i/3bp1S2+99VaK6rgSGRkpm83mEOeoUaP0zjvv6IUXXlDXrl119uxZffTRR3ryyScdtmnlypVq0qSJcufOrV69eik0NFS7d+/W999/b99nK1eu1KFDh9SpUyeFhobq77//1owZM/T333/r999/d0o+u6tu3bpq3769Q9kHH3zg8IDFGKOnnnpKa9euVZcuXVSmTBn9+OOPeuONN3T8+HFNmDDBcvlvvfWWunbtKul2Vzi9e/dWt27dVK1aNad5k7v/JMcuduLkzp3b/vfUqVNVvHhxPfXUU/Lx8dF3332nHj16KDY2Vq+88opDPX9/fy1YsEDvvfee/X/hn3/+0erVq+/pX1AAAADccwwAAADghjlz5hhJZtWqVebs2bPm2LFjZtGiRSZbtmwmICDA/PPPP8YYYzp06GAkmQEDBjjU//XXX40ks2DBAofyH374waH8woULJjg42FSuXNlcu3bNYd7Y2Fj73x06dDAFChSwj/fq1ctkypTJ3Lp1y3Ib1q5daySZtWvXGmOMuXHjhsmZM6cpUaKEw7q+//57I8kMHjzYYX2SzPDhwx2WWbZsWVO+fHnLdcYpUKCA6dChg338448/Nn5+fqZmzZoO22GlevXqpkiRIubs2bPm7NmzZs+ePeaNN94wkkzjxo3t80VGRhpvb28zatQoh/p//vmn8fHxsZffunXLFCxY0BQoUMD8999/DvPG389Xr151iuWzzz4zkswvv/xiL4v7fhw+fNgh5urVqye5bZLMK6+84lTeuHFjh33zzTffGElm5MiRDvM1b97c2Gw2c+DAgSTXZYwxhw8fNpLMnDlznKYld/8Zc3v7ihcvnui6XO2/+vXrm0KFCjmUFShQwNStW9dkz57dfPHFF/byESNGmMcff9wUKFDA4XMGAADA3UN3LgAAALgjderUUY4cOZQvXz61bNlSQUFB+vrrr5U3b16H+RK2zF6yZIlCQkJUt25dnTt3zj6UL19eQUFBWrt2raTbLZ8vXbqkAQMGOLW+TazVc+bMmXXlyhWtXLky2duyefNmnTlzRj169HBYV+PGjVWkSBEtW7bMqc7LL7/sMF6tWjUdOnQo2euUpKtXr2r48OHq2bOn8ufPn+x6e/bsUY4cOZQjRw4VKVJE7733np566inNnTvXPs9XX32l2NhYvfDCCw77OTQ0VI888oh9P2/btk2HDx/W66+/7tCyWnLczwEBAfa/r1+/rnPnzumxxx6TJG3dujVF232nli9fLm9vb7322msO5X379pUxRitWrLjjdSR3/yVX/P0XFRWlc+fOqXr16jp06JCioqIc5vX19VWbNm00Z84ce1ncLyUAAACQdujOBQAAAHdkypQpKly4sHx8fJQrVy49+uij8vJybKvh4+OjsLAwh7L9+/crKipKOXPmdLncuD6947qHKVGiRIri6tGjhz7//HM1bNhQefPmVb169fTCCy+oQYMGlnWOHDkiSXr00UedphUpUkS//fabQ5m/v79y5MjhUJYlSxaXfbonZvz48bp+/boGDRqkPn36JLteeHi4Zs6cqdjYWB08eFCjRo3S2bNnHR4A7N+/X8YYPfLIIy6XEddNSHL38/nz5zVs2DAtWrTIqd/1hEngu+3IkSPKkyePgoODHcqLFi1qn36nkrv/kmv9+vUaMmSINm7cqKtXrzpMi4qKUkhIiENZp06dVL58eZ08eVL79u3TyZMn9cILL2jkyJEp2xAAAAC4jSQ6AAAA7kilSpVUoUKFROfx8/NzSqzHxsYqZ86cWrBggcs6CZPTKZUzZ05t375dP/74o1asWKEVK1Zozpw5at++vebNm3dHy47j7e19x8s4d+6c3nvvPQ0cOFBZs2ZNUd2MGTM6vLSyatWqKleunAYNGqQPP/xQ0u39bLPZtGLFCpfxBgUFpWidL7zwgjZs2KA33nhDZcqUUVBQkGJjY9WgQQPFxsamaFn3gtTcfwcPHlTt2rVVpEgRjR8/Xvny5ZOvr6+WL1+uCRMmuNx/pUuXVunSpfXJJ59o9+7deu6555QpU6Y72iYAAACkDEl0AAAAeMRDDz2kVatWqWrVqg5dXLiaT5L++usvPfzwwylah6+vr5o2baqmTZsqNjZWPXr00PTp0/XOO++4XFaBAgUkSXv37lWtWrUcpu3du9c+PTWNHDlSwcHBib7sNLlKlSqltm3bavr06erXr5/y58+vhx56SMYYFSxYUIULF7asG38/x0/Mx/fff/9p9erVGjZsmAYPHmwv379//x3H7o4CBQpo1apVunTpkkNr9D179tin36nk7r/k+O677xQdHa2lS5c6dNuTVJcwnTt31oQJE3Tq1Cl99913dxQDAAAAUo4+0QEAAOARL7zwgmJiYjRixAinabdu3dKFCxckSfXq1VNwcLDGjBmj69evO8xnjLFc/r///usw7uXlpVKlSkmSoqOjXdapUKGCcubMqWnTpjnMs2LFCu3evVuNGzdO1rYlV2RkpKZOnaqhQ4cm+iAhJfr376+bN29q/PjxkqRnn31W3t7eGjZsmNP+MsbY91O5cuVUsGBBTZw40b7v488n/V/L+4TLmThxYqrEnlKNGjVSTEyMJk+e7FA+YcIE2Ww2NWzY8I7Xkdz9lxyu9l9UVJRDn+eutG7dWsePH1fOnDlVo0aN5AcPAACAVEFLdAAAAHhE9erV9dJLL2nMmDHavn276tWrpwwZMmj//v1asmSJJk2apObNmytTpkyaMGGCunbtqooVK6p169bKkiWLduzYoatXr1p2zdK1a1edP39etWrVUlhYmI4cOaKPPvpIZcqUsfeZnVCGDBn07rvvqlOnTqpevbpatWql06dPa9KkSQoPD1fv3r1TdR/8/PPPKlq0aKq+KLJYsWJq1KiRZs2apXfeeUcPPfSQRo4cqYEDByoyMlLNmjVTcHCwDh8+rK+//lrdunVTv3795OXlpalTp6pp06YqU6aMOnXqpNy5c2vPnj36+++/9eOPPypTpkx68sknNW7cON28eVN58+bVTz/9pMOHD6da/CnRtGlT1axZU2+99ZYiIyNVunRp/fTTT/r222/1+uuv21vX34nk7r/kqFevnv3XES+99JIuX76smTNnKmfOnDp58qRlvSxZsujkyZPy9vZO9GW6AAAAuDtIogMAAMBjpk2bpvLly2v69OkaNGiQfHx8FB4errZt26pq1ar2+bp06aKcOXNq7NixGjFihDJkyKAiRYokmtRu27atZsyYoY8//lgXLlxQaGioWrRooaFDhzr1zx5fx44dFRgYqLFjx+rNN99UxowZ9cwzz+jdd99V5syZU3PzJUmjR49Olb7V43vjjTe0bNkyffTRRxo6dKgGDBigwoULa8KECRo2bJgkKV++fKpXr56eeuope7369etr7dq1GjZsmD744APFxsbqoYce0osvvmifZ+HChXr11Vc1ZcoUGWNUr149rVixQnny5EnVbUgOLy8vLV26VIMHD9bixYs1Z84chYeH67333lPfvn1TbT3J3X9JefTRR/XFF1/o7bffVr9+/RQaGqru3bsrR44c6ty5c6J178Z3DwAAAMljM4n9BhYAAAAAAAAAgAcYfaIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWfDwdQFqLjY3ViRMnFBwcLJvN5ulwAAAAAAAAAAAeYIzRpUuXlCdPHnl5Wbc3f+CS6CdOnFC+fPk8HQYAAAAAAAAAIB04duyYwsLCLKc/cEn04OBgSbd3TKZMmTwcDQAAAAAAAADAEy5evKh8+fLZc8ZWHrgkelwXLpkyZSKJDgAAAAAAAAAPuKS6/ebFogAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYeOD6RAcAAAAAAAAAd8TExOjmzZueDgPJlCFDBnl7e9/xckiiAwAAAAAAAEAijDE6deqULly44OlQkEKZM2dWaGhoki8PTQxJdAAAAAAAAABIRFwCPWfOnAoMDLyjhCzShjFGV69e1ZkzZyRJuXPndntZJNEBAAAAAAAAwEJMTIw9gZ4tWzZPh4MUCAgIkCSdOXNGOXPmdLtrF14sCgAAAAAAAAAW4vpADwwM9HAkcEfc53YnfdmTRAcAAAAAAACAJNCFy70pNT43jybRf/nlFzVt2lR58uSRzWbTN998k2SddevWqVy5cvLz89PDDz+suXPn3vU4AQAAAAAAAAAPJo8m0a9cuaLSpUtrypQpyZr/8OHDaty4sWrWrKnt27fr9ddfV9euXfXjjz/e5UgBAAAAAAAAAElJbmPplM7rSR59sWjDhg3VsGHDZM8/bdo0FSxYUB988IEkqWjRovrtt980YcIE1a9f/26FCQAAAAAAAABOwgcsS9P1RY5tnKL5O3bsqHnz5kmSMmTIoPz586t9+/YaNGiQfHzuTmr45MmTypIlS6rP60n3VJ/oGzduVJ06dRzK6tevr40bN3ooIgAAAAAAAABIvxo0aKCTJ09q//796tu3r4YOHar33nvPab4bN26kyvpCQ0Pl5+eX6vN60j2VRD916pRy5crlUJYrVy5dvHhR165dc1knOjpaFy9edBgAAAAAAAAA4EHg5+en0NBQFShQQN27d1edOnW0dOlSdezYUc2aNdOoUaOUJ08ePfroo5KkY8eO6YUXXlDmzJmVNWtWPf3004qMjHRYZkREhIoXLy4/Pz/lzp1bPXv2tE+L30XLjRs31LNnT+XOnVv+/v4qUKCAxowZ43JeSfrzzz9Vq1YtBQQEKFu2bOrWrZsuX75snx4X8/vvv6/cuXMrW7ZseuWVV3Tz5s3U33Hx3FNJdHeMGTNGISEh9iFfvnyeDgkAAAAAAAAAPCIgIMDe6nz16tXau3evVq5cqe+//143b95U/fr1FRwcrF9//VXr169XUFCQGjRoYK8zdepUvfLKK+rWrZv+/PNPLV26VA8//LDLdX344YdaunSpPv/8c+3du1cLFixQeHi4y3mvXLmi+vXrK0uWLPrjjz+0ZMkSrVq1yiFBL0lr167VwYMHtXbtWs2bN09z587V3LlzU23/uOLRPtFTKjQ0VKdPn3YoO336tDJlyqSAgACXdQYOHKg+ffrYxy9evEgiHQAAAAAAAMADxRij1atX68cff9Srr76qs2fPKmPGjJo1a5Z8fX0lSZ9++qliY2M1a9Ys2Ww2SdKcOXOUOXNmrVu3TvXq1dPIkSPVt29f9erVy77sihUrulzn0aNH9cgjj+iJJ56QzWZTgQIFLONbuHChrl+/rk8++UQZM2aUJE2ePFlNmzbVu+++a++hJEuWLJo8ebK8vb1VpEgRNW7cWKtXr9aLL76YKvvJlXuqJXqVKlW0evVqh7KVK1eqSpUqlnX8/PyUKVMmhwEAAAAAAAAAHgTff/+9goKC5O/vr4YNG6pFixYaOnSoJKlkyZL2BLok7dixQwcOHFBwcLCCgoIUFBSkrFmz6vr16zp48KDOnDmjEydOqHbt2slad8eOHbV9+3Y9+uijeu211/TTTz9Zzrt7926VLl3ankCXpKpVqyo2NlZ79+61lxUvXlze3t728dy5c+vMmTPJ3R1u8WhL9MuXL+vAgQP28cOHD2v79u3KmjWr8ufPr4EDB+r48eP65JNPJEkvv/yyJk+erP79+6tz585as2aNPv/8cy1blrZvwQUAAAAAAACAe0HNmjU1depU+fr6Kk+ePPLx+b+UcPyEtXQ7X1u+fHktWLDAaTk5cuSQl1fK2mSXK1dOhw8f1ooVK7Rq1Sq98MILqlOnjr744gv3NkZShgwZHMZtNptiY2PdXl5yeDSJvnnzZtWsWdM+HtftSocOHTR37lydPHlSR48etU8vWLCgli1bpt69e2vSpEkKCwvTrFmzVL9+/TSPHQAAAAAAAADSu4wZM1r2WZ5QuXLltHjxYuXMmdOyR4/w8HCtXr3aIa+bmEyZMqlFixZq0aKFmjdvrgYNGuj8+fPKmjWrw3xFixbV3LlzdeXKFXtyf/369fLy8rK/9NRTPJpEr1GjhowxltNddQhfo0YNbdu27S5GBQAAAAAAAAAPnjZt2ui9997T008/reHDhyssLExHjhzRV199pf79+yssLExDhw7Vyy+/rJw5c6phw4a6dOmS1q9fr1dffdVpeePHj1fu3LlVtmxZeXl5acmSJQoNDVXmzJldrnvIkCHq0KGDhg4dqrNnz+rVV19Vu3bt7P2he8o99WJRAAAAAAAAALjrhob8399B+aSqH0gq6LFw0kpgYKB++eUXvfnmm3r22Wd16dIl5c2bV7Vr17a3TO/QoYOuX7+uCRMmqF+/fsqePbuaN2/ucnnBwcEaN26c9u/fL29vb1WsWFHLly932S1MYGCgfvzxR/Xq1UsVK1ZUYGCgnnvuOY0fP/6ubnNy2ExiTcHvQxcvXlRISIiioqJ4ySgAAAAAAAAAZ/GS6NeD8ulw1Q9UsGx1+fv7ezAouOP69es6fPiwChYs6PT5JTdXnLKe4AEAAAAAAAAAeICQRAcAAAAAAAAAwAJJdAAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMCCj6cDAAAAAAAAAB4YQ0MSjEd5Jg4AyUZLdAAAAAAAAAAALNASHQAAAIBL4QOWOZVFjm3sgUgAAAAAz6ElOgAAAAAAAADgrrDZbPrmm28kSZGRkbLZbNq+fbtHY0opWqIDAAAAAAAAgDsS9nF/19eXsj70O3bsqHnz5kmSfHx8FBYWpueff17Dhw+Xv7//3YjwvkQSHQAAAAAAAADuUw0aNNCcOXN08+ZNbdmyRR06dJDNZtO7777r6dDuGXTnAgAAAAAAAAD3KT8/P4WGhipfvnxq1qyZ6tSpo5UrV0qSYmNjNWbMGBUsWFABAQEqXbq0vvjiC4f6f//9t5o0aaJMmTIpODhY1apV08GDByVJf/zxh+rWravs2bMrJCRE1atX19atW9N8G+82kugAAAAAAAAA8AD466+/tGHDBvn6+kqSxowZo08++UTTpk3T33//rd69e6tt27b6+eefJUnHjx/Xk08+KT8/P61Zs0ZbtmxR586ddevWLUnSpUuX1KFDB/3222/6/fff9cgjj6hRo0a6dOmSx7bxbqA7FwAAAAAAAAC4T33//fcKCgrSrVu3FB0dLS8vL02ePFnR0dEaPXq0Vq1apSpVqkiSChUqpN9++03Tp09X9erVNWXKFIWEhGjRokXKkCGDJKlw4cL2ZdeqVcthXTNmzFDmzJn1888/q0mTJmm3kXcZSXQAAAAAAAAAuE/VrFlTU6dO1ZUrVzRhwgT5+Pjoueee099//62rV6+qbt26DvPfuHFDZcuWlSRt375d1apVsyfQEzp9+rTefvttrVu3TmfOnFFMTIyuXr2qo0eP3vXtSksk0QEAAAAAAADgPpUxY0Y9/PDDkqSIiAiVLl1as2fPVokSJSRJy5YtU968eR3q+Pn5SZICAgISXXaHDh3077//atKkSSpQoID8/PxUpUoV3bhx4y5sieeQRAcAAAAAAACAB4CXl5cGDRqkPn36aN++ffLz89PRo0dVvXp1l/OXKlVK8+bN082bN122Rl+/fr0+/vhjNWrUSJJ07NgxnTt37q5ugyfwYlEAAADcu4aGOA4AAAAAEvX888/L29tb06dPV79+/dS7d2/NmzdPBw8e1NatW/XRRx9p3rx5kqSePXvq4sWLatmypTZv3qz9+/dr/vz52rt3ryTpkUce0fz587V7927973//U5s2bZJsvX4voiU6AAAAAAAAADwgfHx81LNnT40bN06HDx9Wjhw5NGbMGB06dEiZM2dWuXLlNGjQIElStmzZtGbNGr3xxhuqXr26vL29VaZMGVWtWlWSNHv2bHXr1k3lypVTvnz5NHr0aPXr18+Tm3dX2IwxxtNBpKWLFy8qJCREUVFRypQpk6fDuaeED1jmVBY5trEHIgEAAPj/ErY+HxrlmTjuU1z/AQBwF3D9cm+I9zldD8qnw1U/UMGy1eXv7+/BoOCO69ev6/DhwypYsKDT55fcXDHduQAAAAAAAAAAYIHuXIDU4KoPVp4kAwAAAAAAAPc8WqIDAAAAAAAAAGCBlugAAAAAAAAA0ha/6sc9hJboAAAAAAAAAABYIIkOAAAAAAAAAFZMrCSj2NhYT0cCN6TG50Z3LgAAAAAAAABgwffqaXldO68TJ04oR44c8vX1lc1m83RYSIIxRjdu3NDZs2fl5eUlX19ft5dFEh0AAAAAAAAALHiZWyq46R2dfGiNTpw44elwkEKBgYHKnz+/vLzc75SFJDoAAAAAAAAAJML3+jnlz59ft27dUkxMjKfDQTJ5e3vLx8fnjn85QBIdAAAAAAAAAJJgs9mUIUMGZciQwdOhII3xYlEAAAAAAAAAACyQRAcAAAAAAAAAwALduQAAAAAAgNQ1NCTBeJRn4gAAIBWQRAcAAAAA4F5DkhoAgDRDdy4AAAAAAAAAAFigJTruqvABy5zKIsc29kAkAAAAAADAQcJfNEj8qgEAXKAlOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFnw8HQAA4AEwNCTBeJRn4gAAAAAAAEghWqIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZ8PB0APCN8wDKH8cixjT0USepJuE3S/bFdAAAAAAAAADyHJDoAAABS19AQF2VRaR8HAACexjkRAO4LJNEBAAAAAPAUkqwAAKR79IkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFH08HAAAAAACpZmiIi7KotI8DAAAA9w2S6AAAAAAAAADuDQkfmPOwHGmA7lwAAAAAAAAAALBAEh0AAAAAAAAAAAsk0QEAAAAAAAAAsECf6AAAALBGn5MAAABA+sS1epqhJToAAAAAAAAAABZoiY50KXzAMofxyLGNPRQJAAAAACDdStgKU6IlJgAg1dESHQAAAAAAAAAACyTRAQAAAAAAAACwQHcuAAAAwL2O7gwAAACAu4aW6AAAAAAAAAAAWKAlOu4NtK4CUh//VwAAAAAAAEmiJToAAAAAAAAAABZoiQ6kY+EDljmVRY5t7IFIAAAAAAAAgAcTSXQAAADgbknYdRbdZgEAgLRCF55AqqE7FwAAAAAAAAAALHg8iT5lyhSFh4fL399flStX1qZNmxKdf+LEiXr00UcVEBCgfPnyqXfv3rp+/XoaRQsAAAAAcDA0xHkAAAC4j3i0O5fFixerT58+mjZtmipXrqyJEyeqfv362rt3r3LmzOk0/8KFCzVgwABFRETo8ccf1759+9SxY0fZbDaNHz/eA1sAAACSwvsdAAAAAAD3Mo+2RB8/frxefPFFderUScWKFdO0adMUGBioiIgIl/Nv2LBBVatWVevWrRUeHq569eqpVatWSbZeBwAAAAAAAADAHR5Lot+4cUNbtmxRnTp1/i8YLy/VqVNHGzdudFnn8ccf15YtW+xJ80OHDmn58uVq1KiR5Xqio6N18eJFhwEAAAAAAAAAgOTwWHcu586dU0xMjHLlyuVQnitXLu3Zs8dlndatW+vcuXN64oknZIzRrVu39PLLL2vQoEGW6xkzZoyGDRuWqrEDAAAAAAAAAB4MHn+xaEqsW7dOo0eP1scff6ytW7fqq6++0rJlyzRixAjLOgMHDlRUVJR9OHbsWBpGDCDd4cVXAAAAAAAASAGPtUTPnj27vL29dfr0aYfy06dPKzQ01GWdd955R+3atVPXrl0lSSVLltSVK1fUrVs3vfXWW/Lycn4m4OfnJz8/v9TfACCFeLEeAAAA3OLqof/QqLSPIz1gXwBIjoTHCo4TKcP+A5x4rCW6r6+vypcvr9WrV9vLYmNjtXr1alWpUsVlnatXrzolyr29vSVJxpi7FywAAAAAAAAA4IHksZboktSnTx916NBBFSpUUKVKlTRx4kRduXJFnTp1kiS1b99eefPm1ZgxYyRJTZs21fjx41W2bFlVrlxZBw4c0DvvvKOmTZvak+kAAAAAAAAAAKQWjybRW7RoobNnz2rw4ME6deqUypQpox9++MH+stGjR486tDx/++23ZbPZ9Pbbb+v48ePKkSOHmjZtqlGjRnlqEwAACbjsusjfA4EAAAAAAACkAo8m0SWpZ8+e6tmzp8tp69atcxj38fHRkCFDNGTIkDSIDLh3JUxiJqfvdfpsBwAAAAAAAJx5PIkOAAAAAC7xYjMAAACkAyTRAQAAAKQqd34VBwAAAKRXXknPAgAAAAAAAADAg4mW6AAAAAAAAADwIEjYXZ5El3nJQEt0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACyQRAcAAAAAAAAAwAIvFgUAAAAAAECqCR+wzKkscmxjD0QCAKmDlugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABV4sCgAAAAAAAMB9Q0NclEWlfRzAXUJLdAAAAAAAAAAALJBEBwAAAAAAAADAAt25AAAAAAAA1+iiAQAAWqIDAAAAAAAAAGCFJDoAAAAAAAAAABZIogMAAAAAAAAAYIE+0QEAwP0tYV+u9OMKAAAAAEgBWqIDAAAAAAAAAGCBlugAkED4gGUO45FjG3soEgCwkLB1vUQLewAAAAC4S2iJDgAAAAAAAACABVqiAwBwP6KlMgAAAAAAqYKW6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYoE90AAAAAAAeBLwzBQAAt9ASHQAAAAAAAAAAC7REBwBYCh+wzGE8cmxjD0UC4I7R+hAAAAAA3EISHQBw/yBJCAAAEuL6AAAA3CG6cwEAAAAAAAAAwAJJdAAAAAAAAAAALNCdC+5vCX+6yc82AQAAAAAAAKQALdEBAAAAAAAAALBAEh0AAAAAAAAAAAsk0QEAAAAAAAAAsEASHQAAAAAAAAAAC7xYFEDqSvgyV4kXut5P+HwBAAAAAMADhpboAAAAAAAAAABYoCU68CCg9TAAAACA9I77FgBAOkUSHQAeAOEDljmVRfp7IBAAAAAAAIB7DEl0AAAAAABSAy2pAQC4L5FEB+A2WjcDAB4YJMYAAACABxYvFgUAAAAAAAAAwAIt0YGEaGkGAAAAAAAA4P+jJToAAAAAAAAAABZoiQ4AAAAAQEIJf6HKr1MBAHhg0RIdAAAAAAAAAAALtEQHAAAAgLTC+3cAAADuObREBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACzwYlGkPV6mBAAAAAAAAOAeQUt0AAAAAAAAAAAskEQHAAAAAAAAAMAC3bkAAIA7k7CbLrroAgAAAADcR2iJDgAAAAAAAACABZLoAAAAAAAAAABYoDsXAPeE8AHLnMoixzb2QCQAAAAAAAB4kNASHQAAAAAAAAAACyTRAQAAAAAAAACwQHcuAIB7VsJufiL9PRQIANyrhoYkGI/yTBwAAABAOkZLdAAAAAAAAAAALNASHQAAAAAAAABSKOGvoyUpcmxjD0SCu42W6AAAAAAAAAAAWKAlOgCkgrR8+syTbgAAAAAAgLRDS3QAAAAAAAAAACzQEh0AANw2NMRFWVTaxwEAAAAAQDpCEh0AgLRCkhq4ZyTsOivS30OBAAAAAPA4kugAACRMbpPYBgAAAJCe0CAH8CiS6ACAB4rLF7PSwhQAPI7jMwAAANIrXiwKAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWODFogDSXMIXh0WObeyhSAAAAAAAAIDE0RIdAAAAAAAAAAALJNEBAAAAAAAAALDg8ST6lClTFB4eLn9/f1WuXFmbNm1KdP4LFy7olVdeUe7cueXn56fChQtr+fLlaRQtAAAAAAAAAOBB4tE+0RcvXqw+ffpo2rRpqly5siZOnKj69etr7969ypkzp9P8N27cUN26dZUzZ0598cUXyps3r44cOaLMmTOnffAAkAroHx4AAAAAACB982gSffz48XrxxRfVqVMnSdK0adO0bNkyRUREaMCAAU7zR0RE6Pz589qwYYMyZMggSQoPD0/LkAEAAAAAAAAADxCPdedy48YNbdmyRXXq1Pm/YLy8VKdOHW3cuNFlnaVLl6pKlSp65ZVXlCtXLpUoUUKjR49WTEyM5Xqio6N18eJFhwEAAAAAAAAAgOTwWEv0c+fOKSYmRrly5XIoz5Url/bs2eOyzqFDh7RmzRq1adNGy5cv14EDB9SjRw/dvHlTQ4YMcVlnzJgxGjZsWKrHj/tDwq40JCnS3wOBAACSNjTERVlU2scBAAAeTFyLAMADy6PduaRUbGyscubMqRkzZsjb21vly5fX8ePH9d5771km0QcOHKg+ffrYxy9evKh8+fKlVcj3v4QXEVxAAEDq41gLpC6SIAAAAABSwGNJ9OzZs8vb21unT592KD99+rRCQ0Nd1smdO7cyZMggb29ve1nRokV16tQp3bhxQ76+vk51/Pz85Ofnl7rBAwAAAAAAAAAeCB7rE93X11fly5fX6tWr7WWxsbFavXq1qlSp4rJO1apVdeDAAcXGxtrL9u3bp9y5c7tMoAMAAAAAAAAAcCc8lkSXpD59+mjmzJmaN2+edu/ere7du+vKlSvq1KmTJKl9+/YaOHCgff7u3bvr/Pnz6tWrl/bt26dly5Zp9OjReuWVVzy1CQAAAAAAAACA+5jb3bncunVL69at08GDB9W6dWsFBwfrxIkTypQpk4KCgpK1jBYtWujs2bMaPHiwTp06pTJlyuiHH36wv2z06NGj8vL6vzx/vnz59OOPP6p3794qVaqU8ubNq169eunNN990dzMAAAAAAAAAALDkVhL9yJEjatCggY4eParo6GjVrVtXwcHBevfddxUdHa1p06Yle1k9e/ZUz549XU5bt26dU1mVKlX0+++/uxM2AAAAAAAAAAAp4lYSvVevXqpQoYJ27NihbNmy2cufeeYZvfjii6kWHAAAAIDUET5gmVNZpL8HAgEAAADuMW4l0X/99Vdt2LDB6WWe4eHhOn78eKoEBgAAAAAAAACAp7n1YtHY2FjFxMQ4lf/zzz8KDg6+46AAAAAAAAAAAEgP3Eqi16tXTxMnTrSP22w2Xb58WUOGDFGjRo1SKzYAAAAAAAAAADzKre5cPvjgA9WvX1/FihXT9evX1bp1a+3fv1/Zs2fXZ599ltoxAgAAAAAAAADgEW4l0cPCwrRjxw4tWrRIO3fu1OXLl9WlSxe1adNGAQEBqR0jAAAAAAAAAAAe4VYSXZJ8fHzUtm3b1IwFAAAAqSR8wDKH8Uh/DwUCAAAAAPc4t5LoS5cuTXT6U0895VYwAAAAAHDPGBqSYDzKM3EAAADgrnIrid6sWTPZbDZJkjHGYZrNZlNMTMydRwYAeGAkbDErSZFjG3sgEgAAAAAAAEde7lRq06aNgoODNWLECF27dk2xsbH2gQQ6AAAAAAAAAOB+4VYSff78+Vq9erV++uknFS5cWAsWLEjtuAAAKTE0xHEAAAAAAABAqnAriS5J5cuX17p16zRp0iQNHz5cFSpU0C+//JKasQEAAAAAAAAA4FFu9Yl+8eJF+9+1atXS+vXrNXXqVDVp0kS1atXSN998k1rxAQAAALjXufqVFC/hBIDUxbEWAO4at5LomTNntr9YND5jjL777rs7DgoAAAAAAAAAgPTArST62rVrUzsOAAAAAAAAAADSHbeS6NWrV0/tOAAAAAAAAAAASHfcSqLv3Lkz0emlSpVyKxgAAAAAAAAAKRc+YJnDeKS/hwIB7kNuJdHLlCkjm80mY4y9b3RjjCTJZrMpJiYm9SIEAAAAAAAAAMBD3EqiHz58WNLtxHmJEiW0fPlyFShQIFUDAwAAAAAAAADA09xKosdPmNtsNoWFhZFEBwAAAAAAAADcd9xKogMAAAAAAADJNjTERVlU2scBAG644yS6zWaz94sOIA1w4QEAeEAlfFmWxAuzAAAAANx9biXRs2TJYk+cX758WWXLlpWXl5d9+vnz51MnOgAAAAAAAAAAPMitJPrEiRNTOQwAAAAAAAAAANIft5LoHTp0SO04AAAAAAAAAABId9zuE/3gwYOaM2eODh48qEmTJilnzpxasWKF8ufPr+LFi6dmjAAA3JMS9t9M380AAAAAANx7vJKexdnPP/+skiVL6n//+5+++uorXb58WZK0Y8cODRkyJFUDBAAAAAAAAADAU9xKog8YMEAjR47UypUr5evray+vVauWfv/991QLDgAAAABwnxoa4jgAAACkU24l0f/8808988wzTuU5c+bUuXPn7jgoAAAAAAAAAADSA7f6RM+cObNOnjypggULOpRv27ZNefPmTZXAACBJCVssDY3yTBwAAAAAAAASuYr7lFst0Vu2bKk333xTp06dks1mU2xsrNavX69+/fqpffv2qR0jAAAAAAAAAAAe4VZL9NGjR+uVV15Rvnz5FBMTo2LFiikmJkatW7fW22+/ndoxAvAUnp4CAAAAAADgAedWEt3X11czZ87UO++8o7/++kuXL19W2bJl9cgjj6R2fAAAAAAAAAAAeIxbSfQ4+fPnV/78+VMrFgAAAAAAAAAA0hW3kuh9+vRJdPr48ePdCgYAAAAAAAAA3BU+YJlTWeTYxh6IBPcTt5Lo27Ztcxj/7bffVL58eQUEBMhms6VKYAAAAEhbLm84/D0QCAAAAACkI24l0deuXeswHhwcrIULF6pQoUKpEhQAAAAAAAAAAOnBHfWJHscYkxqLAQAAAIBk49cTANw2NCTBeJRn4gAA3BO87nQBX331la5fv66cOXOmRjwAAAAAAAAAAKQbbrVEz5Ili2w2m65fv67o6Gi9+eabCgoKSu3YAAAAAAAAAADwKLeS6BMnTpQkBQQEqHjx4ipevHhqxgQAAID/j+4qAAAAAMCz3Eqid+jQIbXjAAAAAAAAAAAg3bmjF4vu2rVLR48e1Y0bNxzKn3rqqTsKCgAAAAAAAACA9MCtJPqhQ4f0zDPP6M8//5TNZpMxRpJks9kkSTExMakXIQAAAAAAAOACXd8BSAte7lTq1auXChYsqDNnzigwMFB///23fvnlF1WoUEHr1q1L5RABAAAAAAAAAPAMt1qib9y4UWvWrFH27Nnl5eUlLy8vPfHEExozZoxee+01bdu2LbXjBAAAAAAAAAAgzbnVEj0mJkbBwcGSpOzZs+vEiROSpAIFCmjv3r2pFx0AAAAAAAAAAB7kVkv0EiVKaMeOHSpYsKAqV66scePGydfXVzNmzFChQoVSO0YAAACkU/RDCgAAAOB+51YS/e2339aVK1ckScOHD1eTJk1UrVo1ZcuWTYsXL07VAAEAwN2RMPlJ4hMAAABIXTQ4AO4PbiXR69evb//74Ycf1p49e3T+/HllyZJFNpst1YIDAAAAkM4MDXFRFpX2ceDu4PMFAABw4lYS3ZWsWbOm1qIAAAAAAAAAAEgX3EqiP/vss4lO/+qrr9wKBgAApG/8HBUAAAAA8KDxcqdSSEiIfVi2bJm8vLwcygAAAAAAAAAAuB+41RJ9zpw59r+/+OILjRs3ToUKFUq1oAAAAAAAAAAASA9SrU90AADgGfdrFysJt+t+2CYAAAAAwL3Hre5cAAAAAAAAAAB4ELjVEv3DDz+0/33r1i3NnTtX2bNnt5e99tprdx4ZAAAAAAAAAAAe5lYSfcKECfa/Q0NDNX/+fPu4zWYjiQ4AAAAAAAAAuC+4lUQ/fPhwascBAAAAAAAAAEC6k+Ik+owZM/TLL7+oYcOGatOmjWbMmKH3339fsbGx6t69u/r27Xs34gQAAAAAAACAuyJ8wDKH8Uh/DwWCdClFSfQFCxaob9++qlevnt544w0dOHBAEydOVL9+/RQbG6vhw4erYMGCevbZZ+9WvACQbAlPgBInQQAAAAAAAKRMipLoH3/8saZOnaq2bdtqy5Ytqly5sqZOnaoXX3xRkpQnTx599NFHJNEBAAAAAADuAy4bJ41t7IFIAMBzvFIy8+7du1WlShVJUvny5eXl5aXKlSvbpz/55JP6888/UzdCAAAAAAAAAAA8JEUt0aOjoxUYGGgf9/PzU1BQkH08ICBAMTExqRcdgAfD0BAXZVFpHwcAAAAAAACQQIpaoufNm1cHDhywj3/66afKnTu3fXzv3r0KDw9PteAAAAAAAAAAAPCkFLVEr169upYvX65q1apJkp5++mmH6TNmzNDjjz+eetEB6RRvbAYAAAAAAAAeDClKos+cOTPR6bNmzZK/P9lEAAAAAACA5ODFnQCQ/qUoiZ6U4ODg1FwcAOBBRl/5AIAHFL96BID/j3sCwM7lAzeuEdJMivpEBwAAAAAAAADgQUISHQAAAAAAAAAACyTRAQAAAAAAAACwkKp9ogMAAMAaLw4DAAAA4IT+/9M9kugAAAAAAAAA7l8kqXGHSKIDAAAA6Qk3eQAAAEC6QhIdAAAAAADgHuKyizh/DwQCAA8IXiwKAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAX6RAcAIAku+5wc29gDkQAAAAAAgLRGS3QAAAAAAAAAACzQEh0AANw3XP5qwN8DgQAAAODeMjTERVlU2scBIF1KFy3Rp0yZovDwcPn7+6ty5cratGlTsuotWrRINptNzZo1u7sBAgAAAACAVBM+YJnTAABAeuXxluiLFy9Wnz59NG3aNFWuXFkTJ05U/fr1tXfvXuXMmdOyXmRkpPr166dq1aqlYbQAAAAAAADA/YFfcgLJ4/GW6OPHj9eLL76oTp06qVixYpo2bZoCAwMVERFhWScmJkZt2rTRsGHDVKhQoTSMFgAAAAAAAADwIPFoEv3GjRvasmWL6tSpYy/z8vJSnTp1tHHjRst6w4cPV86cOdWlS5e0CBMAAAAAAAAA8IDyaHcu586dU0xMjHLlyuVQnitXLu3Zs8dlnd9++02zZ8/W9u3bk7WO6OhoRUdH28cvXrzodrwAAACWeBkVAAAAANyXPN6dS0pcunRJ7dq108yZM5U9e/Zk1RkzZoxCQkLsQ758+e5ylAAAAAAAAACA+4VHW6Jnz55d3t7eOn36tEP56dOnFRoa6jT/wYMHFRkZqaZNm9rLYmNjJUk+Pj7au3evHnroIYc6AwcOVJ8+fezjFy9eJJEOAAAAAAAAAEgWjybRfX19Vb58ea1evVrNmjWTdDspvnr1avXs2dNp/iJFiujPP/90KHv77bd16dIlTZo0yWVy3M/PT35+fnclfgAAAAAAAADA/c2jSXRJ6tOnjzp06KAKFSqoUqVKmjhxoq5cuaJOnTpJktq3b6+8efNqzJgx8vf3V4kSJRzqZ86cWZKcygEAAAAAAAAAuFMeT6K3aNFCZ8+e1eDBg3Xq1CmVKVNGP/zwg/1lo0ePHpWX1z3VdTsAAAAAAADuM+EDljmMR45t7KFIcK9z+i75eygQJJvHk+iS1LNnT5fdt0jSunXrEq07d+7c1A8IAAAAAAAAAAClkyQ6AAAAcDckbOUj0dIHAPDgovUrALiHflIAAAAAAAAAALBAEh0AAAAAAAAAAAt05wIAAAAAAAAgWeguDw8ikugAAAAAgGSjT2UAAPCgIYkOAACQ0NAQF2VRaR8HAAAAAMDj6BMdAAAAAAAAAAALJNEBAAAAAAAAALBAEh0AAAAAAAAAAAsk0QEAAAAAAAAAsEASHQAAAAAAAAAACyTRAQAAAAAAAACwQBIdAAAAAAAAAAALJNEBAAAAAAAAALBAEh0AAAAAAAAAAAs+ng4AAAAAAO5H4QOWOZVF+qdhAENDEoxHpeHKAQAA7h8k0QHgbkl44ypx8woAAAAAAHCPoTsXAAAAAAAAAAAskEQHAAAAAAAAAMAC3bkAAAAAQBI83r85AAAAPIaW6AAAAAAAAAAAWKAlOgAkhReEAnAhYatUWqQCAO4WfgkBAIBnkUQHAAAAAACAx9FIAUB6RRIdAAAAuMeQZAAAAADSDn2iAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBPtEBAEhHEvZzLNHXMQAAAAAAnkRLdAAAAAAAAAAALNASHQAAAAAAAMk3NCTBeJRn4gCANEJLdAAAAAAAAAAALNASHQAAAAAAAMBdlfD9T7z7CfcSWqIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIE+0QEAAAAAd1XCfnAl+sIFAAD3DpLoAAAAAAAAANIdHsIivSCJDgAAHmhcmAMAAAAAEkMSHQAAAAAAIB4essOT+P4B6Q9JdAAAAE8aGpJgPMozcQC4p5FwAQAAuHtIogMAAAAAALfxEAcAcL8jiQ54Eq0PAQAAAAAAgHSNJDoAAAAAAACQUgkbxkk0jgPuUyTRAQAAAADpTnrvIiS9xwcAAFKPl6cDAAAAAAAAAAAgvSKJDgAAAAAAAACABbpzAQAAAAA80OiaBQAAJIYkOgAAAADgvpEwIU4yHAAA3Cm6cwEAAAAAAAAAwAJJdAAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMCCj6cDAAAAAAAAQDxDQxKMR3kmDgCAJJLoAAAAAPBACh+wzKks0t8DgQAAAKRzJNEBID1J2OJEotUJAAAAAACAB9EnOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBF4sCAAAAeKCED1jmMB45trGHIgEAAMC9gCQ6bhsa4qIsKu3jAAAAAAAAAIB0hO5cAAAAAAAAAACwQBIdAAAAAAAAAAALJNEBAAAAAAAAALBAn+gAAACAhyR8waUkRfp7IBAAuEc4vRiYYyYAIA3QEh0AAAAAAAAAAAsk0QEAAAAAAAAAsEASHQAAAAAAAAAACyTRAQAAAAAAAACwQBIdAAAAAAAAAAALPp4OAAAAAAAA4G4JH7DMqSzS3wOBAADuWbREBwAAAAAAAADAAi3RAQAAAAAAAOA+wy9xUg9JdAAAAAAA7jMkTgAASD105wIAAAAAAAAAgAVaogMAAAAAkEYSthCndTgAAOkfLdEBAAAAAAAAALBAEh0AAAAAAAAAAAt05wIAAAAAAJAK6K4HAO5PtEQHAAAAAAAAAMBCukiiT5kyReHh4fL391flypW1adMmy3lnzpypatWqKUuWLMqSJYvq1KmT6PwAAAAAAAAAALjL40n0xYsXq0+fPhoyZIi2bt2q0qVLq379+jpz5ozL+detW6dWrVpp7dq12rhxo/Lly6d69erp+PHjaRw5AAAAAAAAAOB+5/Ek+vjx4/Xiiy+qU6dOKlasmKZNm6bAwEBFRES4nH/BggXq0aOHypQpoyJFimjWrFmKjY3V6tWr0zhyAAAAAAAAAMD9zqMvFr1x44a2bNmigQMH2su8vLxUp04dbdy4MVnLuHr1qm7evKmsWbPerTABAAAA3M+Ghrgoi0r7OAAAAJAueTSJfu7cOcXExChXrlwO5bly5dKePXuStYw333xTefLkUZ06dVxOj46OVnR0tH384sWL7gcMAAAAAACAe1r4gGVOZZH+HggEwD3D49253ImxY8dq0aJF+vrrr+Xv7/poN2bMGIWEhNiHfPnypXGUAAAAAAAAAIB7lUeT6NmzZ5e3t7dOnz7tUH769GmFhoYmWvf999/X2LFj9dNPP6lUqVKW8w0cOFBRUVH24dixY6kSOwAAAAAAAADg/ufRJLqvr6/Kly/v8FLQuJeEVqlSxbLeuHHjNGLECP3www+qUKFCouvw8/NTpkyZHAYAAAAAAAAAAJLDo32iS1KfPn3UoUMHVahQQZUqVdLEiRN15coVderUSZLUvn175c2bV2PGjJEkvfvuuxo8eLAWLlyo8PBwnTp1SpIUFBSkoKAgj20HAAAAAAAAAOD+4/EkeosWLXT27FkNHjxYp06dUpkyZfTDDz/YXzZ69OhReXn9X4P5qVOn6saNG2revLnDcoYMGaKhQ4emZegAAAAAAAAAgPucx5PoktSzZ0/17NnT5bR169Y5jEdGRt79gAAAAAAAAAAAkIf7RAcAAAAAAAAAID0jiQ4AAAAAAAAAgIV00Z0LAAB4wAwNcVEWlfZxAAAAAACQBFqiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABgwcfTAQAAAODBEz5gmcN45NjGHooEAAAAABJHS3QAAAAAAAAAACyQRAcAAAAAAAAAwAJJdAAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACyQRAcAAAAAAAAAwAJJdAAAAAAAAAAALPh4OgAAAO5JQ0NclEWlfRwAAAAAAOCuoiU6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEXiwIAAACpIHzAMqeySH8PBAIAAAAgVdESHQAAAAAAAAAACyTRAQAAAAAAAACwQBIdAAAAAAAAAAALJNEBAAAAAAAAALBAEh0AAAAAAAAAAAsk0QEAAAAAAAAAsEASHQAAAAAAAAAACyTRAQAAAAAAAACwQBIdAAAAAAAAAAALJNEBAAAAAAAAALBAEh0AAAAAAAAAAAsk0QEAAAAAAAAAsEASHQAAAAAAAAAACz6eDgAAAAAAAKQP4QOWOYxH+nsoEAAA0hGS6AAAAPC8oSEuyqLSPg4AAAAASIDuXAAAAAAAAAAAsEASHQAAAAAAAAAACyTRAQAAAAAAAACwQBIdAAAAAAAAAAALJNEBAAAAAAAAALCQLpLoU6ZMUXh4uPz9/VW5cmVt2rQp0fmXLFmiIkWKyN/fXyVLltTy5cvTKFIAAAAAAAAAwIPE40n0xYsXq0+fPhoyZIi2bt2q0qVLq379+jpz5ozL+Tds2KBWrVqpS5cu2rZtm5o1a6ZmzZrpr7/+SuPIAQAAAAAAAAD3O48n0cePH68XX3xRnTp1UrFixTRt2jQFBgYqIiLC5fyTJk1SgwYN9MYbb6ho0aIaMWKEypUrp8mTJ6dx5AAAAAAAAACA+52PJ1d+48YNbdmyRQMHDrSXeXl5qU6dOtq4caPLOhs3blSfPn0cyurXr69vvvnG5fzR0dGKjo62j0dFRUmSLl68eIfR39tio686jF+0GeeZEuyjhHVc1nOnTjLqER/x3RfxpeW6iI/4iI/4iI/4iI/4iI/4iI/4iI/4iC/dxZeW63J3XzxI4nLExrjYL/HYTFJz3EUnTpxQ3rx5tWHDBlWpUsVe3r9/f/3888/63//+51TH19dX8+bNU6tWrexlH3/8sYYNG6bTp087zT906FANGzbs7mwAAAAAAAAAAOCeduzYMYWFhVlO92hL9LQwcOBAh5brsbGxOn/+vLJlyyabzebByNKPixcvKl++fDp27JgyZcp0V+ulVR3iI74HJb60XBfxER/xEV96qkN8xEd86WNdxEd8xEd86akO8RHfgxJfWq/rfmaM0aVLl5QnT55E5/NoEj179uzy9vZ2akF++vRphYaGuqwTGhqaovn9/Pzk5+fnUJY5c2b3g76PZcqUya1/IHfqpVWdtFwX8aV9nbRcV3qPLy3XRXxpXyct10V8aV8nLddFfGlfJy3XRXxpXyct10V8aV8nLddFfGlfJy3XRXxpXyct10V8aV8nLdeV3uNL63Xdr0JCQpKcx6MvFvX19VX58uW1evVqe1lsbKxWr17t0L1LfFWqVHGYX5JWrlxpOT8AAAAAAAAAAO7yeHcuffr0UYcOHVShQgVVqlRJEydO1JUrV9SpUydJUvv27ZU3b16NGTNGktSrVy9Vr15dH3zwgRo3bqxFixZp8+bNmjFjhic3AwAAAAAAAABwH/J4Er1FixY6e/asBg8erFOnTqlMmTL64YcflCtXLknS0aNH5eX1fw3mH3/8cS1cuFBvv/22Bg0apEceeUTffPONSpQo4alNuOf5+flpyJAhTt3e3I16aVWH+IjvQYkvLddFfMRHfMSXnuoQH/ERX/pYF/ERH/ERX3qqQ3zE96DEl9brgmQzxhhPBwEAAAAAAAAAQHrk0T7RAQAAAAAAAABIz0iiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJPoD6NatW/rkk090+vRpT4eSYrGxsfr+++89HQbiOXr0qFy9n9gYo6NHj3ogIqTUmTNnNHr06Dtezvnz51MhGtxvOnfurEuXLnk6DLdx3rktJiZGJ06c8HQYaeLKlSueDgEAAABAOkMS/QHk4+Ojl19+WdevX3er/oULF7R582Zt3rxZFy5csJzvypUr6t69u/LmzascOXKoZcuWOnv2rFvrPHDggAYNGqSwsDA988wzTtPHjRuna9eu2cfXr1+v6Oho+/ilS5fUo0cPt9adUsePH0+T9dwN8+bN07Jly+zj/fv3V+bMmfX444/ryJEjLusULFjQ5ed6/vx5FSxY0HJd+/fv14wZMzRy5EgNHz7cYYjv4sWLyR7u1NKlS5M1JLRlyxbVrFnTZQxRUVGqWbOmduzY4VDeo0cPXb582T7+2WefOSRuLly4oEaNGjnUiY2N1Z9//mkfnzZtmj788EP7MGXKFMXGxqZ4u0+ePKl33nknRXW++uorlSpVyqEsT548atmypVauXJmiZb3wwgv677//UlTHlStXrigiIkJTpkzR/v37naa78zm5a9++fdq0aZND2erVq1WzZk1VqlTJrYcWrva5JBUqVEj//vtvipb133//6aOPPrLcF1bTkuLq+Ddv3jyH43Ny3Ml3/dq1a1q6dKnef/99vf/++1q6dGmK1y8lfd5JTcYYrVixQs2bN3eatmnTJsXExFjWjY6O1ueff+5QtnPnzmQNKfHXX38pX758ltOXLFmiZ599ViVKlFCJEiX07LPP6osvvkh0mWvWrFHPnj3VpEkTNW3aVK+99pp++eUXl/O6c8x0V6lSpfTbb7+lyrJu3brlEHdCFSpU0LRp01L8/2aM0f79+/X333/r1q1bya53+PBhl8fH/fv3KzIyMkUx4O6Ljo5O9kOde/2B5YNk+PDhunr1qqfDcJurh8sP6vePBiS42+6nBmvu3n+4cy2c1iIjIzVz5kxNmTJFf/31l0djSalDhw6pXr16ng7jnmEzrv4jcd+rUaOGevfuraeffjrZdSIjI/XKK6/oxx9/tB/IbTabGjRooMmTJys8PNxh/j59+mjGjBlq06aNAgICtHDhQlWtWlVff/11stZ37do1LVmyRLNmzdL69etVrVo1tWzZUs8884xy5crlMK+3t7dOnjypnDlzSpIyZcqk7du3q1ChQpKk06dPK0+ePA4HX29v72TFkdgBO75Tp05p1KhRmj17tuWFcUxMjObOnavVq1frzJkzTkmgNWvWSJI+/PDDZK1Tkl577TV7nW7dusnf3z/J+nF1Enr00Uc1depU1apVSxs3blSdOnU0YcIEff/99/Lx8dFXX33lVMfLy0unT59Wjhw5HMqPHDmiYsWKubz5mzlzprp3767s2bMrNDRUNpvNPs1ms2nr1q0Oy48/3RVjjGw2m8vP6sqVKxo7dqzlPj906JDDupLiaj2tW7dW0aJFLRPRo0eP1q5du/Tpp5/ay9z5zi5cuFDTpk2zJ5mCg4OVOXNm+fj4SJLOnTuniRMnqkuXLkluR3w7duxQuXLlnLZr+vTpWrlypXx9fdWrVy9VrlxZa9asUd++fbVv3z61b99eU6dOtc8/f/58zZ07V+vWrVO+fPnUsWNHdezY0enYkNDjjz9uv/Bo3LhxsmI+evSo2rVrp61bt+qxxx7T7NmzVbduXXtyKCAgQCtWrNCTTz5pr+PO5yTJ6cGOlcGDB9v/fuaZZ1SyZEl73cOHD6t48eKqVq2aihQpooiICI0YMUKvv/66wzJSus+l29/bU6dO2b9LyTFixAjt3LlTS5YscTn9hRdeUOnSpfXWW28la3mJHf/cic/d7/rSpUvVtWtXnTt3zqE8e/bsmj17tpo2bZroepN73qlVq1aytiPumG7l8OHDioiI0Ny5c3X27FnVqVPHKTHhzrEi7rjp6hIvrtzqmGnF6jgRGxurVq1aacmSJSpcuLCKFCkiSdq9e7cOHDig559/Xp999pnTcfzll1/WjBkzlCVLFhUuXNieFL5w4YJ69Oihjz766I73g3T7WiQ5xo8fb/+7f//+mjhxonr16qVRo0bJ19c3yfrfffed/v33X3Xs2NFeNmrUKI0YMUK3bt1SrVq1tHjxYmXJksWhXpcuXbRkyRLFxMTo2WefVZcuXVSjRo1E13X48GE99dRT2rVrlyQpLCxMX375pSpUqJBknNWrV1fnzp3VoUMHh/JPP/1Us2bN0rp161zWGzp0qAYPHux0noyKitLLL7+szz77zGW9zp07a9KkSQoODnYov3Llil599VVFRES4rLd//36tXbvW5Xk7/rE2oRs3briskz9/fss66dHZs2fVvn17rVq1SrGxsapYsaI+/fRTPfzww5Z1Ev6P3CljjH744QfNnj3b8oHY8ePH9eWXX2rfvn2Sbl9HPvvss8qbN6/TvM2bN1fXrl1Vv379JK/rrFy6dMnhuObl5aWgoKBk1b1+/boWL16sK1euqG7dunrkkUeSvd7k7AurdU6ePFn9+vVzKE+NzyruPJc9e/ZE57t48aIyZcokSVq+fLnDQzdvb+9kX3dJtx8uxz9n3bx502FZKd2mEydOaPz48Ro8eLA9xjhRUVEaOXKk+vXr53TflxzHjx93+T105eLFi1qwYIFmz56tzZs3J6vOTz/9pFmzZum7775zelBfqFAh/fHHH8qWLVuy472T78TcuXMdzj1xbt26pXfeeUdjxoxJ8TJTm7vH9PtRbGysDhw44HJfxL9viWP13fj333+VM2fORK/lUrquH374QUFBQXriiSckSVOmTNHMmTNVrFgxTZkyxekaJqXcvf9w5xqwc+fOyYrJ1XVISvIHkrR27Vo1adLEfizw8fFRRESE2rZtm+i6b926pQkTJuizzz6zn0cLFy6s1q1bq1evXsqQIYPD/MWKFdNvv/2mrFmzSrrdwGT48OH288CZM2cUHh6e4oe0Vtf4sGDwQFq8eLEpVKiQ+eijj8yGDRvMjh07HIaEjh49anLlymXCwsLM6NGjzddff22+/vprM2rUKBMWFmZCQ0PNsWPHHOqEh4ebzz//3D6+efNm4+PjY27evJlobJs2bTLdunUzmTJlMmXLljXvv/++8fb2Nn///bdlHZvNZk6fPm0fDwoKMgcPHrSPnzp1ynh5eTnVCQ8PN0OGDDHffPON5RDf+fPnTcuWLU22bNlM7ty5zaRJk0xMTIx55513TEBAgKlcubJZtGiRZZyvvPKKyZgxo3nhhRdMr169zOuvv+4wxN93yRkKFizoUOfcuXNJ1o9fJ6GAgABz5MgRY4wx/fv3N+3atTPGGPPXX3+Z7NmzO8zbu3dv07t3b+Pl5WVeeukl+3jv3r3Na6+9ZipXrmwef/xxl+vJnz+/GTt2rGUc8a1bty7ZgystW7Y0uXPnNv379zcTJkwwEydOdBhSQ6FChVz+38TZuXOn03535ztbp04dh+9XwjpTp041NWrUSHH827dvd1rXmDFjTIYMGUz58uVNxowZTWBgoBk1apQJDQ01Y8aMMefPn7dc3qFDh8zgwYNNeHi48fb2tscdHR3tcv7Y2Fgzbtw4ExAQYLp06WIuXbqUZMzPP/+8eeyxx8ynn35qnnrqKVOkSBHTuHFjc+rUKXPmzBnz3HPPmZo1azrUcedzMub2Z5U3b15TtmxZU6ZMGZdD2bJlHeqEhYWZDRs22MdHjBhhSpcubR+fNWuWw7gx7u/zhN+l5ChdurRZtWqV5fRVq1aZMmXKOJS5e/yz2WzmwIEDJioqKtEhPne+6+vXrzcZMmQwzz33nNmwYYP577//zH///WfWr19vnn32WePr62s2btzocntTet6JO3+88sorTsdxV8f0+K5fv24+/fRTU7NmTZMhQwbj5eVlxo8f77QP4q8rqWOFzWZzqBMZGZmsISVcHSeMMWb8+PEma9as5rvvvnOa9u2335qsWbOaCRMmOJR/9dVXxtfX18yZM8fExsbay2NiYszs2bONr6+v+fbbb1O8H1zFV6NGjSSHhMcKY4zZuHGjKVq0qClevLjZunWr9Y6Jt57Jkyfbx9evX2+8vLzMyJEjzZdffmmKFClievfu7bLulStXzJw5c0z16tWNl5eXeeihh8yoUaPMP//843L+5557zhQpUsQsXLjQfPXVV+bxxx835cqVSzJGY4wJDg42+/fvdyrfv3+/CQkJsawXFhZmqlSp4rDP165da/Lly2cqVqxoWc/Ly8vl8ens2bPG29vbZZ0ZM2YYb29vkytXLlO6dOlEj7Vx9u3bZ5544gnj5eXlMNhsNpffizi3bt0ys2bNMq1atTK1a9c2NWvWdBjiW716tSlatKjL/9ULFy6YYsWKmV9++cWh/OrVqw7/GwMGDHC4XurXr5+5du2a0/I6depkQkNDzejRo8348ePNo48+muT53Z1zgSuHDh0yb7/9tgkLCzN+fn6mcePGLuebMmWK8fPzMzabzYSEhJiQkBBjs9mMn5+fmTJlitP8tWrVMl5eXiYsLMy88847Dt8lK9u2bTMNGza0jwcFBTl8vt7e3mbTpk1O9Xr37m169uxpH4+OjjZlypQxGTJkMCEhISZjxowO5+g72Rdnzpwx3333nfnxxx/NrVu3jDHG3Lhxw0ycONHkypXLZMuWzamOu5/Vf//9Z3r06GGyZctm3wfZsmUzr7zyivnvv/+c5v/uu+8czuVBQUHGZrPZBy8vL7NkyZJE13n16lUzb948U61aNePl5WWqV69upk6dak6dOnXH29S3b1/z4osvWk5/6aWXTP/+/VO0zJMnT5qePXuagICAJOdds2aNadu2rQkMDDS5c+c2PXr0SHT+yMhIM3jwYFOgQAGTKVMm06JFC4d73Tju7Is7+f8NDg42zZs3d7hO3LNnjylXrpwpUKCAZb1Tp06Ztm3bmty5cxtvb2+n46crKTlmxnHnmG6MMZcvXzZvv/22qVKlinnooYdMwYIFHYbUis+d9bi7ro0bN5qCBQvaz08J/x9dsdls5syZM07lkZGRJjAw0DI+d9ZVokQJs2zZMmPM7fsiPz8/M3DgQPPYY4+Zjh07Wq5r1apVZuDAgaZLly6mU6dODkN87tx/GOPetXDctfozzzxjmjVrZjm4ktL8QdWqVc3TTz9tTpw4Yc6fP2969OhhcufObbmdxtw+tlatWtV4eXmZevXqmV69eplevXqZevXqGS8vL1OtWjWn64OE+yE4ODjJ/ZAcVtf4cI0k+gMq4YE07mBqdVDt3LmzefLJJ11e6F+9etU8+eSTpkuXLg7lPj4+5vjx4w5l8ZO0rpQsWdIUKFDADBw40Pz1118Oy0rtJPoff/xhXn75ZZM5c2ZTtmxZ89FHHyWaGDTGmG7dupn8+fObvn37mhIlShgvLy/TsGFD07hxY8vkTHzZsmWzn5jSoxw5ctiTBWXKlDGffPKJMcaYAwcOmIwZMzrMG5d8sNls5vHHH3dISNSrV89069bN7Nu3z+V6Eh7w76aQkBDz22+/pcqyYmJiXCaK/Pz8zKFDhyzrHTp0yPj7+zuUufOdDQsLMwcOHLCss2vXLpMlS5bkb9D/5+rEWbhwYTN37lxjjDG//PKLsdlspnHjxuby5cspWvbKlStN69atTWBgoMmaNat59dVXLefdvXu3eeyxx0x4eLj54IMPzKRJkxyG+HLlymX+97//GWOM+ffff43NZnO4Id6+fbvTjas7n5MxxjRq1Mj4+/ubp59+2nz77bcmJiYmye329/c3R48etY/XqlXLvP322/bxAwcOOCWs3N3nNpvNfPLJJ+bbb79NdIgvKCgo0WPxkSNHTHBwsEOZu8e/uPOK1eDqvOPOd71hw4amW7dulnF069bNIRkTx53zzrhx40zRokVNzpw5Te/evc2ff/5pud44mzdvNt27dzeZM2c2FSpUMJMmTTKnTp26K+e3u8HqArtkyZJm9uzZlvVmzZplSpYs6VDWtGlTM2DAAMs6/fv3N0899ZRDmSf2w/Xr102/fv2Mv7+/adq0qXnmmWcchvjinz+NuZ3Eq1+/vn182bJl5uGHH05ynQcOHDBvvfWWyZ8/v/Hx8TGNGjUyX375pcM8uXLlMr/++qt9/MSJE8bLyytZx+dMmTK5fCiwefNmExQUZFnv/Pnz5vnnnzfBwcFmxowZpl+/fiZDhgxm0KBBLhtHREVFmQsXLrh8iHb+/Hkzb948yxvMlDxoj/P444+bJ5980ixfvtxs27bNbN++3WGwktzGDcbc/t6OHz/eclmTJk1yuiGfOnWqadKkiX08KCjIVK5c2X69FBoa6nKZYWFh5ocffrCP79u3z3h7e5vr169brt+dB5ZxUvpw7/vvvzfe3t6mb9++5sSJE/byEydOmN69exsfHx+X17uRkZFmyJAh9sROzZo1zYIFCyy3q3PnzmbUqFH28aCgILNgwQKzbt06s3btWtOuXTvTtm1bp3rFixd3OO9FRESYLFmymMjISBMbG2s6duxoGjVqdMf74tdff7U/PPDy8jKVKlUyf//9t3nkkUdM0aJFzdSpU83Vq1ed6lklxRLz77//msKFC5uMGTOabt26mQkTJpgJEyaYF1980WTMmNEUKVLE6T6madOmDsfnhMfNd9991+V50Rj3Hi6n9PtXvHhxh2NZQuvXrzfFihVzKr+TRk3//POPGTlypHnooYfsDyMWLVrk8EA3vujoaPPZZ5+Z2rVrG39/f9OkSRPj7e1tdu7caRl3WifRDxw4YB577DGTN29e89NPP5nJkyebwMBA07p1a3PhwgXLeg0aNDDFihUzH3/8sfn6668TbUgWJyXHzDjuHNONca8hlDvxudvgyp11lS5d2jz//PNm165d5r///jMXLlxwGOK7kwZrKV1XnIwZM5rDhw8bY4wZMmSIee6554wxxmzZssXkypXLZZ2hQ4faj39PP/10oklqd+4/jHHvGrBHjx4mS5YspkyZMmbSpEnm33//tVxvQinNH4SEhDgcG69cuWK8vb3tDRxdGTx4sMmfP7/LBl7bt283+fPnN0OGDHEov1vXwiTRU4Yk+gMqpa3T8uTJk+hFzs8//+x0M+Tl5eV0gRgcHJxoEsvX19e0a9fO/PTTTw4XM3czyXDt2jUzf/58U6tWLRMYGGhatGhhfvrpJ5fz5suXz6xevdoYY8zhw4eNzWYzAwcOtIwrody5c5u9e/cme/601rp1a1OuXDnTpUsXExgYaD/wf/vtt6Z48eL2+SZNmmS/KejYsaPlTZaVzp07m6lTp7oV4y+//GLatGljqlSpYm+l98knn1h+P8PDw82uXbvcWlec/fv3m4EDB5rcuXMbHx8fp+lhYWFmxYoVlvWXL19uwsLCHMrc+c76+fk5JBbPnDnjkNDdv3+/8fX1dVp//IsuV0Pbtm2d1pUwCezr62s2b95suY1J+eKLL0zWrFmTPEHPnDnTeHt7m7CwsER/QWGz2RxaQWXMmDFZDyFS+jnFOX78uBk9erQpXLiwCQ0NNf379zd79uyxXFaePHnsSf6YmBiTKVMm8/3339un79q1y2TKlMmhjrv73NVD0aRanISEhCSa+N64caNTkt/d45/NZjNfffVVin5J4s53PUuWLIne1O7YscNkzpzZqdzd844xxmzYsMF07drVZMqUyVSsWNFMnTrV8njo7e1tXn/9dafvzd04vx05ciRZQ3wJf5GWcFi8eLHL/19/f/9Eb4giIyOdHk7lzZvX/v/hyu+//27y5s17x/shMTdv3kzyVy9RUVGmffv2JiAgwLRt29Z07NjRYYgv4X6oWLGiGTdunH08qRZjCcXGxpolS5a4PG4mPP4Zc/sYmNj1VZwmTZqY559/3t5i1pjbremee+4506BBgyTrDxw40NhsNpMhQ4ZEW5Ml9fDM29vbjBw50mVddx60BwYGmt27d6eojjEpa9yQP3/+RK8ndu/ebfLly+dQ9sQTT5ilS5faxxN+b+fPn28ee+wxp2V5eXmZkydPOpQFBgbakxuuuPPA0t2He9WrVzdvvfWW5fS33nrLVK9e3XK6Mbdb9rdp08YEBgaaLFmymB49ejid84oUKeLw0Cfh/vv9999N/vz5nZad8BcXLVu2dGjxvG3bNqf7Fnf2RfXq1U2rVq3Mn3/+afr162dsNpspXLhwkq27bTabyZw5s8mSJUuiQ3y9evUyJUqUcPrfN+Z26+uSJUs6Je7Cw8MdzjkJ99/OnTtNjhw5nJbnzsNld75/gYGBSSbUXB033Xmo/8UXX5iGDRuajBkzmubNm5tvvvnGREdHJ7pNPXv2NNmyZTOPPfaYmTx5sv2+KDnn7ZQ2brDZbGbUqFFODUgSa1ASX0xMjHn11VeNl5eXyZAhg1m4cKHlvHGCgoLMtm3bkpwvPncahLnbeMqdhlDuxOdugyt31hUYGOjy12Cu3EmDtZSuK06WLFns3+2qVaua6dOnG2NuX/db/bojNDTU3vAuKe7cfxjj/jXg9evXzcKFC02dOnVMYGCgef75580PP/xg+dAsTkrzB64egiWMMaHChQubL774wnL6559/bh555JFE10MS3TN8PN2dDDyjQIECKZr/3LlzifZrXKhQIacXqxhjVLt2bXsftpJ09epVNW3a1KF/0fj9Xx86dEhz585V9+7dde3aNbVq1Upt2rRJVt+Js2bNsveLeOvWLc2dO9feP1RiL7rx9/dX27Zt1bZtWx0+fFhdunRRgwYNdPbsWXt/U3FOnDihokWLSpLCw8PtdZOrb9++mjRpkiZPnpzoNiW3D1fJsR/XOM8995wqVaqkN99806F83Lhx+uOPPyz7IZsyZYrefvttHTt2TF9++aW9L78tW7aoVatWDvG1bNlSAQEB+uSTT/Tuu+869WWYUPx+2h9++GG98847+v3331WyZEmn/r6s+mz/8ssv1a5dO7Vp00Zbt261vzw2KipKo0eP1vLly53qjBgxQoMHD9a8efMUGBiYaIzxueobefDgwS5fMFinTh2NGjVKDRo0cJpmjNGoUaNUp04dp2mDBw+2x3Tjxg2NGjVKISEhkuSyL7NcuXJp7969euihhyTJqR/63bt3KzQ01Knetm3bktzehP3iRUdHy9/f3z7u6+vr9P+QlCNHjmjOnDmaN2+ejh07ppo1a1r213769Gl17dpVv/32m2bPnu3UX68rCfvST4q7n5N0+6WpAwcO1MCBA/XLL79ozpw5qlixokqWLKlVq1YpICDAYf4aNWpoxIgR+vjjj7VkyRLFxsY69HO8a9cup2PqnezzlPY5XrZsWX3zzTd67LHHXE7/+uuvVbZsWYeyOzn+Va1aNUXxufNdv3btWqLHoZCQEJcv1L6T806VKlVUpUoVTZo0SUuWLNGUKVPUr18/nThxwimW2rVra/bs2Tpz5ozatWuXon6Bd+3apVOnTkm6/V3ds2eP/WWVCft/l25/Pq6Wbf5/X+jS7f+Z+H3jlilTJln9qCcUEBCgCxcuWPY5ffHiRYfvdVzMYWFhVpursLAwly/LTekxU3K/r/KVK1eqc+fOyp07t7Zs2WL/7lvJmzevdu/erfz58+vy5cvasWOHJkyYYJ/+77//JvsctG7dOs2ZM0dffvmlfHx89OKLLzpMt9lsunz5ssNxx8vLS5cuXXJ4IZer/4d3331XTz75pB599FFVq1ZNkvTrr7/q4sWLSfbh/9FHH2nSpElq1aqVtmzZotdee00LFy5U6dKlneZdu3atjDGqVauWvvzyS4djma+vrwoUKKA8efK4XM/zzz+vn376SS+//HKi8cRXrFgxl/8LSfH19U20n/H4Tp8+7XS9Ep+Pj4/Ti9YPHDigkiVL2sf9/f0d+pWvVKmSXnnlFZfLS/juHm9vb5f/n/F98cUXKTpXV65cWa+++qp+//13Pfroo8mut3XrVk2fPt1yert27ZJ8P0+tWrVUq1YtXbp0SQsXLtSgQYM0ffp0h+PSkSNHHI7/8ft+laTcuXPr9OnTTsv28vJy2Fe///67w/tQMmfO7PRCc3f2xZ9//qmPP/5YxYoV0/DhwzV+/HiNGzcuWe+cGjZsmP34lRzffPONpk+f7rJ/8NDQUI0bN04vv/yyw3Hn5MmT8vPzs4+vXbvW4QXRQUFBioqKclre3r171aJFC9WsWVPFihVLdowp/f4FBAQoMjLS8vwRGRnpdH0lSStWrNDcuXNVq1Yt9ezZU4UKFVKZMmUSfWl7ixYt9Oabb2rx4sVO72iwMnXqVL355psaMGBAsuvESeo61tV7SaZNm5boO7tsNpvlPdKyZcu0aNEiValSRfv27dPs2bNVvXp1y+OsJOXLly/JY0pCKTlmxnHnmC5JWbJkSfG9hzvxubMed9dVuXJlHThwIFn11q5dK0nq1KmTJk2alOS99p2sK84TTzyhPn36qGrVqtq0aZMWL14sSdq3b5/ldduNGzf0+OOPJ2v57tx/xEnptbAk+fn5qVWrVmrVqpWOHDmiuXPnqkePHrp165b+/vtvy3dquJM/+PHHHx2O6bGxsVq9erXDS0afeuop+99HjhxRpUqVLJf32GOPOb041mazOV2LJ+deomzZsonOdy+/6NoTSKI/wObPn69p06bp8OHD2rhxowoUKKCJEyeqYMGCThd/uXPn1q5duywPnn/99ZdTQmPIkCFO8yV1UZk3b1699dZbeuutt7RmzRpFRESoatWq9qR4165dVbhwYad6+fPn18yZM+3joaGhmj9/vtM8Vv755x/NnTtXc+fO1dWrV/XGG2+4PFEZYxweCnh7e7u8uLPy22+/ae3atVqxYoWKFy/udDMW9+LO5CQ9JeuD5i+//KKhQ4c6lTds2FAffPCB5fIyZ86syZMnO5UPGzbMYTxPnjz68ssv1ahRIxlj9M8//7hMTkn/t9/jX9RLty/cf/75Z/38889O22R1gThy5EhNmzZN7du316JFi+zlVatW1ciRI13W+eCDD3Tw4EHlypVL4eHhTvs8/kMcSfrjjz80a9YsLVq0SA899JDatGmjDRs22G+SXHn77bdVvnx5Va5cWX379rXffO3Zs0cffPCB9u3bp7lz5zrUefLJJ7V37177+OOPP+70kpKEie3atWtr1KhRatSokVMMxhiNGTNGtWvXdpoWdxGWUu+8845DwmrkyJFON3wJH+JER0fryy+/VEREhNatW6e8efOqY8eO6tSpk+WDuEWLFqlnz54qU6aMduzYkewXwKU0oebO5+RKxYoVFRkZqV27dmnbtm26efOm03Fg1KhRqlu3rgoUKCBvb299+OGHypgxo336/PnzXb6c0p197s4L2nr27KmWLVsqLCxM3bt3t9+0xcTE6OOPP9aECRO0cOFChzp3evxLCXe+64888ojWrFmjTp06uVzm6tWrXb5Izt3zTnxbt27Vzz//rN27d6tEiRIuE20//vijjh07pjlz5tgT9i1atJCU9GdYu3ZthxvdJk2a2Ou5Sm5bnUOMMVq0aJE+/PBDpxuHw4cPJxqDlSpVqmjq1KlOL7yNM2XKFFWpUsWh7MaNG0kmI2/cuOFQ5s4xU7r9/9K8eXP7+IYNGzR48GANHz5cRYsW1VtvvaURI0Y4/F+99NJLmjdvngYNGqS33norWS8if/755/X6669r0KBBWr58uUJDQx1uEjdv3pxoYi7+dcihQ4dUrVo1ffzxx3r++eed/s+MMU7fSWOM/cbTJPLi2GLFimnnzp2aPHmyduzYoYCAALVv3149e/ZMNInQoEEDbd68WfPmzVPz5s117do19enTR4899piGDRum/v37O8xfvXp1Sbe/V/ny5Uvyxd3uPGiP/8Dg3XffVf/+/TV69GiXdaySD8lt3CDdPlb89ddflgmJnTt3Knfu3A5lFy5csD/wl+SUZI+NjXWYHifuM44f0+XLl1W2bFmHfZmwAUtKH1i6+3AvJiYm0f/hDBkyJOsFZYcPH7Z/76OiopweZPv7++vIkSP2+4/evXs7TD927JjLBEfRokX13XffqU+fPvr777919OhR1axZ0z79yJEjTslod/bFf//9Z0/qBwQEKDAwUCVKlEhyuyWpZcuWKfqsTp48qeLFi1tOL1GihD3BFCdr1qw6cOCA/for4cuH9+/f7/L/3t2Hyyn9/lWuXFnz5893eeyWpE8++cRlksmdh/pdunTRlClTtG7dOrVr104tWrRI8iWJ8+fPV0REhHLnzq3GjRurXbt2atiwYbK2LaWNG6Tb5wl3Xiwad84aNWqU+vTpo9OnT6tz584qWbKkpk6dqhdeeMFlvYkTJ2rAgAGaPn16oo3l4kvuMTM1Gk+5k8hMyTH9Ttbj7rpeffVV9e3bV6dOnXK5L0qVKuVUZ86cOZJuP5Q9ePCgnnzySQUEBLi8/tu5c+cdrWvy5Mnq0aOHvvjiC02dOtX+ct4VK1a4bIQkSV27dtXChQsdHlRacef+I05Kr4UT8vLyss/r6vyUMNF84MCBZOcPJNcPzl566SX73wmvyzJlyqQzZ844PNiM79SpU04P7xI2Ur127ZpDA9X4D6Hja9asmctyuMdmUvr4EfeFqVOnavDgwXr99dc1atQo/fXXXypUqJDmzp2refPmOSXdXn/9da1Zs0arV692ahF45swZ1a1bVzVr1tTEiRNTPdaoqCgtWLBAERER2rp1q0qUKOFwgnDXjRs39PXXX2v27Nn69ddf1bBhQ3Xu3FkNGza0vGH28vJSiRIl7AeunTt3qkiRIg4t6yXXB1ZJlsmdOHEnyTsVEBCg7du3O92w79mzR2XLlnV6i3xCV69e1dGjR52SGHEn2xkzZujVV1+1PFBLid/EuyswMNDegjc4OFg7duxQoUKFdOjQIRUrVsxlIj/hA4CE4j/sKVWqlC5evKjWrVurTZs29puVDBkyaMeOHYm2xtm8ebM6duyoXbt22U/AxhgVK1bM3mr5Th08eFDlypVTkSJF1K9fP3sSZe/evXr//fe1d+9ebdmyxeUN/sWLFxUUFOSUyIiNjdXly5edEgw1atRI8mLEZrM5tFzs0aOHFi1apKtXr+rpp59Wly5dVLdu3SSXkzFjRo0dO1avvvpqovOlND7J+QHCnXxOGzduVEREhD7//HMVLlxYnTp1UuvWrZU5c2aX88e1csiRI4dTS6AdO3YoLCzM/muP5G5Twn0u3T4uuXOz9tZbb2nMmDEKDg62v93+0KFDunz5st544w2NHTvWaT3uHP8KFiyozZs3O2xrUtz5rk+YMEEjR47U/PnznZLvy5YtU4cOHTRo0KBk/dInOeedEydO2JM/Fy9eVNu2bdW5c+dkt9pbuXKl5syZo6+//lr58uVT8+bN1bx5c5UrV85hviNHjiRreUn9wmzVqlUaMGCA9u3bpz59+qhv374pblnnyoYNG1SjRg01a9ZM/fr1U5EiRWSM0e7du/XBBx/o22+/1dq1a1W1alV7HS8vL3Xr1s3yZvXq1auaOXNmqpw/cubMqR9//NGeYO7Tp4927dqlH374QZK0fPly9erVS/v377fXKVGihD755BOnzyIx165d00svvaTvvvtOoaGhmjFjhr2ltyTVrFlTDRo0cPqF2Oeff66IiAitXr1aOXPmVIcOHdS5c+dEW44lfPhsJS6RnRrq1q2refPmOR3Lli1bpq5du+rkyZOJ1k/quqJgwYLJisNms9kfnsTdEMdxdRPt6lrk2WefdZhnzZo1ypo1a6KNG6TbCYl169bpjz/+cPp1xbVr11SpUiXVrFnTIXn0yCOPaOzYsXruuedcbs/nn3+uQYMG6cCBAw7l8+bNs9wH8cW/aU/OuSAmJsbpGjfu4d6cOXPsD/c+/vhj7dy50/IXGJUqVVKrVq2cktpxxo8fr0WLFmnTpk1O065fv64vvvhCERER+uWXX5QvXz516tRJnTp1ckom1K5dW+XKldN7773ncj19+/bV9u3btXr1aofyr7/+Wi1bttQTTzyhv//+WxUrVtR3331nn/7mm2/q8OHD+vzzz+9oX3h5edm/P9Lth3uff/65U6OjhMkqb29vnTx5MkXn7bx582rx4sV64oknXE7/9ddf1aJFC504ccJe1rJlS129elVLly51WadJkybKmDGjvbWpK3EPl7/66itdv35d/fr1c/lw2Z1rkbVr16pu3bp6/fXX9cYbb9gfbJw+fVrjxo3TpEmT9NNPPzk1OvD29tapU6fs96TBwcHauXNnkseRa9eu2Y+5//vf/1S/fn0tW7ZM27dvT/ThR/yHPVevXtX58+e1ePFihwe0CeNL6efrTp04JUqU0IIFC5x+FTRlyhS9+eab9ta60u1W1/GPk1euXNGtW7cUGBjodPyLe0jnzjHTnWO65DqRaYxJNJHpTnzurCehZ555RmvXrk3W+SOOqwfK8ZPArq57zp8/r+eff15r166VzWbT/v37VahQIXXu3FlZsmRxaCAXP1HsSlLrSq7419KxsbGaN2+eSpUqpVKlSjnth4SNf1J6/yG5fy0cHR2tr776ShEREfrtt9/UpEkTderUSQ0aNHD6LJLKGcTnqrFoSrVo0UK3bt3Sl19+6XL6c889J29vb4fzVHJjTI34YI0k+gOqWLFiGj16tJo1a+aQjPzrr79Uo0YNp5/E/Pfff6pcubJOnTqltm3bOtwkL1y4UKGhofr9998dWjOcOXMm0QuBW7duaevWrYn+jCWh7du3KyIiIsmfiCZHtmzZFBwcrA4dOqhdu3aWscZPLt4rB65KlSqpSZMmGjx4sEP50KFD9d1332nLli0u6509e1YdO3a0JxcSin+yvXTpko4cOaJSpUpp1apVlgkyVz/zdlehQoU0Y8YM1alTx+F7+8knn2js2LHatWvXHS3fz89PLVq0ULt27VSnTh37xVVykuhxtm/frv3799tbkZUpU8Zy3pQmtiVp06ZN6tixo/bs2eOQBC5SpIjmzJmjypUrO9X5+uuv9eabb2r79u1OSasrV66oXLlyev/999W0adMkty8xpUqVUpcuXdS2bdsUJUz37dun0NBQl/siJiZGV65cSfFPGJOybds2+wVzUp/TuHHjNHfuXJ07d05t2rRRp06dXLbe8JROnTrpww8/dCshumnTJi1YsMBhX7Ru3drlcTmtj38p/a7HxsaqRYsW+vLLL/Xoo4+qaNGi9vPU/v371axZMy1ZsiTJFrEJuTrvNGrUSGvXrlW9evXUuXNnNW7c2KGVfkr8999/+vTTTxUREaGdO3em6oNH6fbN35tvvqlff/1VXbt21eDBg12e765cuaJ+/fpp6dKlunHjhmrXrq2PPvrI6cG5K19//bW6devm1Co2S5Ysmj59ulMC0d2HYK7cunVL169ft/xJbkBAgPbu3Wv/hUulSpX0/PPP64033pB0+8asWLFiunLlir3OjRs3nB4OJWdd7vD19VXjxo3VpUsXNWrUKMXfz5RKSSOE5B7nzp0759DFRnxnz55Vp06dtGLFCpfT7+T7ntyHCZLjA4WkGjTEF79xw+nTp1WuXDl5e3urZ8+eDr9mmjJlimJiYrR161aHFs69evXSqlWrtGXLFpeJ9woVKqhOnTqaNGlSsmOKkzAhntgDy3379mnWrFmaP39+og88kvtwb968eerevbvef/99devWzX78u3XrlqZPn6433nhDH3/8sUM3Sps2bVJERIQWL16s69ev65lnnlHnzp1Vu3Zty+PBl19+qZYtW2rixInq3r27/f8jrtVi3759tXDhQpfJzNWrV+v7779XaGioXn31VYfrn2HDhql69eoO3ay5sy8SS1gllqxyJ+HcuXNnHTx4UCtXrnQ6PkVHR6t+/foqVKiQIiIi7OXbtm1TlSpV1LRpU/Xv39/hgfS7776rZcuWacOGDcl6YJjUw2V3HphL0vTp09WrVy/dvHlTmTJlks1mU1RUlDJkyKAJEyaoe/fuTnXutFGTdLsVflyXg5cvX1bjxo3VvHlzp4RsfMYY/fTTT5o9e7aWLl36/9g777Aorq+Pf3cp0gURsISqgCgWjIq9i7GXWBB7jZ3YW8QSe43GHkTF2CtWwNgrgiJ2ERFBBTsWsCCe9w/end8OO7Plsm5MMp/n2eeBu3v23HtndubO9557LooWLYr27durPJeyHF/WgAgg7/grp+1R5s6dO7ygKm0n6ID/TdKxXjNZYBEyWeqnD8GUJThOkxgsFBDRo0cPPH36FKGhofDx8eGef6OiorjVNtp+vyZfhw4dgpGREZo2bcorj46ORm5uLrcSQ3lljzqEgn8A3Z4/WFEEdzk7O6NPnz7o2rWr6Fjla/PlyxccOnSIi54H8tLT+Pv7o1y5chg5ciRPX1u8eDFu3ryJCxcuqF2BJPH3IIno/1HMzc1x+/ZtuLq68sTIu3fvokKFCoKRyq9evcLEiROxbds2ZGZmAshL/9GpUyfMmjVLZTlg/hn18uXL49ChQ1yUyZMnT1CiRAm9CAbaiurKy8WUH1TV5Y7Vt6DBQlxcHLZv3y4YxSU0y71//360b98eQUFBXPTG0aNHsWXLFuzYsUN0SU/Xrl3x4MED/Pbbb6hfvz727NmDJ0+eYMaMGVi4cCFatGihYrNhwwYEBgaKDt6EYM3ZPnv2bE5satKkCQ4dOoQHDx5gxIgRmDx5stpI5kuXLuHWrVsAgHLlygnmW3v06BHWr1/PRSAplq/6+/vjypUrakV0XQXxggrbV65cQWJiIoC8SDex/HEAEBAQgE6dOqFfv36C7yseaqOiogrUJnU26sRwQ4n8rMjlcri4uKBly5aCwpqC/JEWWVlZmDt3Lnbv3o2UlBTIZDK4u7ujQ4cOGD16tE5LRtWRmZmJLVu2cA+aXbt25V3DjYyM8Mcff4hGzH9ttI3mFXvY1eVcB4Bt27Zhy5YtnI2XlxcCAwMRGBioQ63VI5fLUbx4cTg6OqoVg9U9wIt9Pn9/5c+HKEb+NEj37t3DxIkTsWvXLnTq1AkzZszgIn6EGDlyJNasWYOuXbvCzMwMW7ZsQa1atbBnzx6t/GdnZyMqKoqL6Pby8kJAQIDeznPW3OalS5fG8uXL0bRpU7x79w729vY4duwYFxl/+fJlNG3alJdmg9WXGG/evMGmTZuwdu1axMXF8d7TFHAgxOfPn5Gbm8u77z558gSrVq1CVlYWWrduLRqtqhy9rXgE0CZ6G8iLdF29ejXu3buHnTt3omTJkti4cSPc3d1F/bGMK/LXRaiO+UlNTYWzs7NgW9LS0rROE6aJBw8eYNCgQYiKiuLVrWnTpli+fLlK9OWTJ09QqVIlmJqaYujQoTwRc9myZfj8+TPi4+MF81yLoch3HB4erlYQz87OxrZt2xAWFobz58+jSpUq+PHHH7kJJHVoM7k3evRoLFq0CNbW1ihVqhSIiIsmHD58uEoaP7lcjooVK6Jv377o2rWr1r+fcePGYf78+YJRiyNHjhSNUtcX6vqiICuF3rx5w42JDh06xFvdaWRkpPLbePjwIapUqYJChQphyJAhPMFlxYoV+PjxI+Li4lSi+SMiItCvXz/BSc7Q0FCmZf76DGoC8sbf27dv5wlqHTp0EE0jqs9J/S9fvuDgwYNYu3YtDh8+LJheSYiXL18iPDwc69evx5UrV3jvaQpuuHz5MkJCQnDgwAGubNq0aRgzZgzzPfPevXtYt24d7t27hyVLlsDR0RGHDx+Gi4vLNyXCaXtN/7eSlZXFS++oDcWKFUNUVBQqVqyoshK7QoUKvJUGBaVChQqYM2eOyorOyMhIjBs3DgkJCXrzpQssgR6K5zdN+cCFtBQFcXFxnH5QtmxZfP/99zrVOykpCWFhYVi/fj2ePXuGnJwc3vsXLlxA3759cevWLZWAobVr16qkQ2RFKIWoEJr2xpHIQxLR/6OULVsWs2fPRps2bXgX499//x3r1q1T++BPRNzDpoODg+hFKf+MurIfIO/Bonjx4vjy5Qtnc+/ePcycOZOLolBs0KXA2NgYp0+fVklTkv+hJS0tDcWLF+dFBuZfLqbP5dAnT55EVlYWatSoofah4MmTJxg9ejSOHj2Kp0+fqkSuCD2kbN26FT169EDTpk0RHR2NgIAAJCYm4smTJ2jXrp3ojP/Bgwcxa9YsXLlyBebm5qhQoQKmTJmitj3FixdHREQEqlWrBhsbG8TFxcHLywv79u3DvHnzcObMGVFbZZG6bNmyaoUzBwcHHDt2jLfZFpC3QVPjxo0FN4kC8s69WbNmYfbs2VzO60KFCmH06NH49ddfBW2ePn2KwMBAnDhxghMRMzMz0aBBA2zdulX05qvt8lWATQQ2pLBdokQJnDp1SjQ9QFJSEurWrctbAszSJlYxnLUvWERqFhuWNCuKTXauX7+OZs2a8R52IyMjUblyZZw6dYq35JFVDF+wYAHi4+OxadMmAHnX2qZNm3IPb+fPn0dgYCBvnwRto1H1EXH/NSLYk5OTMXDgQERHRxfYRpuBpUwm46ULYGkTqxieP2WFAnWbhA4ePBhr165FgwYNMGfOHLUrLRS4u7tj3rx56NixI4C8a3r16tXx/v175ih7BY8ePeLyaqpDXaR3gwYN0KFDB24TxnPnzqFOnTq83ObNmjVTmcyaMGEC9u7dy+UqP3fuHJKTk7kI3jVr1iA8PJx3f6tfvz46duyos6/8HD9+nLuPFC5cGO3atcPy5ct5nxFLs5Af5c2oevfuDVNTU25jx7dv36JcuXL48OEDt4dNRESE4J4Ce/fuxejRozFmzBju4ez8+fNYuHAh5s2bx5ukUhb+lDf23rhxI27evAkPDw8sW7YMhw4dEtzYG2AfV6xduxaLFy/mJmU8PT3x888/i94nxFIhvHjxAo6OjhoDIp4+fcrl3Pf29tY4sfHq1StO8PP09OTGfkLpUu7fv49BgwbhyJEjPAGpSZMmWLFihdrJLQW6COIXLlxAaGgoduzYARcXF9y6dQvHjx/npRfSBaHJPWVfW7Zs4U2eBQYGCm4ap+57NJHfj6enJ7p06SK6OZ2Cu3fvIiIigne/b9u2rWCfu7i4ID4+noukXrZsGXr06MEbVxWkDcocOHAAkydP5vavsLa25q2GkclkgulC7t+/j8GDByM6OlrlXFq2bJnoOC//JKenpycCAgJ0FvPUwXIv/dbQdVLz0qVLmDJlCk8MVxAVFcWtGujXrx88PDxw+/ZtjB8/Hvv370fTpk15183nz58jKyuLd929ceMGFixYgKysLLRt2xZBQUGC9Th58iSaNWuGWrVq4dSpU7h16xY8PDwwZ84cxMXFYefOnYJ2Bblu6nrN1PWargyLkKlr/Vj96IqVlRU6deqEPn36iE4+58fa2hqXL1+Gp6cnT0+Ji4tD06ZNBTdiV3Dnzh38/vvvXLt8fHwwbNgw0T1azM3NcevWLZUc+SkpKShXrhzvOiVEWloaAIjm+WYdC7MEevTq1UuryRohLeXhw4fo0qULzp49y9MPatasia1bt4pO8AF5q8x27NiB0NBQnD17FnXq1EFgYCDatWsnOmGuHDCkboU0qxgul8vh6uqKFi1aqN3PJP/kt4QIJPGf5I8//qCSJUvS1q1bydLSkrZs2UIzZszg/s5PdnY2RURE0Js3b1Tee/36NUVERNCHDx945TKZjJ48ecL9b2VlRffu3eP+z8jIILlczrMJDg6m8ePH82zmzZtH69evp/Xr11OzZs3op59+0ti+/L70xZw5c+iXX37h/v/y5Qs1bdqUZDIZyWQycnJyouvXr4va//DDD1S2bFlasWIF7dmzh/bu3ct7CVG+fHlatmwZEf2vXV++fKH+/ftTSEiIXttnbW1N9+/fJyIiFxcXOnPmDBERJScnk7m5uaDNkydPqEGDBiSTycjOzo7s7OxIJpNRw4YN6enTp4I2ZmZmdPv2bZXyW7dukZmZmcZ6fvz4kW7cuEExMTH09u1btZ/t1KkTValShW7evMmV3bhxg6pUqUKBgYEafWVmZtLy5cvp+++/J5lMRuXLl1f5TJMmTeiPP/4Q/Y61a9dSQEAAr6x48eJ09+5dUZu7d+9S8eLFeWW7d+8mT09PysrKUvn8u3fvyMvLi/bt26fynpmZGd26dUvU182bN1X6naVNjRs31tmGiK0vPn78SN9//z0VKlSI2rZtS+PHj6dx48ZR69atydTUlKpXr06fPn0qsA0rv/32Gzk5OYme505OTrR06VJe+bx58ygoKIj738rKin788Ufq1asX9erVi7y9vWnKlCkq31etWjU6cuQIz075+rd7926qVKkSz0Ymk5FcLueuXXK5nPe/okyZSpUqkZ+fn8aXIbhy5YpK/VhtZDIZubm50ZAhQ+jnn38WfRUU5X5WfimXGxkZCdZb6BUfH0/jxo0jc3NzcnBwUPFlbm6u07EyNjamR48e8crMzc3pwYMHzG1OT0+noUOHqtw/9u3bR+vWreOVzZgxgwoVKkRGRkbUpEkTevnyJe99BwcHunz5Mvf/iBEjqGnTptz/Bw8epNKlS6vUITs7m7p37062trZUpkwZOnXqFO/9+vXr05w5c/Tii4jo4cOHNGPGDCpVqhTZ29uTXC6nrVu30pcvXwQ/r/ybE3vlP289PT0pKiqK+3/ZsmVUokQJyszMJCKisWPHUv369QX9Va1alQ4ePKhSfvDgQapcubKgDVHe73/Dhg1ExL/GXL58mZycnETtWMYVkydPJktLSxo/fjxFRERQREQEjR8/nqysrGjy5MmCNjKZTHDMkZKSQhYWFqL1e/36NXXr1o2MjY25/jY2NqauXbty/akNd+7coTFjxlCxYsVEP/PixQuKiYmhmJgYevHiBVf++fNnUZvz589T3759ycbGhnx9fcnIyEjlHFawYMECKlu2LJUsWZJGjx5NV65cIaK83/aNGzcEbRITEykwMJBev36t8l5mZiZ16dJFb+NpQ/oiIpo1axYZGRmRXC6nYsWKkZOTE8nlcjIxMaH58+erfD7/c4u1tbVW9VFuz8GDB7lzNiIigg4cOCBo07JlS1q7di33f/779ty5c6lZs2aiPl++fKlyLr169Yo2bdqksb7aUL9+fWrQoIHaV8OGDXk26u6fffv2JXNzc9H79vbt26ldu3ZUrlw5KleuHLVr14527Nihto7nz5+niRMn0ujRo+nw4cNat03Zl5+fH3Xu3JkiIyNFPx8ZGUmjRo2iCRMmcMfo1q1b1KZNG5LL5YLHKTQ0lGQyGXcPcHBwoI0bN5KtrS399NNPvGcSBYGBgTRy5Eju/ydPnpCdnR2VK1eOWrduTSYmJhQeHi5Yx+rVq9PChQuJiH8uxcTEUMmSJUXblv+cV/Do0SPR5zGWaybLNZ2IKC0tjWrXrq3yjFmrVi1KS0vTW/1Y/CjYsWMHdezYkfz9/bUaD+/Zs4fatGlDJiYm5OnpSbNnz1YZe+WnWbNmnP5gZWVFycnJlJubSx07dqQff/xR1G7nzp1kbGxM1atXpxEjRtCIESOoRo0aZGxsTDt37hS0cXJyoqNHj6qUHzlyRGWsqSAnJ4d++eUXsrGx4cazNjY2NGnSJJXnKtaxsJubG23fvp37Py4ujoyNjSknJ0e0/QWhadOm5O/vz3uOu337NtWoUYM3HlTm4sWLNGDAALKxsSE/Pz9asGABGRkZid5/ifLO19zcXJXy3NxcwXsl6zPLvHnzyMfHhxwdHWnEiBF07do1bbpBQgRJRP8P8+eff1Lp0qW5G0zJkiUpNDRU8LO//fabymBJmUaNGnFCrwIWEd3X15diYmJEbU6cOCH64KqMNiL669evtXop4+fnR1u3buX+3759O5mbm9OZM2foxYsX1KJFC+rYsaPaesXHx2usvzIWFhbcA2iRIkXo6tWrRJQnfIo9rKWmpvJu+jExMRQcHEyrV69W66tKlSrcQLJVq1bUvXt3evjwIY0dO5Y8PDwEbVhE6qpVq9K0adNUyqdMmaL2IV6ZzZs307t37zR+zsbGhi5evKhSHhMTQ4ULF9bKl4L4+HgaNmyYSjmLCGwoYZuIqEyZMrRx40ZRu/DwcPL29uaVsbSJxYaIrS9YRGoWG1bq1q2rck1UZunSpVS3bl1eGYsYTkRUtGhRSk1N5f7//vvveb//e/fukaWlJc8mJSWFe92/f58sLS3p5MmTvPKUlBSezdSpU7V6GQJ9iuiGGliyiOFiHDlyhL7//nuytramKVOmqExwsxwruVyuIkJaW1tTcnKy2rq8fPmSAgMDyd7enooXL05Lliyh3Nxcmjx5Mpmbm5O/vz/vvkmUJ9Ao/z7Onj1LcrmcZsyYQbt27aIyZcrQiBEjeDZmZmY8Qb9q1ao0b9487n9NYqkusPjauXMnNWvWjCwtLalDhw60d+9e+vjxo1oBkxULCwvecWnXrh3v3nTjxg3Rc8nMzExQwBG6zipjbm7OjUWUr0337t2jQoUKidqxjCuKFi1KmzdvVinfvHkz2dvb88oUwoBcLqeffvqJ+3/EiBE0fPhw8vf3p5o1a4rWr1OnTuTp6UmRkZHcuC8yMpK8vb2pc+fOonZERFlZWRQWFka1a9cmIyMj8vf3550nmlAnvLMI4kZGRjRx4kQVUV6dTf/+/WnMmDGidRw7diwNHDhQpZxFEGf1pfA3f/58GjJkCA0dOpQWLVqkdpx/7NgxksvlNGXKFN6E3IsXL2jy5MlkZGREJ0+e5Nloem4RYv/+/bz7spWVlcoEmJAY7ObmxhuL5Pd19epVre8HCoTucRs2bNDqlZ+CCOLK5OTk0G+//UYODg5UunRplUCt3Nxc6tSpE8lkMvL29qY2bdpQmzZtyMvLi+RyOXXu3FlwAnLHjh0kl8vJ0tKSbG1tSS6XC06M6OJLce49f/6cdu/eTURsYjhRXgCU4lqwc+dOkslkVKNGDbWCrJubG504cYL7f/78+VSqVClOJJw/fz75+/sL2lpaWnL3BOVz6f79+4LX5yVLltCSJUtILpfTzJkzuf+XLFlCixYtorZt2wqON4nYrpm6XNOVYREyWerH4ocorx+trKxo6NChZGpqSj/99BM1btyYChcuTBMnThS1IyJ6+vQpLVy4kMqXL0/GxsbUokUL2rVrl6AofO3aNXJ0dKQffviBTE1NqUOHDuTj40NOTk6UlJQk6sPDw0NwkiIkJET0/jtgwAAqX74873vv3r1LFSpUoL59+wraDBw4kBwdHWnVqlWUkJBACQkJtGrVKipWrJjKNZ11LFzQQI9Xr15RbGwsJSQkCAaF5sfMzIwXTKEgLi5OMACgfPny5OrqShMmTOAFVKq7/7IExxX0meXcuXPUr18/srGxoapVq9LKlSsF7+MS6pFEdAnKysoSnIVWpmrVqoIRrgr2799PVatW5ZXJ5XJKSkqi169fU2ZmJllbW1NCQgJ3Q0tMTFQZgFlZWfEGGD///DM9f/6c+z8lJUWrSGVtBr5iM6H5Z0SVsbW15Q2YevXqRd27d+f+P3/+PH333XeiPn18fAQvyOooWbIkJ5yXL1+eG4ScO3eObGxsBG1q167NRSukp6eTtbU11ahRg4oWLSooXivYuHEjFx0YFxdHRYsWJblcTmZmZioiiAIWkXrfvn1kbGxMPXr04FYZdO/enYyNjWnPnj2i9VNG2wghsYmLy5cvk7W1tVa+NMEiAhtK2CYimjhxIrm4uFBGRobKe+np6eTi4qIy2GNpE4sNEVtfsIjULDYK3r17R5MnT6Zy5cqRpaUlWVlZUfny5WnatGmCg5+iRYuqXZVy7do1Klq0qIqNrmI4Ud4gUt0g6urVq6IRnwq+1uodbZgwYQL17t1bJxt9iugKdBlYaorQU7w0oUkMz8+lS5eocePGVKhQIRoyZIjGe7cuKFbaKEdRGRkZcdF6YpFVAwYMIBcXFxo1ahT5+vpykXktWrSg8+fPC/piifQuVaoUJ8a+ffuWTE1Nuahmory+yf+bYoXFl0LAzH8Mv4aIXqRIEd53Fi9enP7880/u/3v37on+5v38/Kh79+708eNHruzjx4/UvXt3tStJ3N3duUk+5evFhg0byMfHR9SOZVxRuHBhSkxMVCm/c+eOyriifv36VL9+fZLJZFSzZk3u//r161NAQAANGDBA8LsUWFhY0OnTp1XKT506JTopo0t0eH60Fd5ZBPFZs2aRp6cnOTs709ixY7n7gjobLy8vwTGcgri4OPLy8lIpZxHEWX3NmjWLjI2NtY4oJ8oT0gYMGCDqq3///iqBHiwieqtWrZgiygsVKsRNShERxcbG8iI2k5OTydTUVK3v/Ajd42QyGVlbW5OdnR3Z2toKvuzs7LT6fk2CeH7+/PNP8vDwoOLFi9Py5csFxcFFixZRkSJFaP/+/SrvRUREUJEiRWjx4sUq71WuXJl++ukn7vcxa9Ysje3Qxtf8+fOpXLlyNHfuXCJiE8OJ+AFQX758IRMTE949RAgzMzNe8EKzZs14v7E7d+5QkSJFBG1LlixJZ8+eJSL+Obh7925BsdTNzY3c3NxIJpORs7Mz97+bmxt5eXlRQEAAXbhwQbRtul4zdbmmK6OrkMlaPxY/RETe3t7cc7lyv0+ePJmGDBkiapefpUuXUqFChUgmk5GDgwNNnjxZ5dkiMzOTZsyYQR07dqRmzZrRpEmT6PHjx2q/19zcXPC5MTExUbRdmZmZVL16dTI2NubOCWNjY2rQoAG9evVK0MbGxoYOHTqkUn7w4EFRrUIZbcbCrIEe9+/fp+bNm3OrkuRyOZmamlJgYCDvuTh/RgVPT09eYKeCmJgYKlWqlEq5qakpde/enaKjo3kTf+ruv6zBcUQFF8OzsrJo/fr1VLVqVbK0tJSEdB2RRHQJrbC1tVU70/fgwQOytbXlleUXqcX+V8bGxkbwgqUgJiZGK+FTm4HviRMntHqp+15vb29auXIlrx/UifxRUVEUEBDAGzhrokuXLtwSvenTp5ODgwP169ePXF1dqV27doI2tra23Gz6kiVLuCisqKgocnd319p3VlYWXbp0iZ49eyb6GVaR+sCBA1SzZk2ysLAge3t7atCggUp/q0Nb0a9169ZUt25d3uz1w4cPqV69etS2bVut/RHliX19+vRRKWcRgQ0lbBMRvXnzhsqVK0fW1tY0aNAg+u233+i3336jgQMHkrW1NZUtW1ZlwMLSJhYbIra+YBWpdbUhYksDY2xsTOnp6aK+Hj9+TCYmJrwyVjG8XLlygpFkCsLCwqhs2bKi7xP9vSJ6jx49tBKclfkaIroCbQaWBU0Bo6sYnpSURJ06dSIjIyO9pzxQwLrSwNnZmVv6e//+fZLJZDRhwgS1vlgivcePH09lypSh8PBwCgwMJBcXF57AuHr1aqpVq5bO7RaaxGHxNWDAACpcuDDVrFmTVq5cyUW/FlREf/z4scr4q2HDhlzqu1OnTpFcLuc9TEdHRws+5BHljaMcHR3JwcGBGjVqRI0aNSIHBwdydHRUO/6aNWsWlS1bli5cuEDW1tZ0+vRp+vPPP8nBwUGnFTzajCuGDh2qshKBiGjUqFE0ePBgQZtevXoxPQQ6OztzgQrKJCQkqKRBYIkOV6Cr8M4iiCs4ceIE9ejRgywsLKhChQpkZGQkKuDlF+7yk5KSInjfYRHEWXyxRJQT5YmEQkKaglOnTpGbmxuvTCaT8aJyzczMaPLkybwo3SVLlqj4YYkoL168OG/lWX6ioqLUpgYSQugeV7ZsWbK3t6fg4GBKSEjQ6fuU0UYQV3D48GGqWLEi2djY0PTp09WuGi1fvjxvEiI/oaGhgmkULS0teeKgYtWPunupNr7kcjn98MMP3CQjixhOxDYh4+joyF1TiIjs7e15KTcSExMFAymI8q6NtWvX5gKn7t69S2fOnCEPDw+1KwTr16+vkjpNE7pcMxWwXNOJdBcyWevH4ocob9yuuKY5ODhwxy8xMVF0wkNBRkYGzZ07l3x8fMjCwoK6du1Kx44do/DwcCpXrhw1adJErb02NGvWjMLCwlTKw8LCRMVZorxzPSoqiubNm0e///674DVWGQcHB9EVbuqCG3QZC7MEeqSmppKTkxN99913NGvWLNqzZw/t2bOHZs6cSd999x25ubnRq1evKCIiQiWt3969e6latWoUGxvLlcXGxlL16tUFA/6UU/mVKFGCRo0aRZcvXyYTExPRezZrcJwyrGL46dOnqXfv3mRlZUX+/v6UnZ2tlZ1EHpKI/h8lIyODunXrRsWLF+fNzCle+bGysqK4uDjR74uLiyMrKyteGYtIXaNGDZo5c6aon+nTp1ONGjVUyvOnYMkf9S6UmoWFihUrchFVDx48IJlMxrswnj17Vm3uOVtbWzI1NSW5XE5WVlZc3jXFS4gXL15wAnBubi7Nnj2bWrVqRSNHjhQd+FhaWnKDvlatWnE3Bk0iPwv6FKl1QVvRLzU1lSpVqkQmJibk4eFBHh4eZGJiQn5+fhojSfLTvXt3wTyzLCKwoYRtBZmZmTRo0CAqUqQIt8zYzs6OBg0aJHgesbSJxYa1L1hEahYbIrY0MEIRE8oIpbNiFcN/+eUXcnZ2Fu13Z2dnmjRpkuj3EulHRGeJKBdDU/51b29vnXO2C9kIoc3AknU5JYsYPmjQIDI1NaWmTZvqnA5MDH0eKyMjI56Aa25urlHkY4n0Zsltrg1CkzisvrKzs2n9+vVUt25dKlSoELVu3ZqMjIwKlCKoTJkyKuftiRMnyNzcnDw8PMjc3FxlcnfQoEHUo0cP0e989+4drV69mkt7smbNGo3p0b58+cLtnaO4h5iZmfH2idEXQ4cOJRsbGypXrhz17duX+vbtS76+vmRjY8OJMYqXENqmeyPKmxBp3Lgx796Qnp5OAQEBtGrVKt5nWaLDCyK8E+kmiOfnzZs3tGrVKqpWrRoZGRlRjRo1uKAMBWL5bxX89ddfgjnvWQRxFl8sEeVEedchdWO8tLQ0lfGwq6srLyJX6JU/EIU1orxz587UqlUr0fq1aNGCOnXqJPq+EGITxRcuXOAm+b7//ntasWKF1s9EugjiMTExVL9+fTIzM6Off/5Z7USZgvwTqvkRW4EslMtb0zhGG19yuZy3SodFDFfY6Toh07p1a+rTpw/l5ubSjh07yNTUlDc+P3DgAJUpU0bQ38ePH6lfv35cHnATExOSy+XUrVs3tXsuKHPmzBmVaFwhdLlmKmC9pusqZLLWj8UPUd4KLUUE+/fff899f1RUlOhz/a5du6hly5ZkYmJCFStWpN9//10lwjspKYmMjY251CiaXmKsXLmSHBwcaMiQIbRx40bauHEjDRkyhBwdHWnlypW8/RsKwrRp06hLly688+fDhw/UtWtXwUkclrEwS6BHnz59qG7duvT+/XuV78vOzqa6detS7dq1yczMTGVvOmXNxtTUlPe3Jv3m6NGj1LVrVzI3NyeZTEZjxoyhO3fuqHyONThOGV3E8EePHtHMmTPJ09OTnJycaNSoUXpfKflfQUb0/1t7S/ynaNasGVJTUzF06FAUL15cZefiNm3a8P6vXr062rVrh3Hjxgl+3+zZsxEREYELFy4UqF5//PEHfv75Z2zfvh0tWrTgvbd//34EBgbit99+Q//+/XnvyeVyXhuISPB/dbuMa1u/ESNGoHPnzrhw4QJsbW1x9uxZ7v0ZM2YgJiYG+/fvF7TfsGGD2u/v2bNngeqnwN/fHw0aNECLFi0QEBCACxcuoGLFirhw4QI6dOiAhw8fCtqNHDlSsFwmk8HMzAylS5dGmzZtUKRIEe69tLQ0tG7dGjdu3OB24k5LS4Ovry/27dsnunt1ZmYmdu7cieTkZIwePRpFihTB5cuX4eTkhJIlS6p8PicnB+bm5rhy5Qp8fX1x5swZVK1aFYUKFdLYH0SEv/76C7dv3waQtzN548aNNdppy9u3b1GjRg2kpqaiW7du3I7nt2/fxqZNm+Ds7IwLFy7A2tqaZ/f69WtMmDAB27Ztw6tXrwAAtra2CAwMxMyZM2FnZ8f7/KRJk/Dnn3/i4sWLKrt7Z2RkwN/fH926dcPMmTNF60pEeP78OYgIDg4OoruWs7SJtR9Y+sLIyAgZGRlwcHAQrP+TJ09QokQJ3m+exQYA6tWrh06dOmHIkCGCdr///jt27tyJkydPcmVyuRy+vr4wNjYWtPn8+TNu3LjB8zV58mRs2LABsbGxgse3WrVq6NGjB2bMmMF77+3bt/D398fDhw/RvXt3eHl5AQDu3LmDP//8EyVLlsTFixcF+12BtbU1rl69Cnd3d9HPaKJnz55IS0tT2RFeHZmZmdyu98pMmzZNK/spU6YUyEbB48ePsX79eqxfvx5v3rxBt27d0KdPH5QtW1btd50/fx5hYWHYvn07vL290adPHwQFBcHGxkbls4MHD8batWvRoEEDzJkzB5UqVdKqvnK5HGZmZihTpozaz12+fFmr7wPYjpUY+X9X2pxLEyZMwN69ezFx4kQcOnQI586dQ3JyMoyMjAAAa9asQXh4OM6cOVPg+v1d3L17F+vWrcOGDRvw7t07tGjRAh06dED79u11+p7Y2FhkZ2ejXr16vPJbt24hOjoaxYoVQ8eOHSGXy7n31qxZg2rVqml9junCp0+fkJSUhHfv3qFs2bKwsrJS+YzYWEKIRYsWqZQ1aNBAK1uZTCZ4DtvY2ODKlSvw8PDQ+B1+fn5ISkrCx48f4eLiAgBITU1FoUKF4Onpyftsx44dsW7dOnz48AFdunRB9+7d4evrCxMTEyQkJAheL4yNjTFu3DhMnz6dO78BqLUR4u3bt9i8eTPCwsJw6dIlVKtWDR06dNC6r69du4a1a9di8+bNePr0KVfeqVMn5OTkYM+ePYJ2bdq0gampKXbs2MErL1asGDZv3oyGDRsK2h09ehRdu3ZFRkZGgXy5u7tj48aNqF27tqDN6dOn0aNHD9y/f59XLpfLkZGRAUdHR0E7sfu9rpQoUQLh4eGiY8ro6Gj07NkT6enpvPL4+HjUqFEDrVq1wtixY3n37blz5+LgwYM4d+4cKleuzNksXbpUbV0ePXqEBQsWiLbp/fv32LFjB9atW4eLFy+ibdu2CAsLExxHX7x4EePGjcOFCxcwcOBATJo0CUWLFlXrXy6Xw9zcHAMGDFB7/R8+fDj3d5EiRXDixAlUqFBB8LPXrl1D3bp1uXGhsq8ZM2bwrj/jxo3DmDFjePUsqK/8foR85PcDAG5ubqLjawUymQzJycnc/1evXkWjRo3w5s0bfP78GRMnTsSvv/7Kvd+9e3dYWlpi1apVot+ZlpaGa9eu4d27d/Dz81O5hqlD2+umLtdMxbiE9ZpuZ2eH7OxsfP78mRtPK/62tLTk2b58+ZK5fix+AKBfv35wdnbGlClTsHz5cowZMwa1atVCXFwc2rdvj7Vr16q0sXDhwggMDES/fv1QtWpVwX54//49LCwsIJfLBTUNRV8pEPvNK48LNJGdnQ0zMzON15n85zoAtGvXDkePHkWhQoVQsWJFAEBCQgI+ffqERo0a8T5brFgxprEwCyVLlsS2bdtE7x+nTp1C/fr1ERoaij59+vDe06TZKCOm37x+/RqbNm1CWFgYLl++DF9fX1y9epV738fHB5MmTUK3bt0E7Tdu3IiZM2dy+oUClmeW5s2b4/jx4wgICECfPn3QokUL0WdUCc1IIvp/FGtra5w+fVrrC9eaNWswcuRIbN26FS1btuS9t3//fnTp0gWLFi3CgAEDCly3Ll26YNu2bShTpgwnwt25cwd37tzBjz/+iO3bt6vYKItX6sj/EKqOxo0bIzk5mTfAAYCwsDDs378fxYoVw5QpU1CsWDHuvcGDB6NJkyZo166d1n604cuXL0hKSsLTp0/x5csX3nt169ZV+fyJEyfQrl07vHnzBj179kRYWBgAYOLEibh9+zZ2794t6KdBgwa4fPkycnNzub5PTEyEkZERypQpgzt37kAmk+HMmTO8C7WuIvXVq1fRuHFjFC5cGCkpKbhz5w48PDzwyy+/IDU1FeHh4YJ2Hh4e2LNnD3eDNiRiYp8CXUVgZb6msF0QWNpUkH4AtO8LFpGaxQYAHBwccOLECZQrV07Q7vr162jQoAGePXvGlbEIugURw1+9eoUJEyZg+/btyMzMBJDX7506dcKsWbN4E19A3kOGct9evXoVZcqUgampKe9zugizmpg7dy7c3NzQuXNnAHmCyq5du1CsWDEcOnTob/ldA/oZWGZnZ2PHjh1Yvnw5bt68icePH6sI6axieEEmB/TJxIkTkZGRwd1PFOT/XWlzLr1//x4//fQTdy9ds2YN6tSpw73foEED/PDDD6IT9/pC03VdH3z58gUHDx7E2rVrcfjwYXz8+PGr+tMFXcRmZbZs2YLWrVuriAsKCiqCFxRra2skJCRo1S5tf1/A/35jJ0+eRFhYGHbu3InSpUvjxo0bOHnyJGrVqqViM3v2bJ2Fd02ICeLakJOTAxMTE+5/hZjbsmVLjB07ljeumDdvnqCYC7AJ4iy+LCwskJiYKBqQ8fDhQ3h6euL9+/e8ciGRVZm3b98iJCSkwCJ6YGAgsrOzsW/fPsH3W7ZsCUtLS2zbtk3lvYiICPTr148nygF5gl5oaCjatm3LK9d2kjv/hEJ+Tp06hSlTpuDUqVN4/vy54LiMRRBnEY5btGgBFxcXrFy5UvDzAwcORGpqKg4dOsQrN5QvFj8F4fnz5zh79iyKFSsGf39/3nsHDx5E2bJlNZ4HZ8+eRZUqVbQKMlJG2+smyzWTFRYhk6V+rILply9f8OXLF278s3XrVpw7dw6enp746aefVMZBQN540cLCQqOfBw8ecH/Hx8dj9OjRGDNmDGrUqAEgL4hj4cKFmDdvnsq1Qlfc3d0RFxcHe3t7teeX2Lneu3dvrX1t2LBB74EhYhQqVAj37t1Te//w8PDAp0+fCuxLE1euXEFYWBhvkoIlOI71mUUul6N48eJwdHRUe03T53PfvxlJRP+PUrZsWWzatAl+fn5a23Tr1g2bN2/midu3b99GYmIiOnXqhC1btuhUBzGRGsi7CW3duhWJiYkAAE9PT3Tp0gWBgYE6+SgIy5cvx/Pnz7+aMNGiRQuEhoaiePHiaj934cIFBAUF4cGDB8j/c1UXXZ+bm4s3b97wBscpKSmwsLAQjcz57bffcPr0aaxbt44TgF6/fo1+/fqhdu3a6N+/P4KCgvD+/XtERUWJ1lmTMNG4cWNUrlwZ8+bN4w3azp07h6CgIKSkpAjarV27Frt378bGjRtVREExhg8fjtKlS6vMnC9btgxJSUn47bffVGwKIvZpKwKzUlCRWggxcUwBS5u+dj8YMlLZxMQEaWlpvAkzZdLT0+Hq6qqXQZiuYnh+iIgT89X1u76FWW3ESHd3d2zatAk1a9bEkSNH0KlTJ2zbtg3bt29HamoqoqOjtfKlb/QxsDxz5gzCwsKwY8cOlCtXDsePH4e5uTnvM9+KGM4qHItFr38r7dJ0HdPnJI4mX2I8ffpU9P6blpYGmUzGPexdvHgRmzdvRtmyZXUOUEhPT0dOTg4XhSeGLmKzMqziOwuaBHshWNulK7pEh+sivGtLfkFcE3FxcXj//j1vwgoADhw4gD59+uDFixe8cnt7e4SGhqJ169Yq38UqvuvqizWiXBvxE9AsOCsTFxeH7OxsXvAKS0S5MtnZ2YiKisLdu3cB5D3vBAQE6HS+a8OjR4+wYcMGrFu3DllZWVzkopiQZSjx+Ny5c6hfvz7atm2L0aNHo0yZMiAi3Lp1CwsXLkRERASOHz9eoN/J3+Hr74T1+myo6ybLNf2fzps3b7T+rNBKxmrVqmHq1Klo3rw5r/zQoUOYPHkyLl26pPF7Hz58iBIlSugUnf41+FpjRqFxmZubG9asWYOAgABBm8jISAwcOFBUd1CgrWajKyzBcazPLN/KWP1fg2Gyxkh8a7BscElEtG3bNmrTpg2VLVuWfHx8qE2bNrRt2zamOixbtkztZif/drTNq1exYkXq2LEj3bx5k169ekWZmZm8lyZmz54tupt2fkqUKCGYG+v69etUokQJIsrLVWtvb8+9N2fOHNq6dSv3f8eOHUkul1OJEiV4G+QoY2NjQ0lJSUTE74eUlBQqVKiQaP0qVapEVlZWVKhQIfLy8lLJeSzWJqF8/pcuXRLNX+/m5sbtch8dHU22trYUFRVFffv21ctGL9qgKWfxly9f6OnTp/TkyRPeLuAssGzsaEj0mb+ZBZb85gXly5cv9OTJE70cX33D8psnysv9l5qaSkREw4cP5/Lc3rlzR2Vjak2wnBNiNqwbav4TcguyHqt/IpquY/q8rrNcM4U2CFWmdu3aFB4eTkR5+VttbGyoRo0aVLRoUZo2bZpOvoTyqAvBuhcCq50uucoVWFtb6+zr9OnTWuX2zc+gQYO0yuMsxNWrVyk4OFhwE0lltMlTrg2xsbFqNyYVQt15kZ2dTbt376Z58+bR3Llzac+ePZSVlaX2+/bv308ODg4q+yo5ODiozbGri6/8uaXzv2bMmKH3+68YYv23d+9eKlq0qEo/2Nvbq82nbAi2bdtGP/zwA5mbm1Pbtm0pIiJC6xzZhmL37t2i/ae8seY/zZc6YmNjNW7WyGrDen3etGmTztdnlmsmyzWdiKh58+a8/Ve0gaV+LH6IiHx9fbkxbn5kMpnKOSf2EsLMzEx0405t9zrTtt+nTZsmeD3Ozs7Waiyii+6gT4TGZcHBwVS+fHnBZ7gnT55QhQoVKDg4WON362vfqPz71xDpvmcZ6zOLhH6RItH/Q9jZ2fFmrLKysvD582dYWFioRLLkX1r4T0dd1Pvf5UfbGX9LS0skJCSgdOnSTHXSJSLBysoKBw4cQP369XnlJ06cQKtWrfD27VskJyejUqVK3Kw6S3Spo6MjoqKi4Ofnx+uHI0eOoE+fPkhLSxOs39SpU9XOugrNnpqZmeH69esq/ZeUlARfX198+PBBxcbc3ByJiYlwdnZGcHAwPnz4gNWrVyMxMRH+/v4quRk1wRK1qM+cxV8DljaxRm/+3X3BmgZGHax9wYK+fbFGlJcoUQI7d+5EzZo14e3tjRkzZqBjx464c+cOqlatqlOkDss5oc/z6FvKLaju+Oor+t8QaU+U+Rq/D31f13XFx8cHiYmJotcJOzs7XLhwAd7e3li6dCm2bduGs2fPIjo6GgMHDtRp/CKWRz0nJwc//fQTJk+eDHd3dwwaNAi//vqrxlzH+TFkBLuuvp4+fYo7d+4AALy9vUUjmPVVv/zoEh1ekLQsms4nIR4/foycnBy4urrq5Esd79+/R2RkJJKSkkBE8PLyQkBAgFbpCrTha0SUs6Ku//QdUS4U9c5iI5fL4eLigq5du6qkC1BGKM+xvlHXpvz9V9DzSBdfnp6eaNq0KZMvluMEsP1+tbUxVEQ5YJhrekHsvpX6KaedTUlJwfjx49GrVy9eapYNGzZg9uzZgvm1K1euDF9fX4SGhnIpYj59+oR+/frh+vXrWqXg0LZdRkZGSE9PV7l3vnjxAo6OjhrPP0OuVNPEq1ev4O/vj4yMDHTr1o23+mTz5s0oVqwYLly4oHGVrz5+Uz169EBaWhqOHz8u+D595RXcEvpFyib/H0IobcU/DVYxvF27dnj+/Lnge1lZWZgzZw6OHj0qmHNcF1/q/OTH1dVVqwctf39/JCUlMYvousyTtWnTBn369MHChQu5zU5iY2MxevRoLt/axYsXueWqQF7OLsWGogcOHECnTp0QEBAANzc3lXx+Clq3bo3p06dz+e1lMhlSU1Mxbtw4/Pjjj6L1mzp1qtZtUVC6dGlERkZi6NChvPLDhw+L3gzt7OyQlpYGZ2dnREZGchs5EhFT/sxHjx6JTgyIoUt+PgUswhOrOMbSJhYbwHB9IWajzdI2deetECx9wSos6tsXy28eANq3b4+goCB4enrixYsXaNasGYC85fC6Xt9YzgkWGzEiIyNRvHhxpKamYtq0aaLLJHXJLfg1ji/LsdJ37nqWdul6zmpzHdPXdZ31mhkeHo7s7GzR93Nycrgctn/99ReX1qJMmTIqmxJqQmyzMhMTE+zatQuTJ08GANHcwJo4fPiw4AbgmviacTtv377F4MGDsXXrVu54GhkZoXPnzli+fDkKFy781esnli5FjPLly+O3337D/PnzdfZ19OhR5OTk6GRTokQJnf1oEgnNzc31tg+QkC9Ny+z16UsT6vrPwsJCr/shde/eXWeRVcjGxcUFMpkMmzdvFrWTyWQ6i+gs/aeuTYbsP336YjlOANvvV1ub1atXq50w0WVza7E9tBR867GY30r9lCe0p0+fjkWLFqFLly5cWevWrVG+fHmsWbNGUERftWoVWrVqhe+++47bGPfq1auQyWTYv3+/XutK+TYyVZCQkKBVKtWC9rkuY8aHDx8CgGjOczs7O8TExGDixInYunUrL01mUFAQZs6cqVWbtNVs1CG235sCmUwGBweHAvkoCIYM7vo3IIno/yHEdg7WB+rE7b9LpFZmyJAhou/169cPJ0+eRPfu3VG8ePECzfyp85Of69evi76nvHPzsGHDMGrUKGRkZKB8+fIqF3GxXeZZWL16NUaMGIHAwEB8/vwZAGBsbIyePXti8eLFAPIe6ENDQzkbFmFi4cKF6NChAxwdHfH+/XvUq1cPGRkZqFGjBm/zjPx4eHggNjYW9vb2vPLMzExUrlxZ8FwaOXIkhg4dimfPnqFhw4YA8gaiCxcuFJ1Y0qfYB+gu3n0tYVuf4pihRMxvQeT/GvnhWPrCkJMQ6nyxipGLFy+Gu7s7UlNTMW/ePG7Dt/T0dJ2unSznREEiqYUGll/jnPgax5flWK1atQqbNm0CABw5cgRHjhzB4cOHsX37dowZM0bn3PX6nkRkvY6xXNf1ec0UE7YVlCtXDqtWrUKLFi1w5MgR/PrrrwDyol/z3/MUsORRb9u2Lfbu3YsRI0ZoXXdlnj59CiLCxYsXdY70ZkFbwb5fv36Ij4/HgQMHeNF9wcHB+Omnn7B169avWk+ATVDTVXhXoEkQ13VDejFYRUJ9i6z6RpMvffUfa6SyvkTWrzUJwXKsWNpkyP5j8cXiB2Cb0NLWJigoSO372kwofk0OHz7M1H59CJlf00+dOnVU9sIR4vz581i1apVKeZUqVdCvXz9Bm2rVqiE5ORmbNm3C7du3AQCdO3dGUFCQ1qtdJk6cqFYwVmQskMlk8PLy4ukhubm5ePfuHQYOHKiVr4Kgacz45csXzJgxAwsXLsS7d+8A5EWKjxo1CpMmTVLJ+W5nZ4eVK1dixYoVWu0ZpSA1NRXOzs6QyWQ8zYaIkJaWJrrnTHh4ODp37qyyse+nT5+wdetW9OjRQ61fZQy56vvhw4dMzyD/WQybPUbiW0Eul9OTJ09Uyp8/f86UW1BdfvPAwEAqXrw4jR07lhYvXky//fYb7/V3U7hwYTpz5oxBfB0+fJhOnz7N/b9s2TKqWLEidenShZf3SpE7TZEbK/9L8Z42xyo1NVXn/Idv376lhIQESkhIoLdv36r97JAhQ8jV1ZUaN25M9vb23Oe3bNkimqdcwenTp2n58uU0d+5cOnLkiMZ6yWQywfM2IyODTExMRO1WrFhBJUuW5PrP3d2dNmzYIPr5T58+0YIFC2j48OF0+fJlrnzRokUUGhqqsZ7KaMoLZ8icxfrKCcyS604bm/9K/mZD5gr8Gr5Yf/OzZs2itWvXqpSvXbuW5syZI2jDck7o+zz6lvcM0HR8WY6VPnPXs6CpTazXMZbrOouv1NRUSktL4/6PiYmh4OBgWr16tdp2HT9+nGxtbUkul/Ny90+YMIHatWsnaMOSR/3XX38lW1tb+vHHH2nWrFkqOabFePPmDXXr1o2MjY25e6mxsTF17dpVq/1ZiHTPVf7kyRM6deoUnTp1SvDer4yFhQVvfKXg1KlTZGFhobXPgvDo0SNKSUnRyUab/PW5ubl0584dOn36NJ08eZL3EuL8+fPk7u4uOI7UdYzP0iYi7fPyF9QXS25pTb702X8s/fBPgPW80BVD9t/X8qXr71dbm3bt2mn9kvh28PLyojFjxqiUjxkzhry8vP6GGuWxfv16WrduHclkMlqyZAmtX7+ee23evJnOnTun1few6A66MH78eHJwcKAVK1ZwWsXy5cvJwcGBJk6cqDc/rFqZPjW27t27U/369b+6jYTuSDnR/6OI7Xb/+PFjlCpVCu/fv9ebL1tbWxw8eNAgu52zRL27u7vj0KFD8PHx+ap+gLylu3PnzkXz5s1x7do1VK1aFSNHjsTx48dRpkwZrFu3DgDw4MEDreuiz9yWymi7e3pOTg6WLFmCtLQ09OrVC35+fgDyok6tra1FZ9V1Yd++fQDyIug2bNjAi6LIzc3F0aNHceTIES4PqhjPnj2Dubk5FwErxuzZs+Hk5IQ+ffrwysPCwvDs2TOMGzdO0I4latGQOYtZcgKztIk1evPvzN+s70hlBfqKZNWmfobylZOTg6VLlyI1NVXlN29jY4O+ffsK2rm5uWHz5s2oWbMmrzwmJgaBgYGCOW1Zzgl9nUeG5GsdX5Zjpc/c9ZraxdIm1tzmLNd1Fl916tTBgAED0L17d2RkZMDb2xvlypXD3bt3MWzYMISEhIj2R25uLt68eQM7OzuuLCUlBRYWFoIR3yx51N3d3UX9y2Qy0fFL586dER8fj99//10l0rtSpUoaI711yVXOkprFxcUFBw8eRPny5XnlV69eRfPmzbll30LoK+qYBU15yi9cuICgoCA8ePBAZZm8TCYTjASuVKkSvLy8MG3aNMEVloaIRP0a+deFYMktrQl99p82/cBy/v3dkfKa0Ff9vlb/sfhi8cPy+9XWpnfv3lq3TfF8mZ/79+/j8+fP8PT05JXfvXsXJiYmcHNzE7TLzc3Fnj17cOvWLQB5v8O2bduK7g3z4sULhISE4Pjx44L9p2kvtkuXLnG+ypYti8qVK6v9PJB3zxHyJbaC+9WrV1i7di2vTX369NEq3cfNmzeRmpqKT58+8coVadmUOXToEH788UeULl2aS6t38eJF3L17F7t27ULz5s3V+tKUc3zkyJEa66tg0aJFKmUnT55EzZo1dYrGj42NxZcvX1TSBMbExMDIyAhVqlRRa68pLYsyJUqUwKpVq1T6NiIiAoMHD8ajR4+0rre65ze5XI4nT56opFh58OABypYti6ysLMHvFLNLSEhAgwYN/vZ9B/UZKf+f5m+V8CUMjiLSSC6Xq+x2v2jRImrbti1VqlRJrz7d3NwEd5RWx7t37+iXX36hGjVqUKlSpcjd3Z33EoMl6n3jxo3UoUMHwZ2o9emHiMjS0pLu379PRERTpkyhH3/8kYiILl26RE5OTlr7F8LW1pbs7Oy0emkD6+7p2nLx4kWaO3cujRo1ikaMGMF75Sd/BL7yy9TUlLy8vGj//v0afWq7Y7irqysXfajMhQsXyM3NTdSOJWqRJeqTNdK2ePHiXP28vLxo+/btRER0+/Ztsra21lubWCNFDdUXhoxUZukL1voZyhdLRDkRUaFChSg5OVml/N69e1SoUCFBG5ZzQp+R1KyR/BMmTOBFEytjyOPLcqxYVxqwtIulTSzXMSK26zqLL1tbW7p9+zYR5Y25atasSUREUVFRascv2dnZvHFISkoKLV68mCIjI0VtlMcUrVq14o7pgwcPyMzMTNSOBdZIb5YI9k6dOpGnpydFRkbS69ev6fXr1xQZGUne3t7UuXNnQZvVq1dT48aNKT09nStLT0+ngIAAWrVqlWj9WKOOWaJLWahYsSJ17NiRbt68Sa9evaLMzEzeSwgLCwu6e/euzr4M1SZ9+tImIlpXX6z9xwLL+WfoSPm/cyWEJgzli9UPy++XxYaVunXr0vr161XKN27cSPXq1RO0uX79Onl4eJCFhQX5+fmRn58fWVpakpubG127dk3QplmzZuTp6Ulz5syhdevW8aKchfwrePLkCTVo0IBkMhn3DCuTyahhw4b09OlTQZu4uDgqV64c71hpWsF98uRJKly4MDk7O3PR+y4uLmRjY6P2mnTv3j2qUKGCyjOqXC5Xe16kpaXRxIkTOV8TJ07kxq2asLKyUvt8Xr9+fd7LxsZG5VjZ2NioXWH5+fNn2rFjB02fPp2mT59OO3fupJycHNHPV61alXbs2KFSvmvXLqpWrZqgTW5uLk2bNo1sbGy4/ipcuDBNnz6dcnNzRX0VKlSI7ty5o1J++/Ztncc9Qs9vCi1CLpfTTz/9xNMnhg8fTv7+/ty4TplKlSqRn58fyeVyKl++PNfffn5+VKFCBbK2tqaOHTsK1mPDhg2Cq/Q+fvwounKexYZI/9ko/qtIIvp/DDc3N3JzcyOZTEbOzs7c/25ubuTl5UUBAQF04cIFUXsWcduQIrW2qVkUFzrFy9ramqysrMjX15dXLiYYsKaAsbOzoxs3bhARUa1atbjl3ffv3ydzc3ON9uqE7fwDEnUvbdB0k9bE48eP6cGDB4LvzZw5k2QyGZUpU4bq1avHu9mru6m7ubnRs2fPmOuk7cQAi9hHxCbeGUrYJjJcagdWEfNbF/lZYOkLQ05CsPhinWQqXbo0bdy4UaU8PDxc9P7Bck6wiqz6nFzR98QKEdvxZTlWrOmsDDWJyCrys1zXWXyxCttNmjShlStXElHe5I2TkxN99913ZGZmRitWrBC0qVatGo0bN45OnTpFZmZm3Hl6/vx5KlmypKBN/klrxWvkyJE0ceJECgsLoxcvXqjYOTs709WrV1XKExISRH0RsQniLIJ9pUqVyMrKikxMTKhUqVJUqlQpMjExISsrK7XjOhbBypDCO4ug26BBAzp8+LBONgURI/9tIitL/xGxHd+/W2TVNAnB0n+s9TNU/7H4YvXD8vtlsUlOTqbExESV8sTERO5+JIS1tbWgr7t371LhwoUFbapXr06tWrXipSF9+fIltW7dmmrUqCFoY2VlxRSk0qlTJ6pSpQovGO/GjRtUpUoVCgwMFLSpUKECtWvXji5cuED379+nlJQU3ksIX19f6t+/Py8NyefPn2nAgAHk6+srWr+WLVtSmzZt6NmzZ2RlZUU3b96k06dPU7Vq1ejUqVM6t1cbdHk+X7hwoeCxatOmDS1YsEDQhmWSxNLSUrBOycnJZGVlJWjDmpalWrVqNGzYMJXyoUOHkr+/v6idtij0CJlMRjVr1uRpFAEBATRgwADB39rUqVNp6tSpJJPJaPTo0dz/U6dOpVmzZtHmzZvp48ePgj5ZhG1WMVwmkwlOQF25ckXrQEsJImlj0f8YiuXyDRo0wO7du/H582fIZDIULVpUK3ttN+H08/PjvZeUlAQnJye4ubmpLA+6fPmyiv3hw4eZUsDY2dlpteyqbdu2On0vq5/81K5dGyNHjkStWrVw8eJFbNu2DQCQmJio1RImUpN9SbFx7OfPn7F582Y0bdpU7e7sX5uGDRuKLrFdsmQJwsLC0KtXL52+Uyjdgy5pONT1nzLOzs44e/asyrL3s2fPqt0Mh2UTP5bN7jIyMuDs7AwAOHDgADp16oSAgAC4ubmpLKVThmVjR5Y2sW48aai+YO0/ITSdfyx9wVo/Q/nKyMhA8eLFVcodHByQnp4uWr/+/fvj559/Rk5ODm+T37Fjx2LUqFGCNiznBOvGwPrcUFPdxpiGPr66HqsFCxbAyclJ5ZgULlyY25RJX+1iaRPrBrUs13UWXywbhAJ5YyHFBt47d+6Ek5MT4uPjsWvXLoSEhGDQoEEqNnPnzkW7du0wf/589OzZk0t/s2/fPlSrVk3QT3x8PC5fvozc3Fx4e3sDyBuDGBkZoUyZMlixYgVGjRqFM2fOoGzZspzdL7/8gpEjR2Ljxo0oVqwYgLxjPmbMGEyePFm0XQcOHEBUVBRq167NlTVt2hR//PEHfvjhB0Ebe3t7wZQZhQsX5qW6UYZ1XHf37l3s3LlTp03DBw4ciCpVquDgwYNab0jPktYBAPz9/ZGUlKSxfgXdkJ6lTaztYvXFkk5DW18F7T/W48ty/rHYiKFpg0eWY8VSP0P2H4sv1j7X9vdbUJtevXqhT58+KmlZYmJiEBoaihMnTgjayWQyvH37VqX89evXon1+5coVxMXF8a7FdnZ2mDlzpugG2mXKlGFKFRsZGYm//vqLl3K1bNmyWL58OQICAgRtkpOTsWvXLp36LykpCTt37oSRkRFXZmRkhJEjRyI8PFzU7vz58zh27BiKFi0KuVwOuVyO2rVrY/bs2Rg+fDji4+PV+i1fvjwOHTrEjZ20oVu3brCxsdHqswsXLkR0dLTKsZoxYwYCAgIEx979+vVDuXLleMf41atX6NWrFwYMGIBz586p2BQqVAhPnjxRSTGTnp4umuJnw4YNCA0N5aVlqVChAkqWLInBgwdj5syZgnbz5s1DixYt8Ndff/FSy6WlpeHQoUMaekRz6pjjx48DyEuXtGTJEq37esqUKQDApSg0MzPTyg7IG/MKXVsfPnwomj5MVxuFNieTydCoUSPeccnNzcX9+/dFx2QSqkgi+n+QzMxM+Pj4wNPTk8vnaWdnh8DAQMyYMUOtIKStuP13idS//vorQkJCsGHDBlhYWIh+TnGhY0VbP/lZtmwZBg8ejJ07d2LlypUoWbIkgLx+1deFy9jYGAMHDuRyurFy+PBhrn4shIeHIzs7W/A9uVzOlCM/f/7cjh07YteuXShevLhg/lz6/x20HR0ddbqZsYh9AJt4ZyhhG2ATxwwpYn7rIj9L/maWvjDkJASLL9ZJpjFjxuDFixcYPHgwlzfSzMwM48aNw4QJEwRtWM4JVpFVX5MrX2NiBWA7vizHavXq1di8ebNKebly5RAYGCi6J4ShJhFZRX6W6zqLLxZhGwCys7NhbW0NAIiOjkb79u0hl8tRvXp10X1S6tevj+fPn6vkUR8wYIDo2KRNmzYoUqQI1q1bxz0cvn79Gv369UPt2rXRv39/BAUFYcSIEYiKiuLsVq5ciaSkJLi4uMDFxQUAkJqaikKFCuHZs2dYvXo191nl4AgWQZxFsGcd17EIVl9beGcRdCtVqgSZTMYTBZXz/yve07dI+G8RWQvaf6wTA4YSWQG2SQiWY8VSP0P2H4svXfyw/H4LOokTHx8v+FxVvXp1DB06VLSudevWxezZs7FlyxZOQM7NzcXs2bN5E5/KeHl54cmTJyhXrhyv/OnTp6L9s2LFCowfPx4hISHw9fVVaZOYUPnlyxfB3NwmJiYq57CCRo0aISEhQadzonLlyrh16xY3sazg1q1bavcTys3N5e7bRYsWxePHj+Ht7Q1XV1eN+3QBeXue5OTkaF1PIO9eDGgXRPbmzRvBscqzZ88EJ08AtkmSgIAATJgwAREREdz9PjMzExMnTkSTJk0EbV6+fIkyZcqolJcpU0Zt3vB69eohMTERy5cvx+3btwHkjSUHDx4sOq798uULZsyYgYULF+Ldu3cAAGtra4waNQqTJk2CXC5XsRHbR0ATiqBGbWARtlnFcIU2d+XKFTRt2pS3P5ypqSnc3Nzw448/al33/zqSiP4f4+XLl6hRowYePXqErl27cjO7N2/exPr163H06FGcO3dO9MFGW3HbkCJ1QaPeFcTFxfE2Lfn+++/17sfFxQUHDhxQKVdEn2lC29nnatWqIT4+XucNnRo2bIjdu3fD1taWN3h68+YN2rZti2PHjmn9XWI3WgAYMWIEli9fjt9++02n+uWPFP3rr78QGRkpGilKRChdujRu3LgBT09P3Lx5U2PUDcAm9gFs4p2hhG2ATRwzpIj5rYv8LJHKLH1hyEkIFl+sk0wymQxz587F5MmTcevWLZibm8PT01NlcxtlWM4JVpGVRQQ21MQKwHZ8WY4V60oDQ00isor8LNd1Fl8swjYAlC5dGnv37kW7du0QFRWFESNGAMgTJsTu++/fvwcRcX4ePHiAPXv2wMfHB02bNhW0mT9/Po4cOcL7zsKFC2Pq1KkICAhAcHAwQkJCVKL8WIMjWARxVsE+MzMTO3fuxL179zBmzBgUKVIEly9fhpOTEy8ooKCC1dcW3lkEXaGVerrAKsz+W0TWgvafLv3wd4is3/pKiK/dfyy+WP2w/H4LOonDElEO5I1h6tatC29vb9SpUwcAcPr0abx580b0mU8RZT116lRUr14dQN75NX36dMydO5e3+bjiPmNra4s3b95w4xAF6toE5D2XBgcHY8uWLdzz26NHjzBixAg0atRI0CY0NBQ9e/bE9evXBQV7oc0+hw8fjuDgYCQlJfHatHz5csyZM4d3Ligfa19fXyQkJMDd3R3+/v6YN28eTE1NsWbNGtGNP1lgGWsCQLt27dC7d28sXLiQm8SPiYnBmDFj0L59e0EblkmSBQsWoG7dunB1deU2sL9y5QqcnJywceNGQZuKFSti2bJlWLp0Ka982bJlaicugLwVNGKR6kJMmjQJa9euxZw5c7jJpjNnzmDq1Kn48OGD4HdlZWVhzpw5OHr0qODEo9gm7Lm5uVi8eDG2b98uuNms8gQBi7DNKoYXJFJeQhVJRP+PMX36dJiamuLevXsqqT6mT5+OgIAATJ8+XVTUZY3ABr6eSF3QqPeHDx+iS5cuOHv2LDejm5mZiZo1a2Lr1q3cch9WP2/evOEGEcoDCyE0CeTazj4PHjwYo0aNwsOHD/H999/D0tKS977YzuQnTpxQudgDwIcPH3D69GlBGw8PD8TGxqosU8/MzETlypUFbzKjR49GixYtUKpUKZQtW1bl+O7evVvQl66RonK5nBN0PD09tV4uxyL2AWzinaGEbcBwqR1YRcxvXeRniVRm6QtDTkKw+GKdZFJgZWWldpJNGZZzglVkZRGBDTWxArAdX5ZjxbrSwFCTiKwiP8t1ncUXi7ANACEhIVwEeMOGDbllytHR0dxDaX7atGmD9u3bY+DAgcjMzIS/vz9MTEzw/PlzLFq0SDAFzOvXr/H06VNeqhYgLzJNMUaxtbVVGQuwBkewCOIs462rV6+icePGKFy4MFJSUtC/f38UKVIEu3fvRmpqKm9JPotgZUjhnUXQVQ6aOHXqFGrWrKmyjP7z5884d+4c99mCtgn494isLP2njC7H9+8QWb/1lRBfu/9YfLH6Yfn9FnQShyWiHMh7Hr969SqWLVuGhIQEmJubo0ePHhg6dKho0FzLli0B5Am5ivNI0UetWrXi/lful65du8LExASbN2+Gk5OT1pNgy5YtQ+vWreHm5saNv9PS0uDr64s///xT0Ob8+fM4e/YsDh8+rPKe2DnRpUsXAMDYsWMF3xM71r/88guysrIA5OkoLVu2RJ06dWBvb4+tW7dqbF+dOnVgbm6u8XOs6QZXrVqF0aNHIygoiIt4NzY2Rt++fTF//nxBG5ZJkpIlS+Lq1avYtGkTdx717t0bXbp0EVxJAOiWluXq1avw9fWFXC7nXZ+EELp/sKSO0TaFcX6mTZuG0NBQjBo1Cr/88gsmTZqElJQU7N27FyEhIbzPsgjbBRXDdYmUlxBHRtomCZb4V+Dm5obVq1eLPshFRkZi4MCBSElJ4cqExG0i0joCW1uRetq0aVq3o6CR7sr88MMPyMzMxIYNG7hlXHfu3EHv3r1hY2ODyMjIAn2/kZER0tPT4ejoCLlcLngRVjfYY5l9FlqWpG5QqbghVapUCceOHeMNnHJzcxEZGYnVq1fzzgtlXxkZGXB0dOSVP3nyBC4uLvj48aOKzdChQxEaGooGDRoIDqbEllCVKFECO3fuRM2aNeHt7Y0ZM2agY8eOuHPnDqpWrSo4SbF//37MmzcPK1euhK+vr+D36gs3Nzds3rwZNWvW5JXHxMQgMDBQcJBsZmaGW7duqQhWycnJKFu2LD58+KBiM3v2bDg5OfEG8wAQFhaGZ8+eiYqEnp6emDJlCrp168Yr37hxI6ZMmSI44cHSJhYbwHB9wdp/LOcfS1+w1s+QvgDg3bt3Ok0yscByTrDYAEBOTg6WLl2K1NRU9OrVixMuFy9eDBsbG/Tt21fFxtzcHImJiXB2dkZwcDA+fPiA1atXIzExEf7+/lzKNGUMeXwV6HKs5s2bh3nz5mH+/PmC0eti4jtLu1jaxHIdY4XFV0BAAE/YLlOmjEZhW0FGRgbS09NRsWJF7j5+8eJF2NjYCC57Llq0KE6ePIly5cohNDQUv//+Oy+PulBat65du+L8+fNYuHAhN5kVGxuL0aNHo2bNmti4cSO2bt2KBQsWIC4ujmerbaS3MoYa2zVu3BiVK1fGvHnzYG1tjYSEBHh4eODcuXMICgrijV/E0uMIoRBMFeM3sccmTcL7vXv38Msvv2DMmDE6idSaBF2hNBzK405lXrx4AUdHR65+LG1ibRerLwUNGzbE2LFjtUp9WFBf2vYf6/FlOf9YbJSxtLTUOsUFS/+x1M+Q/cfiq6B9DrD9fllsbt68ibp168LW1lYwolyfzz8nT57U+rP16tUDAFhYWCA+Pl4lXYo2EBH++usvLnWHj48PGjduLPp5Nzc3tGzZEpMnT9Z6bzB9HGsFL1++hJ2dndaiqzawjDWVycrKwr179wAApUqVUgmuU0ZZQ8g/SaL8v7oVBNry+PFjXloWHx8fwbQsylqDuuuTWJ3MzMxw9epVeHl58crv3LmDSpUqCebrt7W1Zdqfr1SpUli6dClatGgBa2trXLlyhSu7cOGCYJCPIdElUl5CHCkS/T9Genq6yvIcZXx9fZGRkcErK2ikd79+/ZCTk8PLNaYQqfv168eJ1PoUxjVFvStz8uRJnDt3jndj9/b2xu+//84NRAriR1mUVmxWoQsss8+6RjQooi1kMpnKUjsg7+b9+++/88r27dvH/R0VFcXLeZqbm4ujR4/Czc1N0N+GDRuwa9cutGjRQqd6skSK9ujRA9nZ2ahYsSJMTU1VZvz1ebNgiVo0ZM5iQ6V2YI0UNVRfGDJSmaUvWOtnSF+AbhHlrLCcE6yR1CxR0SwpYAx5fBXocqxYVxqwtIulTazphFhg8cWyQaiCYsWK4d27dzhy5Ajq1q0Lc3NzVK1aVfRhnCWP+urVqzFixAgEBgbi8+fPAPIi03r27MnVu0yZMggNDeXZ6RLprQzr2E5XwT42NpYX1a6gZMmSKuNalqhjlkjRgkbMAkCDBg0EBd3Xr1+jQYMGgnZiG469ePGCJ56wRr8aKt0Ma/R6QaN6te0/1uPLcv4ZMlLeUCshDNl/LL4K2ucA2++XxYYlolzRLnUICfYKYVwXqlSpgrS0NCYRXSaToUmTJqK5tfPz4sULjBgxQmsBHdAsjIvRp08fLFmyhLsPA0CRIkWQlZWFYcOGISwsTMVG3UalQN5za35Y99JRkJ6ejvT0dG5cIXaNA9i0CiBvcuq3337j6SLBwcEoVaqUqI22aVnu378PBwcH7m9dYUkdw7o/n+IeBeSNvV+/fg0A3MSOECzCNqsYrkukvIQ4koj+H6No0aJISUkR3ZH4/v37KheMgorbX1ukVkbbqHdlnJ2dBTf1yM3NFRVcdPGjPNhgGXiwpJB48OCBToO9+/fvg4jg4eGBixcvcjcqIC+/lqOjI2/HcuB/kysymUxlaZCJiQnc3NywcOFCwfoVKVJE7U1VjMWLF8PNzQ1paWkq6QIGDx4saKNr3vWCwCLeGTJnsaFSO7CKmN+6yM+SroKlLww5CVEQYdYQsJwTrCIriwhsqIkVgP13pSus6awMNYlY0HRCusDii0XYBvIe/Dt16oTjx49DJpPh7t278PDwQN++fWFnZyd4P2XJo25lZYU//vgDixcv5iLpPTw8eHk1K1WqpGI3cuRI9OrVi4v0VtC8eXMEBQWJtgvQXRBnEewLFSokuBooMTGRN6bJj7aClaGE9/xoK+gC4HLcymQy9OrVi/ebzc3NxdWrV3mrPlhFwn+jyAro3n/6OL5fU2RlnYQoqHisbf0M2X8F9cVynADdfr8FsQHyBMlZs2apa4YK9evXVylT9i3WrlevXmHt2rW8Z/TevXuLio7Dhg1DcHCwVisNli5digEDBsDMzExF9MzP8OHDVcrat2+P48eP6/yc+fjxY5w5c0Yw/7WQHyAvKGzOnDm8eyKQl9YtPDxcUEQPDg7m/Z+Tk4Ps7GyYmprCwsJCUERn3UuHZVzBolVERUWhdevWqFSpEhe5ffbsWZQrVw779+/nJkBY07IoX2dYJjx0SR2jgDWF8XfffYf09HS4uLigVKlSiI6ORuXKlREbGys6jmYRtlnF8E2bNuGPP/5AixYtMHXqVHTp0gWlSpVChQoVcOHCBdFzXSIfJPGfonfv3lS3bl36+PGjynsfPnygevXqUe/evTV+T2xsLIWHh1N4eDjFxcWp/aynpyfFxMSolMfExFCpUqUEbdLS0qh27dokk8nIzs6O7OzsSCaTUa1atSgtLU3UV9OmTcnf359u377Nld2+fZtq1KhBTZs2FbTZu3cvVatWjWJjY3ntq169Ou3Zs6fAfhISErR+CVG8eHE6e/YsERF5eXnR9u3bOX/W1taCNnK5nJ48eaJS/vz5c5LL5YI2rLi5udGzZ890sgkLC6NOnTpRVlaWXuvydzN37lyyt7ensLAwSklJoZSUFFq7di3Z29vTrFmzBG2+fPlCY8eOJTMzM5LL5SSXy8nCwoKmTZsm6qd06dK0ceNGlfLw8HByd3fXWM+3b9/SxYsX6dq1a/Thwwe9t4nFhshwfcHaf7NmzaK1a9eqlK9du5bmzJkjaMPSF6z1M6QvQ8FyTrDYEBEVKlSIkpOTVcrv3btHhQoVErT59OkTLViwgIYPH06XL1/myhctWkShoaGCNoY8voaEpV0FaZMu17GCoouv8uXL05IlSyg1NZVsbGzo3LlzREQUFxdHTk5Oonbdu3enpk2bUlpaGllZWdG9e/eIiCgyMpLKli0raLNjxw4yMTEhuVxOjRs35spnzZpFP/zwg67NVIuNjQ0lJSUREfHql5KSIvr7IMobAzk4OFDp0qXJ2NiYs5s0aRJ1795d0KZRo0Y0ZswYFV9nz54lV1dXQZu+fftS27Zt6dOnT2RlZUXJycn04MED8vPzo+DgYNH6yWQyevr0qUr5nTt39DrGOnnyJOXk5KiU5+Tk0MmTJ1XK27VrR+3atSO5XE7Nmzfn/m/Xrh21bt2a3NzcVMabvXr1ol69epFMJqPOnTtz//fq1YsGDBhAs2bNEh2vsY4bdW2XLr4U1wRtXmLo0q6C9B9LPxCxnX/a2shkMpLL5SSTyQRfivfUHV+W84KlTYbsPxZfuvph+f2y2Ci3Sd1LjMzMTN7r2bNnFB0dTf7+/vTXX3+J+rKxsSFnZ2eufi4uLmRjY6O2/7Q9/9zc3Oj58+fc32IvsXHFjBkzqGjRotSzZ09asGABLVmyhPcSYt26dWRqakpWVlbk6uqq0c/r168pMzOTZDIZJSUl0evXr7nXy5cvacOGDVS8eHHRfs9PYmIiNWrUiCIjIwXf//TpE82fP19wrPnHH3+Ifi/LuIKI6NWrV7RgwQLq27cv9e3blxYtWkSZmZmin69UqRKNGzdOpXzcuHHk5+fH/S+Tybjribrrkyat4vbt2zRkyBBq2LAhNWzYkIYMGcLTZIR49OgRTZw4kdq3b0/t27enSZMm0aNHj9S2ydramqysrMjX15f8/Px4LzHGjRtHM2fOJCKirVu3krGxMZUuXZpMTU0F+4iIyMPDgw4cOEBEeWMexVhryZIl1KVLF73ZEBFZWFjQgwcPiIioWLFidOnSJSLKe9axsbERtZPgI4no/zHS0tLIycmJXFxcaO7cuRQREUF79+6l2bNnk7OzMzk6OlJqaqpae13F7a8tUitjZmbGu7koiIuLI3Nzc0EbW1tbMjU1JblcTqampry/FW1UvFj85B8oqHsJMWTIEHJ1daXGjRuTvb09vX37loiItmzZInoRZxlUKkhMTKTVq1fTr7/+StOmTeO99AXrjUmMx48fczcEIT5//kw7duyg6dOn0/Tp02nnzp2CA+iCwireEX19YZsVQ4qYCr5Vkd/V1ZWb0FLmwoUL5ObmJmjD0heGnIT41oVZBSyCqa42LCKwoSZWiAr+u/raGGoS8VuHVdh2cnKiK1euEBFfOL537x5ZWlqK2qWnp9Ply5cpNzeXK4uJiaFbt24VtCk8HBwcuHGPcv2io6Ppu+++E7VjEcRZBPvMzExq3Lgx2drakpGRETk7O5OJiQnVqVOH3r17p/L5gghWhhDeCyLoTp06VbDN6mAdN/4bRVaW/tO1HwwhsupjEkKX/ivIb8oQ/cfii9UPy++3IL95MSFS3fOlOk6cOEGVK1cWfM/X15f69+9Pnz9/5so+f/5MAwYMIF9fX0Eb1vOPBRbh/bvvvqMZM2bw7qPq0PRMb2RkRDNmzNCp3rGxseTt7a2TjSZYxhWxsbFUpEgRKlmyJHeuf/fdd2Rvb88JrvkpVKgQJSYmqpTfuXOHd89OSUmhL1++cH+znBM7d+4kY2Njql69Oo0YMYJGjBhBNWrUIGNjY9q5c6d2HaMFU6dOVfvSlvPnz9PChQtp3759op9hEbZZxXAvLy+6cOECERHVqlWLZs+eTUR5gr+Dg4PW7fqvI6Vz+Y/x3Xff4fz58xg8eDAmTJjA2yiiSZMmWLZsGZc6RAht85sr06tXL2RnZ8Pf359bDvj582cYGxujT58+vKWZivxNrClgWFKzsKT70MWP8hLC+Ph4jB49GmPGjOEtJ1q4cCHmzZsn6EuXFCa6LkXNzx9//IFBgwahaNGiKFasGG9Jn0wmE10elJWVhZMnTwrm5BJaFlTQPPv5adiwIRITEwWXHd64cQOtW7dGRkYGdz7NnTsXDg4O2L9/v14322FNgwAYJmcxCyxtKkg/AF+/L1j7jyVdBUtfsNbPkL4MDUv+dV1tWNLAsKSAMeTxNSQs7frW28RChw4dULt2bW6DUAWNGjVCu3btRO2ysrIElwy/fPlSbX/omkedldatW2P69OnYvn07gLxjl5qainHjxuHHH38UtdMlV7kCltQshQsXxpEjR3D27FkkJCTg3bt3qFy5sugGdIp9XIgI1tbWvP1STE1NUb16dfTv359nU5AxFumYokGxwbqbmxtGjx6tNo1DfnRJw1jQcaMu7SqIL13TaRTEF0saS12PL8v5p6tNQdKysPQfS5sUGKL/WHyx+mH5/RbkN59/Y8mcnBzEx8dj8uTJWuWczo+TkxPu3Lkj+F5SUhJ27tzJS/NpZGSEkSNHiub7Zs05royyZqEOltQ92dnZCAwM5G2qqY7jx4+DiNCwYUPs2rWLl8bG1NQUrq6uOqfZMzY2xuPHj0Xfv3v3Lo4fPy6Ybkbd87mu44oRI0agdevW+OOPP3i6Tb9+/fDzzz8L5tF3cHDAlStX4OnpySu/cuUK75pd0LQsADB27FhMmDAB06dP55VPmTIFY8eO5cYjrKljlL+PhfzX2urVq6N69er4/PkzTp06JbjPAEsKGBYbAGjXrh2OHj0Kf39/DBs2DN26dcPatWuRmprKpQSU0IyMSCnRnMR/ilevXuHu3bsA8vJqarN5grm5Oc6dOwc/Pz9e+aVLl1CnTh1kZ2er2GzYsEHrOilya3t5eeHPP/9EtWrVeO9fvHgRQUFBSEpKErSPiIjArFmzsHz5clSpUgVAXl71YcOGYdy4cXoTb1n9VKtWDVOnTkXz5s155YcOHcLkyZNx6dKlAtWrd+/eAPL6vFOnTiqDPTc3N/Tv3x9FixYVtHd1dcXgwYPVbiaYn/j4eDRv3hzZ2dnIyspCkSJF8Pz5c1hYWMDR0ZHLufo1iY2NRXZ2tmAetxo1asDBwQEbNmyAnZ0dgLxzv1evXnj27BnOnTv31ev3tXj37t2/RngqKCx9oauNp6cnpkyZgm7duvHKN27ciClTpuj9XDfk8ZXOpbwHtPHjx2Pp0qUqIrDYA4qZmRlu3bqlktM7OTkZZcuWxYcPH0T9/Vv7/N/aLl1JSkrCvXv3tNrIC8jLLf7999/j119/hbW1Na5evQpXV1cEBgbiy5cv2Llzp4qNWL7TPn36iOY7ZeX169fo0KED4uLi8PbtW5QoUQIZGRmoXr06Dh8+LCr4ODo6IioqCn5+frC2tkZCQgI8PDxw5MgR9OnTB2lpaSo2/fr1w4sXL7B9+3YUKVIEV69ehZGREdq2bYu6deuKBj8cPXoUR48eFRQZhHLTAnl5RbUVrFjGWAoxMiIiAj/88IOgGOnt7S0YhFIQdu7cKbrh2OXLlwvUJtZ2FWSMKpfL8eTJE5VJlMTERFSpUkVl0qWg42Ft+6+gx1eX868gNkZGRoKTEC9evICjo6PKJERB+k+X+hmy/wrii6XPvwVOnjyJkSNHij5f5hcXiQjp6emYM2cOPn/+jDNnzqjY1KpVC2PGjFF51t27dy/mzJmDCxcuCPpi2XgSANauXYvFixdzmoWnpyd+/vln9OvXT63dp0+fcP/+fZQqVUpl8ig/Y8eORZEiRTB+/Hi1n8vPgwcP4OzsrLX4DgD79u3j/a/oc0Ug4+HDh1VsNAW5KV+TlGEZV5ibmyM+Ph5lypThld+8eRNVqlQR1HqmT5+OxYsXY/z48dzk2tmzZzF37lyMHDlSdEPNO3fu4Pfff+fOCR8fHwwbNkztBrQWFha4evWqSi74u3fvomLFilz95HI5MjIy4OjoCLlcrrK/hgJ1G3uzoOu1FgDGjx8PGxsbTJw4Edu2bUO3bt3g5ubGCdtz5szRi40QFy5cwLlz5+Dp6YlWrVqxNfq/iEHj3iX+8bDkN2eBJQUMEVtqFmWaN29Ojx8/1lg/Vj9mZmZ08+ZNle+7efMmmZmZifoLDw+nWrVqUfHixbklTosXL6a9e/cKfp5lKSoRkbW1NbfUS1vq1atH/fv3p9zcXG6pWGpqKtWtW5d27dql0X7QoEE651TXBTMzM7p+/bpK+bVr19T2uYREfv4pqU8kCoYuaWC+9ZzyEobn+fPn1LBhQ265t+Ke2rt3bxo5cqSo3bVr18jR0ZF++OEHMjU1pQ4dOpCPjw85OjpyqU3yw5rvtCCcOXOGli9fTnPnzqUjR45o/DxLrnJdU7MQ5Y175HI5VatWjdq0aUNt27blvfSJLmOsgqRoULBjxw7q2LEj+fv7a5X+bsmSJWRlZUVDhw4lU1NT+umnn6hx48ZUuHBhmjhxYoHbVNB26eKrIGk7WNpFpFv/6eP4GgLWdD2szxPaYsj++7uOla6/X1YbIW7duqU2HZhYXuoaNWqIpgTbunUrubi40Pz58+n06dN0+vRpmj9/Prm5udHWrVsF9/qKjIwkU1NTqlatGpeCo1q1alSoUCGKjo4Wrd/kyZPJ0tKSxo8fTxERERQREUHjx48nKysrmjx5sqBNVlYW9enTh4yMjMjIyIi7Lw4dOpRLXZGfz58/0w8//ED16tWjoUOHcnVUvDSRlZVFt27d0mqvM6G0O05OTtSlSxdRDcLFxUU0RaA6xMYVTk5OouMKR0dHioqKUimPjIwkR0dHQZsvX77QokWLqGTJkly7SpYsSb/99huXviU/rGlZmjVrRmFhYSrlYWFhFBAQwP1f0NQxnz9/pvnz51PVqlXJyclJKx2JqGApdRVokwKG1YY1NZoEHykSXUInChrp3aJFC4SGhgqmRFDGzs4O2dnZXNoX4H8pYPJHAShSwABsUe/KKEdJqYPVT+XKleHr64vQ0FCYmpoCyJsp79evH65fvy44k7xy5UqEhITg559/xsyZM3H9+nV4eHhg/fr12LBhA44fP651XTTRt29fVK1aFQMHDtTaxtbWFjExMfD29oatrS3Onz8PHx8fxMTEoGfPnrh9+7ZaexsbG1y5ckVjnwOAh4cHYmNjYW9vzyvPzMxE5cqVBSOBK1asiMWLF3PpGRQcO3YMwcHBuHbtmhatlJBgi1SW+Hczb948zJs3D/PnzxdMAfMtpcSRMAw9evTA06dPERoaCh8fH25MERUVhZEjR+LGjRuitq9fv8ayZct46UiGDBkiOmYqVqwYoqKiULFiRd74JTk5GRUqVMC7d+/02jaWSG/WCHYAWqdmAYDixYtj3rx56N69u87t0jbquCCwRrIuXboUkyZNQq9evbBmzRr07t0b9+7dQ2xsLIYMGSKYqqFMmTKYMmUKunTpwjsvQkJC8PLlSyxbtkwvbQK+foRuQSPKWWDpv4L0A8v5Z6hIeVZ0bZMh+4/VF8txYvn9stiwRJQDeZHUysjlcjg4OMDMzEy0HzRFXSsifpUjfP38/NC0aVOV6Njx48cjOjpatP8cHBywdOlSdOnShVe+ZcsWDBs2DM+fP1exCQ4OxtmzZ/Hbb7/hhx9+wNWrV+Hh4YGIiAhMnToV8fHxKjYzZsxASEgIvL294eTkpBLpfezYMcH6PXv2DL179xaMHgegtwhnXZ6V86PruGL48OHYs2cPFixYwIsqHzNmDH788UeNaXDfvn0LIE9TUUepUqXQtWtXwbQsf/75J+7du8eVKUfvP378GCEhIejUqROqV68OIC+aeseOHZg2bZpOGoY6QkJCEBoailGjRuGXX37BpEmTkJKSgr179yIkJEQlXW1BrrWa0m0JpYBhsQHYIuUlBPhbJXyJfxwFjfRWjpRSx/r167V+6RNt68dKTEwMOTo6koODAzVq1IgaNWpEDg4O5OjoKBjhT0Tk4+PDRd8r1+/atWtkb28vaPP8+XMaPHgw+fj4kL29vdazp7NmzdJ5R/OiRYtym4l4enpyO4vfunWLLCwsNPaJLn2uvKu3MhkZGWRqaipoc/DgQSpXrhzt2LGD0tLSKC0tjXbs2EHly5engwcP8nZUl5DQBpZNLiX+nfwbN8aUKBisG4QSEZ06dYqCgoKoevXq9PDhQyLKW9Vw+vRpwc9bWVlx919lX4qNwfRJQSO9dY1g/+uvv2jChAnUt29f6t27N+8lRJEiRUQj69TBErVNpL9IUU14e3vT5s2biYh/jCdPnkxDhgwRtDE3N+ei6xwcHLjzMTExUe15Yag2sfgqSES0rr5Y+48FlvPP0JHyhlgJwYqhfLH6Yfn9stiwRJQr0PVay7JhrbYbT+ancOHConaFCxcWtHFxcaHz588TEb//7t69KxoJbGtrS+vWrROthxhBQUFUq1Ytio2NJUtLS4qOjqaNGzeSt7c3HThwQOfvE6NPnz60cuVKvX2fOj5+/EjDhw/nNB65XE6FChWin3/+WfSZJzs7m7Kysrj/U1JSaPHixYIR7QrMzc3p7t27KuWJiYlkbm7OKxPaOFdsM10xbt++TUOGDKGGDRtSw4YNaciQIXT79m3Rz3t4eHDH0MrKihtfLFmyhLp06aLy+YJca1k26GaxIdJPpLyEtLGohI6wbMLJglCUuK5oG/WujKurK0xMTL6an2rVqiE5ORmbNm3iIrQ7d+6MoKAg0YiI+/fvq+SgB/I23srKyhK06d69O5KSktC3b1+VGXV1rFmzBlZWVjh58iROnjzJe08mkwluEurn54fY2Fh4enqiXr16CAkJwfPnz7Fx40a9bdqpPAMdFRXFbfQD5M3uHj16FG5uboK2LVu2BAB06tSJ6wf6/wU4itxflC9iQkJCHSybXEr8O/k3bowpUTBYNwjdtWsXunfvjq5duyI+Ph4fP34EkBdFNmvWLBw6dEjFpk6dOggPD8evv/4KIO98/PLlC+bNm4cGDRroqUV5rFq1CuvXr2eK9M4fwX779m1uQ16hCPZp06Zh+vTpqFKlCooXL67VGKZfv37YvHmzaO5VMVasWIE1a9agS5cuWL9+PcaOHcuLOhZCOVI0IiJCJVJUDJZI1tTUVC4a0NzcnIvy6969O6pXry4YFV2sWDG8fPkSrq6ucHFxwYULF1CxYkXcv39fMCdsQdrE0i4WX6ybvLH4Yuk/gO34spx/utgUZLNKgK3/WNoEGK7/WHyx+mH5/bLY5N9MU5uIcoDtWsuyIaS2G0/mp3v37li5ciUWLVrEK1+zZg26du0qaPPs2TPB78zKyhJtX6FChVCrVi1NzVDh2LFjiIiIQJUqVSCXy+Hq6oomTZrAxsYGs2fPRosWLQAAI0eO1Po787cVyNu7bvLkybhw4QLKly+volUIPZ8r+PDhA65evSq4gqx169Yqnzc1NcWSJUswe/ZsLhq8VKlSguMaBW3atEH79u0xcOBAZGZmolq1ajA1NcXz58+xaNEiDBo0SMWmfv36OH36tEpu8zNnzqBOnTq8svz11pVdu3YhMDAQVapUQY0aNQDkRa/7+vpi69atgpujZ2RkoHz58gDynvtev34NIE9XEBpnKK61Dg4OmDp1Ktdfiuh1Hx8f0RVTpOPGyiw2Bd1EXIKPJKJL6ERBxe2vLVIrc+rUKbx//14nm+vXr+v0eRY/lpaWGDBggNafd3d3x5UrV1QGLZGRkfDx8RG0OX36NM6cOYOKFStq7Qdg29F81qxZ3ABv5syZ6NGjBwYNGgRPT0/R5d3KKGzVoUgTJJPJVM5BExMTuLm5iW6gps90NxISEhJCSBMrEgpYhe0ZM2Zg1apV6NGjB7Zu3cqV16pVCzNmzBC0mTdvHho1aoS4uDh8+vQJY8eOxY0bN/DixQu9b5r96dMnpgcsFpFGW8FeWZj48uUL1qxZg7/++gsVKlRQGWsKCRMAm2BlSOGdRdBt2LAh9u3bBz8/P/Tu3RsjRozAzp07ERcXxz1I66NNrO361kVWlv5jPb6GEllZJyFY+o+lfobsPxZfLH4Att8vi42rqytTuq2CTI7evHlT8LcoJMz2798fAwYMQHJysuDGk8oo/y+TyRAaGoro6GgudUdMTAxSU1PRo0cPwXpVqVIFBw8exLBhw7jvAIDQ0FBOQM1PcHAwfv/9dyxdulSbpnNkZWVxgr2dnR2ePXsGLy8vlC9fnndNEkohI4TY/ZElyA3I0wp69OghmPZGU/CYhYUFJyJr4vLly1i8eDGAvOt0sWLFEB8fj127diEkJIQT0ZWD4lq3bo1x48bh0qVLgmlZtOHhw4coUaKExhRDY8eOxYQJEwRTx4wdO1ZQRP/uu++Qnp4OFxcXlCpVCtHR0ahcuTJiY2PVBkTEx8cjPDycm1CoXr06TExMBCcUWIRtVjFcEYBIRLC2tlZJjVa9enX0799ftF0S+fi7QuAl/vlouwlnQWFNsaKrXVxcHG3cuJE2btxIly5d+ur1U+bx48f04MEDwff++OMPKlmyJG3dupUsLS1py5YtNGPGDO5vIapUqcItZfsWYV2C5Obm9k1s0CQhISEhISEEywahRHlLm+/fv09Eqmlg1C13z8zMpBkzZlDHjh2pWbNmNGnSpK8yNhs7dixNnz5dZ7tixYpReHi4TjbapmapX7++Vq8GDRqIfoe7uztdvnyZiIi+//57WrVqFRERRUVFiaa/Y0n3wZKigShvY9apU6cSEdGyZcvI3Nyc23S1T58+gja5ubm8jcO2bt1Kw4YNo6VLl9KnT5/01ibWdrH4Yk2nweKLpf9Yjy/L+cdiQ8SWroel/1jqZ8j+Y/HF2ucsv18WG9Z0WyxpsO7du0cVKlRQSSGjSP0hhC4bTxb0un769GmysrKigQMHkpmZGQUHB1OTJk3I0tKS4uLiBG3atm1LNjY25O7uTi1btuRtYNyuXTvRvqhSpQqXxrRVq1bUvXt3evjwIY0dO5Y8PDy4zyUkJNDnz5/V9uvXoHTp0jR48GDKyMgo8HctX75cNFWhubk5p2N07NiRO39TU1N5qVn0kZZFGWtra600GF1SxygYN24czZw5k4jy7gHGxsZUunRpMjU1pXHjxon6sre3p+vXrxNRnoZToUIFys3Npe3bt1OZMmV4n2VJAVPQFF1jxozhpd65f/8+LV68mDuPJbRDEtElmPnWRepy5cpRamqqxs89efKEGjRoQDKZjMsZLpPJqGHDhoI5o1j9qKNMmTJqbxh//vknlS5dmjfwCA0NFf38xYsXqWHDhnTixAl6/vw5L++3ptzfaWlptHz5cho3bpzOu5Nri1hu80ePHpGZmZne/BDl7UKt7iUhISEhIaFPWIRtd3d3Lle48rhnw4YN5OPjI2qnax51XVC+/wcHB5OtrS3VrVuXhg4dqvX4gEWkYRXsWWARrAwlvBOxCbpERO/fv6eYmBjav38/RUREcK99+/bprU2s7frWRVYi3fuP9fgaSmRlnYRg6T+W+hmy/1h8sfghYvv9stiwTFYSsV1rW7ZsSW3atKFnz56RlZUV3bx5k06fPk3VqlWjU6dOabR/8+YNvXnzRue66kJSUhL169ePqlatSj4+PtS1a1e6evWq6OeVhUihlxgbN27kcqnHxcVR0aJFSS6Xk5mZGW3dupX7nFwu5zQFd3d3ev78uX4aqgFra2umvUKEaNiwIbm7uwu+V758eVqyZAmlpqaSjY0NnTt3jojy+sTJyUkv/oXQViNq1qwZhYWFqZSHhYVRQECAVr7OnTtHCxcuFL0HKNB2QkEZFmGbVQxv3Lgxl1//1atX5OTkRN999x2ZmZnRihUr1NpK/A8pnYvEV+fp06cIDAzEiRMnYGtrCwDIzMxEgwYNsHXrVjg4OKi1Z0kBA2ifmmXYsGF4+/Ytbty4waVHuXnzJnr27Inhw4djy5YtevGjjvDwcGRnZ4u+37VrV3Tt2hXZ2dl49+6d2vxxAGBra4s3b96gYcOGvHLSkPv76NGjaN26NTw8PHD79m34+voiJSUFRITKlSsL2rx48QIhISE4fvy44BJC5eWeimVyiuV5VlZW3Hu5ubk4deoUypQpo7ZtWVlZOHnypOASQqHlbPXr11cpU14uJ+VBl5CQkJDQJ1evXsXNmzeRlpaGnTt3omTJkti4cSPc3d1Ru3ZtQZv+/fsjODgYYWFhkMlkePz4Mc6fP4/Ro0eL5vlmyaOuC/mXoFeqVAmA6rhHXYoWbXOV6yM1Cwtr1qzhxi1DhgxB0aJFcfbsWbRu3RoDBw4UtGFJ98GaZ1sul+PTp0+4fPkynj59CnNzczRu3BhA3lJ9xd4uykRGRqJ79+548eKFyntiY0CWNrG2i8UXazoNFl8s/cd6fFnOPxYb1hQ6LP3HUj9D9h+LLxY/ANvvl8WGNd3Whw8fdL7Wnj9/HseOHUPRokUhl8shl8tRu3ZtzJ49G8OHDxdMXdKwYUPs3r0btra2sLa25srfvHmDtm3b4tixYzrXXR2lSpXCH3/8ofXnFfmsdaVbt27c399//z0ePHiA27dvw8XFhZf/2tbWFsnJyXBwcEBKSopWOb5HjhyJX3/9FZaWlhpzqovdEzt06IATJ06gVKlSWrZInKNHj4q+FxISgqCgIIwYMQKNGjXi0uZER0cL7uuWH23TsuiCvlPH1KhRQzQdkDKlS5fG3r170a5dO0RFRWHEiBEA8vQwGxsbQRtdUsAUxEZhp9jjcOfOnXBychJMvSOhHhmpuzNJSKjB19cXhw8fhrOzs9rPde7cGcnJyQgPD1cRqUuXLq1RpGbh0qVLuHXrFgCgbNmyogIwkJcj6q+//lLJZ3vx4kUEBAQgMzNTL34MSbVq1WBsbIzg4GDBjUXr1asnatesWTNMmzYN1tbWSEhIgKOjI7p27YoffvhB8MLavHlztZuYKucwd3d3BwA8ePAA3333HYyMjLj3TE1N4ebmhunTp8Pf31+wfvHx8WjevDmys7ORlZWFIkWK4Pnz57CwsICjoyOSk5NVbBQbgSjIyclBfHw8Jk+ejJkzZ6JRo0aCviQkJCQkJHRFWdjeuHEjbt68CQ8PDyxbtgyHDh0SFbaJCLNmzcLs2bO5SfVChQph9OjRXH71/Pj5+WHEiBHo0aMHd8/28PBAfHw8mjVrhoyMjK/WTnXkF8Q3bNiAChUqqBVptN0IVSaT6V1wEdt4TSaTCQpWX758wZcvX2BsnBeLtG3bNpw9exaenp4YOHCgYOBHv3794OzsjClTpmD58uUYM2YMatWqxYmRa9euFawbi6Dr6emJgIAAhISEwMnJSas+YGkTa7tYfHl4eGDXrl3w8/NDlSpV0L9/f/z000+Ijo5GYGCgqBDM4oul/1iPL6D7+cdiY2FhgVu3bsHV1RWOjo44cuQIKlasiLt376J69eqC5xfAfl7oWj9D9h+rL5bjxPL7ZbEZN24crKysdN5YWd11V+xaa2dnh8uXL8Pd3R2lSpVCaGgoGjRogHv37qF8+fKCQWFyuRwZGRkqQWBPnz5FyZIlkZOTo1O9V6xYgefPnyMkJETw/S9fviApKUkwuKtu3bqi3/vs2TPcuXMHAODt7a0x0E9bBgwYgPDwcBQvXhypqakqz8DKKJ5lGzRogD179sDW1pbpOAFAdnY2OnbsCAcHB503JNWVjIwMpKeno2LFipwYfvHiRdjY2GgMkLOxscGVK1fg4eGhk8/Zs2dj0KBBXJCmMtoK8mK/qfDwcLV2Yjn5d+7ciaCgIOTm5qJRo0aIjo7m6nrq1CkcPnxYxaZo0aI4efIkypUrh9DQUPz+++88YVuhNRXUBsi7Fygmejp16oRy5cphypQpSEtLg7e3t9qgTon/IYnoEl8dQ4rULFHv1tbWOH36NBdhpSA+Ph716tXDmzdv9OIHyHsIiI2Nhb29Pa88MzMTlStXFhSBdYn0VmBhYYH4+Hh4e3sL1kMMa2trXLlyBaVKlYKdnR3OnDmDcuXKISEhAW3atEFKSoqgja6bmDZo0AC7d++GnZ2dTvWrX78+vLy8sGrVKhQuXBgJCQkwMTFBt27dEBwcrDZaKj8nT57EyJEjcenSJZ3qICEhISEhIUZBhe1Pnz4hKSkJ7969Q9myZXkrtvJjYWGBmzdvws3NjecrOTkZZcuWxYcPH/TdPK34OwVxXWERrADDCO8Am6BrY2OD+Ph4naMPWUTCf6PIytJ/rP1gKJGVdRIC0L3/WOpnyP5j8cV6nWD5/bLYBAcHIzw8XONkpT6oU6cORo0ahbZt2yIoKAivXr3CL7/8gjVr1uDSpUu8lUpXr14FkLeK6dixYyhSpAj3Xm5uLiIjI7F69WrB50t1NGrUCPfv3xd8br5w4QKCgoLw4MEDlZUFYscqKysLw4YNQ3h4OHeOGxkZoUePHvj9999hYWHBfVZTVLgyyv0eGRmJpKQkDB8+HNOnT+dF5CsTHBys9fdrYu3atRg4cCDMzMxgb2/PC3STyWSC/bdhwwYULVoULVq0AJC3KeeaNWtQtmxZbNmyBa6urnqrnwLl8YsmWPtfV/JrFDk5OcjOzoapqSksLCzUXjN1nVBgEbZZxfAKFSqgX79+aNeuHXx9fREZGYkaNWrg0qVLaNGixd8WfPGP429JIiPxj0eX/OZWVlYUHx+vUn758mWytrYWtGHNU96pUyeqUqUK3bx5kyu7ceMGValShQIDAwVtWrduTXXr1qVHjx5xZQ8fPqR69eqJbsbC4odIPBd4RkYGmZqaCto0a9aMPD09ac6cObRu3Tpav3497yVEnTp1uNyquuDk5MS1ycfHhyIiIoiI6MqVK2RpaSloY8hNTAsXLky3b9/m/lbU9cKFC+Tt7a3Td926dUu0TRISEhISEiywbhDKAmsedYn/wbLx2uHDh6lo0aI6b4ima55tIractr1791a7b44QrG0i0r1dLL5Yc8Oz+GLpPyK248ty/rHYsOb0Zuk/1s0MDdV/LL5Y/bD8fllsWDdWZiEyMpJ27dpFRER3794lb29vkslkVLRoUTp69Cjvs8objgqdQxYWFrR27Vq91q9ixYrUsWNHunnzJr169YoyMzN5LyEGDBhAHh4edOjQIW7/sIMHD1KpUqVo4MCBvM/m718bGxuysLDgNum1tLQkGxsb0X7v1avXV88Jr8DJyYlmzpxJubm5Wtt4eXlxx/HcuXNkYWFBq1evplatWqndZFUIdZuRKqPL/nf169enwoULC/a5Nud9WlqaTv2hTGJiIjVq1Ejvm3Cy5JRnzUO/Y8cOMjExIblcTk2aNOHKZ82aRT/88IMeW/XvRhLRJXSCRdw2pEhtY2NDFy9eVCmPiYmhwoULC9qkpqZSpUqVyMTEhDw8PMjDw4NMTEzIz8+P0tLS9OJHMTiTyWQUHh7OG7Dt3r2bhgwZQl5eXoK+rKysuE1vtGX79u1UtmxZWrduHcXFxVFCQgLvJUabNm1ozZo1REQ0atQoKl26NM2YMYMqV65MjRo1ErRh3cSUZQPTokWLUmJiIhEReXp6cjexW7dukYWFhaBN/rZfuXKFDh8+TPXq1aNatWqJ+pKQkJCQkNAVQwrbs2bNorJly9KFCxfI2tqaTp8+TX/++Sc5ODjQ0qVL9err3wqLYGVI4Z1F0M3KyqLmzZtTz549acGCBbRkyRLeS19tYm3Xty6ysvQf6/E1lMjKOgnB0n8s9TNk/7H4Yt2gkeX3yzqJ83fy4sUL+vLli0p5SkoK3b9/n2QyGcXGxlJKSgr3evz4MX3+/FnvdbGwsKC7d+/qZGNvb0/Hjx9XKT927BgVLVpU1G7hwoXUqlUrevnyJVf28uVLatOmDS1YsECnOrCgSaS2s7PT+bxV3hhz7Nix1L17dyIiun79utq+EELdZqTKzJo1i169eqXVdxa0z62trbUW7IWIjY3VOXBPEyzCdkHE8PT0dLp8+TJvMiEmJoZu3bpVwJb8d5DSuUjoBEt+87S0NLRu3Ro3btzg8qenpaXB19cX+/btw3fffadiw5oChiU1C5CXi/Svv/7C7du3AQA+Pj7cJi768KNYyiOTyVSWlpmYmMDNzQ0LFy5Ey5YtVXxVrVoVv//+O7cRhjYI5QFT+Fa37DA5ORnv3r1DhQoVkJWVhVGjRuHcuXPw9PTEokWLBJdw3b17F0FBQbh8+TKvXJ0vTRuYii3vDggIQK9evRAUFIT+/fvj6tWrGD58ODZu3IhXr14hJiZGsC+E+r169eoICwvTmKdNQkJCQkJCW2bPno0///wTYWFhaNKkCQ4dOoQHDx5gxIgRmDx5MoYNG6Y3X8SQR12CT58+fVCrVi307dtXaxuWdB8sKRoAtpy2LEv4WVPAGCrdDGs6DRZfLP3HenxZzj8WG4AtXQ9L/7HUz5D9x+KLtc9Zfr+GzGP9rcOSWqRhw4YYO3YsfvjhB639WFhY4NKlS5y2oeDGjRuoVq0asrKyBO1KliyJ6OholCtXjld+/fp1BAQE4PHjx1rXQVOedyHUpbUBgBEjRsDBwQETJ07U+jsdHR0RFRUFPz8/+Pn5YeTIkejevTvu3buHihUr4t27d1p/lzpY07IUtM91SR0jxJUrV1C3bl1RTYkVlpzyBclDL1EwJBFdQidYxe2vLVIraNOmDTIzM7FlyxaUKFECAPDo0SN07doVdnZ22LNnD+/zOTk5MDc3x5UrV+Dr66uu6QXyo8Dd3R2xsbG8Hbs1ERsbi/HjxyMkJAS+vr4qgymhnZ4fPHig9jv1mc+MZRNTlg1MASAuLg5v375FgwYN8PTpU/To0YMT+cPCwgTzsufvC7lcDgcHB5iZmRWg1RISEhISEqr8HcK2LnnUJfiwCFaGEt4BNkG3WLFiGD58OMaPH6/15mqsIuG/UWRl6T/W42sokZV1EoKl/1jqZ8j+Y/HFKmyz/H5ZbL4FtBGBb968idTUVHz69IlX3rp1a8HPe3t7Y+XKlWjYsCHOnz+Pxo0bY/HixThw4ACMjY2xe/duAP/LvQ4A9+7dwy+//IIxY8YIHqsKFSqo+GnUqBHs7e0RHh7OPR++f/8ePXv2xMuXL/HXX38J1s/a2hr79+9H/fr1eeXHjx9H69at8fbtW9G+EKqDOkGcheHDhyM8PBwVK1bUOld+165dcfv2bfj5+WHLli1ITU2Fvb099u3bh4kTJ/Jy3heEBg0aID4+Hjk5OdwebomJiTAyMuLtgZd/75SC9rm2Ivq+fft4/xMR0tPTsWzZMjg7OwtuECrx30ES0SV0Qldx29AiNUvUu4eHB/bs2aPTxpgsflhhifQ2JCybmLJsYKpPMjMzBXfylpCQkJCQ0AeSsP3PgEWwMpTwDrAJukWKFEFsbKxBRMJ/o8jK0n+sx9dQIuu3vhLCkP3H4otV2Gb5/bLYfAuoE4GTk5PRrl07XLt2jbc6WNGPYs+yypsnjhs3Dunp6QgPD8eNGzdQv359PHv2DID4qmMFmlZjX79+HU2bNsXHjx85PSAhIQFmZmaIiopSiXpW0KNHD5w+fRoLFy5EtWrVAAAxMTEYM2YM6tSpgw0bNqjrsq+Ouk2+xTb2zszMxC+//IK0tDQMGjSIi+ifMmUKTE1NMWnSJBUblhUDixYtwokTJ7BhwwZuE89Xr16hd+/e3Oa1QhS0z2fPno1BgwZp1AHy//ZkMhkcHBzQsGFDLFy4EMWLF1drL/HvRhLRJXSCRdw2tEita9T72rVrsXv3bmzcuJG3a7gmdPWjICsrCydPnhSciRcajLJEeouRnp6OnJwcuLi4CL6vGISIITTwqFu3LkJCQrRqu4JixYrh+PHj8PHxQdmyZTFnzhy0bt0aCQkJqFWrlt6WigHA3Llz4ebmhs6dOwMAOnXqhJ07d6J48eI4dOiQTuelhISEhISExL8HFsHKUMI7wCbosizhZxUJ/40iK0v/sR5fQ4ms3/pKCEP2H4svVmGb5ffLYvOt06pVKxgZGSE0NBTu7u64ePEiXrx4gVGjRmHBggWoU6eOoJ22qUU0rcBWRmw1dnZ2NjZt2sR7ru/atSvMzc1Fvys7OxujR49GWFgYcnJyAADGxsbo27cv5s+fD0tLS63rpQ4WkdqQaLtiQBnWtCwsfc6aOkZCQgxJRJfQCRZx21AiNWvUu5+fH5KSkpCTkwNXV1eVi2/+CHBWP0BexH7z5s2RnZ2NrKwsFClSBM+fP4eFhQUcHR0FB6Mskd5i+Pj4IDExUXTGPyIigvd/Tk4O4uPjsWHDBtpK1HMAADz6SURBVEybNk3w4WXHjh2YOnWqTsvm2rZtixYtWqB///4YPXo0IiIi0KtXL+zevRt2dnaiy+ZevHiBkJAQHD9+XCWnIwC8fPlSxcbd3R2bNm1CzZo1ceTIEXTq1Anbtm3D9u3bkZqaiujoaEFfEhISEhISEv9uWAQrQwnvAJugy7KEn1Uk/DeKrCz9x3p8DSWyfusrIQzZfyy+WIVtlt8vi823TtGiRXHs2DFUqFABhQsXxsWLF+Ht7Y1jx45h1KhRiI+PF7QzVGqRgpKVlYV79+4BAEqVKqVWPGcRxFlEalbWrVsHKysrdOzYkVe+Y8cOZGdno2fPnio22q4YUKagaVl06XOW1DGS8C6hDklEl9AZXcVtQ4rULFHvU6dOVRt9PWXKFL34AYD69evDy8sLq1atQuHChZGQkAATExN069YNwcHBaN++vYoNS6S3GLGxscjOztYpeh0ANm/ejG3btqmI7ADbJqYsG5gCQPPmzZGUlIS+ffsKRuUL3djNzc2RmJgIZ2dnBAcH48OHD1i9ejUSExPh7++PV69eadsNEhISEhISEv8iWAQrQwnvAJugy7KEn1Uk/DeKrCz9x3p8DSWyfusrIQzZfyy+WIVtlt8vi40hYRGB7ezscPnyZbi7u6NUqVIIDQ1FgwYNcO/ePZQvX57bPyQ/LKlFZs+eDScnJ/Tp04dXHhYWhmfPnmHcuHF6sWGFRRBnEanVoS5/vZeXF1avXq1yHTx58iQGDBiAO3fuqNiwbEZqyFQ4LKljGjRogMuXL+Pz58865WyX+G8giegSWsMqbhtSpGaNetcVVj+2traIiYmBt7c3bG1tcf78efj4+CAmJgY9e/bkJiaUYYn01jfJycmoUKGC4E3QkJuYWltb48yZMzqdFyVKlMDOnTtRs2ZNeHt7Y8aMGejYsSPu3LmDqlWr6n13bQkJCQkJCYl/BiyClaGEd4BN0GWBVST8N4qsLLAeX0OJrN/6SghD9h+LL1Zhm+X3a6jfPCssIrBCqGzbti2CgoLw6tUr/PLLL1izZg0uXbqk14hyNzc3bN68GTVr1uSVx8TEIDAwEPfv39eLjTrUidQsgjiLSK0OdfnrzczMcPv2bbi5ufHKU1JS4OPjg/fv36vYsKwYMFQqHIAtdQxrznaJ/wbGf3cFJP45mJiYwMXFReeNLKdOnaqzr0mTJmHixIk6i9TLli1DUlISSpQooVXUO5An2MfGxsLe3p5XnpmZicqVKwveYFj8AHl9qBj8Ozo6IjU1FT4+PihcuDDS0tIEbRS5vJVnxzVFerO0SYz3799j6dKlKFmypOD7LCI5a/3KlCkjePNWR/v27REUFARPT0+8ePECzZo1A5CXWqd06dI6111CQkJCQkLi38G1a9fg5+cHACoP+mIBILm5uZg3bx6ioqK0FtR69uyJbdu26SzmHj9+XKfPs8LSJoCtXSy+Pn36hM6dO+u80SJru3SF9fiynH8sNpMmTcK0adN0noRg6T+W+hmy/1h8sfgB2H6/hvrNs5KWlsY9P+3duxc//vgjBgwYgFq1aqmk5lDwyy+/ICsrCwAwffp0tGzZEnXq1IG9vT22bdsm6osltUhGRobgpo8ODg5IT08X9MNio45du3bh/v37giK6lZUVXrx4ARcXF0RHR3NpQ8zMzESfcZs0aYJ+/frBz88PiYmJaN68OQDgxo0bKmK3Nhw9elT0PUdHR1y9elXlexMSElSe2xUsX76cWzGwa9cu7nOXLl1Cly5dBG0sLCywYsUKzJ8/X+u0LKy8efNGcHLi2bNnomljFi5ciOjoaE5AB/JWVMyYMQMBAQGSiP4fRxLRJXSCRdw2pEjdpk0btYMZIVJSUgSF6I8fP+Lhw4d68wPkpbaJjY2Fp6cn6tWrh5CQEDx//hwbN24Uje7XdfYbUN+mR48eidrZ2dnx2kVEePv2LSwsLPDnn39q9GtjY4MrV67Aw8Pjq9RvxYoVGD9+PEJCQuDr66symLexsVGxWbx4Mdzc3JCWloZ58+bBysoKQN4mq4MHD9bYJgkJCQkJCYl/JyyClaGEd0PCKhL+G0VWFliPr6FEVtZJCJb+Y6mfIfuPxde3LmwbEhYRuGnTptzfpUuXxu3bt/Hy5UuV5878zJ49G6tXr1Ypd3R0xIABAwRFdGdnZ5w9exbu7u688rNnz6JEiRKCflhs1KFOpGYRxFlEala6dOmC4cOHw9raGnXr1gWQl8olODgYgYGBgja2trZYtmyZSvm0adM0+rO0tPzqq+rbtWuH3r17C6aOEUqlC7AJ7xL/HSQRXUInWMRtQ4rUukS979u3j/s7KioKhQsX5v7Pzc3F0aNHVW6mLH6UmTVrFnfhnTlzJnr06IFBgwbB09MTYWFhgja6RHpr0yZ1M9aLFy/m9btcLoeDgwP8/f15M7FiaMoOVdD62dra4s2bN2jYsKGKX7GofBMTE4wePVqlfMSIEWrrKiEhISEhISGRH0MJ74aEVST8N4qsLHzrx/dbXwlhyP771o/Vt46+oqK1CcZLTU0VfBZ3dXVFamqqoE3//v3x888/Iycnh3tePHr0KMaOHSsaPcxiwwqLIM4qUrPkr//111+RkpKCRo0awdg4Tyr88uULevTogVmzZgn6YVkxYEhWrVqF0aNHIygoSDB1jBAswrvEfwcpJ7qETuiS31whmLZt2xYbNmwQFEyPHDkiuEEFK7pEvSuiMRSpUZQxMTGBm5sbFi5ciJYtWxbIz9ciPT0dOTk5cHFx4coK0iZ9YG1tjYSEBNFI9ILWr1q1ajA2NkZwcLDgxqK6bJgq1H8SEhISEhISEhLfFt96nuhvnW99s0qJfw4sm32KoS53OAC4uLhg2bJlaN26Na88IiICQ4YMEQzGIyKMHz8eS5cuxadPnwDkRcmPGzdO1A+LDcAmUrPAKlKz5K9XkJiYiISEBJibm6N8+fJq28KyGenfQVZWltapYwyZs13in4ckokt8Nf4OkVoulyMjIwOOjo688idPnsDZ2Zm7MSrj7u6O2NhYFC1aVKe26epH3/j4+CAxMVEw+pqlTQBw9epVrT8rtPRq0KBB+PXXXzX6Za2fhYUF4uPjuV2yC4K6/pOQkJCQkJCQkJD4NyBNQkh8i6jb4BIAxo0bh23btmHdunW81CJ9+vRBhw4dsGDBAtHvfvfuHW7dugVzc3N4enqiUKFCGuujqw2LSM0iiLOK1CybmLLAshnpPwVdhHeJ/w5SOhcJndBF3P7y5QsANsFU1xQwBUnNIpRzPDMzE7a2tnr1AwAvXrxASEgIjh8/jqdPn3J9pODly5eitvkJDw9Hdna24HssedQBoFKlShqXMqpLnbJy5Uqt/OjS58pUqVIFaWlpehHR1fWfhISEhISEhISExL8BKae3hL7QZ+oOdbnDAbbUIgqsrKxQtWpVrevCYsOyySpLnneWtDaA9vnrR44ciV9//RWWlpbcZ8QQWrXCshnpPwVD5GyX+OchiegSOsGS39wQInXbtm0B5EVT5L/5KEe9CzF37ly4ubmhc+fOAICOHTti165dKF68OA4dOoSKFSvqxQ8AdO/eHUlJSejbt69gOhJd0HSTz8rKwsmTJ5GamqoSGT98+HBBm927d2P06NEYM2YMatSoAQA4f/48Fi5ciHnz5nE5BNetW4elS5dqVU8hX7r0uTLDhg1DcHAwxowZg/Lly6ssR9XlJqfrwEpCQkJCQkJCQkJCQuK/CosIzIqpqSm2bduGX3/9VevUImJoSh3DYsOyySqLIM4qUmubvz4+Pp5LWRIfHy/6fWK6BctmpBIS/2hIQkILIiIiKCIigmQyGYWHh3P/R0RE0O7du2nIkCHk5eUlaDtnzhzaunUr93+HDh1IJpNRiRIl6MqVK7zPymQykslkJJfLub8VL1NTU/Ly8qL9+/eL1tPNzY2ePXumU9vc3Nzo7NmzREQUHR1Ntra2FBUVRX379qUmTZrozQ8RkZWVlUqbNeHu7k7Pnz9XKX/16hW5u7sL2ly+fJmKFStGNjY2ZGRkRA4ODiSTycjS0lLUhoioatWqdPDgQZXygwcPUuXKlbn/3dzceC9LS0uSyWRkZ2dHdnZ2Gn2x9DkRqZwTyueKXC4XtGHpPwkJCQkJCQkJCQkJCYn/UahQIbp//75K+f3798nMzEzQZv369XTgwAHu/zFjxlDhwoWpRo0alJKS8rWqyqNhw4Y6P/dpsgkKCqLKlStT3759ycLCgnvejIiIoHLlygnaODs7U0REhEr53r17qWTJkoI2Y8eOJVdXVzp27Bh9/vyZPn/+TEePHiVXV1caNWqUaP1evXpFQ4YModatW9Phw4e58pCQEJoxY4aona58/PiROnXqRDKZjExMTMjExISMjIyod+/e9PHjR735kZD4VpByoktoRUHym7u7u2PTpk2oWbMmjhw5gk6dOmHbtm3Yvn07UlNTER0dLWjDkjNbCE1pQszNzZGYmAhnZ2cEBwfjw4cPWL16NRITE+Hv749Xr17pxQ+QF/38+++/o3r16lrXX13+dRcXF3z8+FHFpn79+vDy8sKqVatQuHBhJCQkwMTEBN26dUNwcLDortLm5ua4fPkyfHx8eOW3bt1C5cqVBWfVN2/ejBUrVmDt2rVcmpU7d+6gf//++Omnn9C1a1dBPyx9/uDBA+FO+n+EIhNY+k9CQkJCQkJCQkJCQkLif7Bs9qlL7vCCphYxJCybrLLkef/06RO6d++OHTt2qKS1WbVqFUxNTb9aG9+8eYNjx46hTJkyKFOmjNrP6rIZqYTEPxkpnYuEVhQkv3lGRgacnZ0BAAcOHECnTp0QEBAANzc3+Pv7C9qw5sxmSRNiZ2eHtLQ0ODs7IzIyEjNmzACQl/tbbNNJ1nQkK1aswPjx4xESEgJfX1+VdCQ2Njbc39qktsm/rEvBlStXsHr1asjlchgZGeHjx4/w8PDAvHnz0LNnT1ER3cfHB7Nnz0ZoaCh3Q/706RNmz56tIqwrmDx5Mnbu3MnLU+7t7Y3FixejQ4cOgiI6S58DwiK5GAXpPwkJCQkJCQkJCQkJCYn/wZK6Q5fc4QVNLWJIbG1tsWzZMpXyadOmidqw5HlnTWvDkr++U6dOqFu3LoYOHYr379+jSpUqSElJARFh69at+PHHH0X9eXl5wcvLS22dJCT+FfydYfAS/w5evXql9v3ixYtzqTu8vLxo+/btRER0+/Ztsra2FrTRJQWMMixpQoYMGUKurq7UuHFjsre3p7dv3xIR0ZYtW8jPz09vfoiIEhMTqUqVKiSXy3kvoXQkBUltU7RoUUpMTCQiIk9PT4qMjCQiolu3bpGFhYVo/WJiYsjR0ZEcHByoUaNG1KhRI3JwcCBHR0eKiYkRtDE3N6eLFy8Kfpe5ubmgDUuf58fa2pru3bsn+n5BUwNJSEhISEhISEhISEhI5MGSusPBwYEuX75MRESVKlWi8PBwIiJKSkoiS0tLvdaPJXUMa7qZsLAwTtdQZvv27bR+/Xq19bxz5w5t376d9u/f/9VS2nh6etKxY8dUyk+cOCGahtfJyYnTWjZt2kSlS5emrKwsWrFiBVWqVIn73IgRI+jdu3fc3+peEhL/NqRIdAmdYInAbt++PYKCguDp6YkXL16gWbNmAPJmlxWz0vlZtWoVNm3aBAA4cuQI/vrrL0RGRmL79u0YM2aMYAoYgC3qffHixXBzc0NaWhrmzZsHKysrAEB6ejoGDx6sNz8A0LVrV5iYmGDz5s0aNxYtSPS/n58fYmNj4enpiXr16iEkJATPnz/Hxo0b4evrK2pXrVo1JCcnY9OmTbh9+zYAoHPnzggKCoKlpaWgTaNGjfDTTz8hNDQUlStXBgBcunQJgwYNQuPGjQVtWPo8P6QhE1VB+k9CQkJCQkJCQkJCQkLif7BERWu7waUmtEktMmvWLKxcuRIAcP78eSxfvpxLHTNixAhe6piC2AAF22RVU9S2PtLasGxi+vr1axQpUgQAEBkZiR9//BEWFhZo0aIFxowZw33un7RiQEJC30giuoROsIjbhhSpWdKEmJiYYPTo0bh58yZSU1O5NCClSpXSqx8AuH79OuLj43mpTzQhlNpGE7NmzcLbt28BADNnzkSPHj0waNAgeHp6IiwsTK2tpaUlBgwYoLWvsLAw9OzZE1WqVOHS03z+/BlNmzZFaGiooI2iz/MzYsQIrf1qC0v/SUhISEhISEhISEhISKiiS+qO5cuXc7nDd+3aBXt7ewB5QVddunQRtWNJLaJL6piC2ADai9Qsgrg+RGpHR0dcvXpVZaIiISGBOwb5cXZ2xvnz51GkSBFERkZi69atAIBXr17BzMyM+9zx48cF/5aQ+C8giegSOsEibhtSpGaJek9OTkb79u1x7do1zgfwv5uSkD8WPwBQpUoVpKWl6SSiA0BWVhZOnjyJ1NRUfPr0iffe8OHDBf0ocHR0RGRkpE7+8pOeno6cnBy4uLiovOfg4IBDhw4hMTGRi14vU6YMU040dX7y061bN14OeXXo2n8SEhISEhISEhISEhL/dQoaFc2SOxwATp06xW3OuWfPHhARMjMzsWHDBsyYMUNQRLeyssKLFy/g4uKC6Ohorr5mZmZ4//69oB8WG0B7kZpFENeHSM2Sv/7nn39G165dYWVlBVdXV24S4dSpUyhfvrxWfnXZjFRC4p+IJKJL6ASLuG1IkZol6j04OBhubm7466+/4O7ujosXL+LFixcYNWqU4A7ZrH4AYNiwYQgODsaYMWNQvnx5lY1FK1SooGITHx+P5s2bIzs7G1lZWShSpAieP38OCwsLODo6GkQEbtiwIRITE9VOYOhjMxFt/ChQLLvTxLfQfxISEhISEhISEhISEv80ChoVzbLBJaB9ahFlWFLHsKab0Vak1nfUtrYiNcsmpoMHD0a1atWQlpaGJk2aQC6XAwA8PDw43Sc/BdmMVELin4iMNCUWlpBQYujQoThw4AA8PT0RHx+PlJQUWFlZYevWrZg3bx4uX76sYtOqVSsYGRn9X3v3HhTlled//IM3LvHSo1yUrBUvQUQ0rK66o5kY1CQyErdCSl0TFCYquma9hklwa/ODZMYZXTfGGiRoHEXEkpjImk3crVJXZJjFdYlBw2oGIYrRlGOSNspuoI0IeX5/WHTE7obupzuN6PtVRRUe+vB9+vhHN58+z/do27ZtTkPqxx57zGHOzZs39bvf/U5ffPGFfvGLX2j06NGSboXXvXr10sKFC9u8zpZd73fuOv6bv/kbh8eGhobqyJEjeuSRR9SnTx999NFHio6O1pEjR5Sent7mmwVP6kiyvxDdLiAgQIZhKCAgwGl4HB8fr2HDhmnLli3q06ePKisr1b17d82dO1crVqzQs88+6zDnm2++UWZmpkpKSvT111/b+4O3uHr1qsvn5Mzx48dls9n0+OOPO/ysublZ+fn5Ki4udlrryJEjXtXJzs52e76zQNzM+gEAAAAAvDNs2DC9/fbbmjx5cqvx0tJSLVq0SNXV1S7nrVmzRomJiRo8eLD27NmjKVOmqLKyUlOnTtWVK1cc5tTV1dlbxyxZskQJCQmSpKysLPXo0cO+s93bOZLU2NioefPmae/evQ4h9ZYtW9SjR49218adQPzOkDouLs6jkLqmpsbt/vUlJSUO/0/t6d+/vw4ePKi4uDgVFhYqKytLlZWV2rlzp7Zu3dpmlgJ0RoTo8IiZcNufIbWZXe8/+clPdOLECQ0ePFhDhw7Vtm3bNHnyZJ07d06jRo2SzWbzSR1JunDhgsvnKsnpi5rFYlF5ebmio6NlsVh07NgxxcTEqLy8XKmpqfYWKrebPn26zp49qwULFjg9wLStg048tXTpUuXn5ysxMVEDBgxwqLVx40avfv+dveasVqtsNpssFoukW298WnaV19bWOsw3s34AAAAAANfcCYGDgoJ05swZh13dn3/+uWJiYly2TMnNzdWKFSvsrUVOnDihLl26aNOmTdq3b99d04vbk5DaTCDuz5A6MDBQf/EXf6EXXnhBqamp9ja+bQkODlZNTY0GDhyolJQURUZGat26dbp48aJGjBih+vp6n10fcDegnQs8Yqa/eXNzs3r16iXpVqD+5z//WdHR0XrooYdcfvJsNqQ205pl5MiRqqys1ODBg/XXf/3XWr9+vXr06KGtW7dqyJAhPqsjOQ/J29O9e3f7Dvbw8HBdvHhRMTEx6tOnj7744gunc/7zP/9TZWVliouL86jWkCFDdPz4cYfDRurq6jRmzBinIfWePXv03nvv2W9983Wd2w8GLSwsVG5urrZv327vK19dXa20tDQtXrzYaS0z6wcAAAAA+IGZ1h1mDriUzLUWMdM6xmy7mRaetDQ10+fdk7Y23vavv3Tpknbt2qWdO3fq9ddf15QpU7RgwQI988wzLnfWu3sYKXCvIESHR8yE2/4MqY8dO6YjR44oNDRUXbp0UZcuXfSzn/1Ma9eu1fLly51+Uvvqq6+qoaFBkvSrX/1KTz/9tB577DH169dP7777rs/q3Kl379765JNPXK5Bi9GjR+v48eOKiorS448/rszMTF25ckW7du3SyJEjnc4ZPnx4mwehuPL55587/T+8ceOGLl265HROjx492uxT76s6kvT//t//U1FRUauDWaOjo7Vx40bNnDlTycnJDnPMrB8AAAAA4AdmQmAzB1xKP7QWGTt2bKvxxMREl3PWrl2rt99+22E8PDxcixYtchqIezLH25DaTJ93T0Jqb/vXh4aGatWqVVq1apVOnDihHTt26MUXX9SLL76o559/XgsWLHDYpOeLw0iBzoQQHR4xE277M6Q2s+t92rRp9u8ffvhhnTlzRlevXtVPfvITly8wZurcyd1OSr/97W/17bffSpJ+85vfKCUlRUuWLFFUVJTy8vKczsnNzdXq1auVmZmpkSNHOhxg2rt371b/brmjQJIOHjyoPn362P/d3Nys4uJilwerpKen63e/+51ycnJcrpcv6ki3Dm5tampyGG9ubtZXX33ldI6Z9QMAAAAA/MBMCGzmgEtJSkhI8Li1yMWLFx1agUq37ga/ePGi13O8DanN7Nr2JKT25SGmY8aMUf/+/dWvXz+tW7dOeXl5ys3N1YQJE7RlyxbFxsZKMnfHANCpGYAH+vXrZ1RWVhqGYRi9e/c2zpw5YxiGYRQXFxt/+Zd/6fbv+eabb4zvv//e5c8tFotRW1trGIZhDBkyxDhy5IhhGIZx9uxZIzg42OW8n/3sZ8b7779vGIZhPPfcc0ZCQoJRVlZmpKSkGLGxsW5fX3t8Uadnz57GuXPnfHZNt6upqTHGjh1rdOnSpdVXQECA0aVLF4fHBwQE2H/W8n3LV48ePYxhw4YZ+/fvd1rrmWeeMfr06WMMHjzYePrpp42kpKRWX76qYxiG8fTTTxujR482Kioq7GMff/yxMWbMGGPGjBkmVwsAAAAA0JaoqCjj3XffNerr642wsDCjuLjYMAzD+OSTT4x+/fq1Obe6utp47733jP379xuff/55u7WsVqvx5ptvGnFxcUa3bt2Mp556ynj33XeNGzduuJwzcOBA44MPPnAY/9d//VfjwQcf9Nkcs9566y2jW7duhsViMeLi4ozm5mbDMAwjOzvbiI+Pdznv+PHjxr59+4xvv/3WPvZv//ZvRllZmdu1//d//9d4//33jaqqqjYf19jYaOzdu9f4+c9/bnTr1s346U9/avz+97836uvrjfPnzxvJyclGTEyM/fEtOQ1wv2AnOjziix3YkuyfYLtipgWMZG7Xuxm+qDN37lyHHeG+kpycrO7du6uwsNDpwaJ3+v777yXdOsTz+PHjCg0NdbuWxWJRUlKSW4/1po4k5eXlKTU1VWPHjrXvrm9qatK0adO0bds2j34XAAAAAMA93rTu8KR3uGSutYiZ1jFm283cyZ1DVs3s2jbT1kYy179+2bJleuedd2QYhubNm6f169e3an/6wAMP6I033lBkZKR9zMwdA0BnFmAYbvaUACQ99thjSk9P1zPPPKPnn39e165d06uvvqqtW7eqoqJCp0+f9kmdgwcPqqGhQc8++6zOnj2rp59+WjU1NfaQesqUKW7/rvZas/jKj1Xnm2++UWZmpkpKSvT111/bg+jb694pJCREJ0+ebNU7/F5SU1OjM2fOSLrV/72tN2Rm1g8AAAAA0NrHH39sD4F79uwpSfr3f/93WSwWPfroo5K87x3uzJ///Gdt3bpV69atU7du3fTdd985tBZpbGzUvHnztHfvXofWMVu2bHF6OKaZOZJjSB0XF9duSN0SiHsiMDDQVEjdv39/HTx4UHFxcSosLFRWVpYqKyu1c+dObd261Wk7mqlTp2rhwoV69tlnFRgY6PT3NjU16ejRo3r88cclyX7W2M6dO/Xpp5+6dRgp0JkRosMjvgy3PeWvMNzXsrOz3X7s8uXLHcamT5+us2fPasGCBU53lTs7IGXSpEnKzMzUE0884fH1NjQ0qLS0VBcvXlRjY2O719fCarXa70aIjo5WWFjYj1LHU2bWDwAAAADwA3dD4MmTJ+v999+XxWJp8/EBAQE6cuSIy5/fvHlTH3zwgfLy8vQf//EfGjt2rBYsWKDnnntOVqtVr776qk6cOKE//elPrebV1NSosrJSwcHBGjVqlB566KF2r9nTOWZCajOBuNmQOjg4WDU1NRo4cKBSUlIUGRmpdevW6eLFixoxYoTq6+vbre2pljsG3nnnHUlyeccA0JkRosNrnTXc9pc7DyqxWq2y2WyyWCySpLq6OoWEhCg8PFy1tbUO83v16qWysjKPXnz27t2r1157TS+//LJGjRrlcLDoI4884nTeyZMnNX36dNlsNjU0NKhv3766cuVKm9fX0NCgZcuWqaCgwL7Lu2vXrkpJSdGmTZsUEhLikzrSrXZC+fn5Ki4udrqr3NmbMDPrBwAAAAD4gdld0Wbc2Vpk4cKFrVqLSNKXX36pyMhIh78J/cFMSO3trm1PQuphw4ZpzZo1SkxM1ODBg7Vnzx5NmTJFlZWVmjp1qq5cueK0xmeffebyDu7MzMx2r9GdOwaAzoye6PBae/3N73fnz5+3f19YWKjc3Fxt377d3mqlurpaaWlpWrx4sdP5w4cP1/Xr1z2q+bd/+7eSpPnz59vHAgICZBiGAgIC1Nzc7HTeqlWrNGPGDG3ZskV9+vTRf//3f6t79+6aO3euVqxY4XTOSy+9pNLSUu3fv99+C19ZWZmWL1+u9PR0bd682Sd1JGnFihXKz89XYmKiRo4c6dYHN2bWDwAAAADwg0uXLtlD4Ndff91U6w53eodL0p/+9Cdt2rSpzdYioaGhmjlzphoaGjxqHeOLdjMDBw7UsWPH1LdvXx04cEB79uyRJF27dk1BQUEur9fTPu+3GzNmjPr3769+/fpp3bp1ysvLU25urtOQ2kz/+t///vdasmSJQkND1b9//1Z/awcEBLgM0Z3dMZCTk9PqjoFZs2Y53DEAdEbsRAf8aOjQoSoqKtLo0aNbjVdUVGjmzJmtAvcWx48f1+rVq5WZmamRI0c67Cp3djjphQsX2rwOV7enWSwWlZeXKzo6WhaLRceOHVNMTIzKy8uVmppq70N+u9DQUBUVFdlfmFuUlJRo9uzZslqtPqnTUqugoEDTp09v8/ndzsz6AQAAAACcc3dXtJne4Z4w0zrGF+1mcnNztWLFCntIfeLECXXp0kWbNm3Svn37VFJS0u61u7tr22xbG3f619/uoYce0osvvqiMjIx2r73F3X7HAOBr7EQH/Ojy5ctqampyGG9ubtZXX33ldI7FYtH//d//OfSbb2tXuTt935zp3r27/ZTw8PBwXbx4UTExMerTp4+++OILp3NsNpsiIiIcxsPDw2Wz2XxWR5J69Oihhx9+2KPnZGb9AAAAAADOubsr+o9//KP+8R//UZL0/vvvyzAM1dXVaefOnVqzZk2bIbo7rUVuD6vdCa7NzrnTiy++qPHjx9tD6pa/bYcMGaI1a9a4nOfpru07Q+r169e3CqkfeOABvfHGG4qMjHR4jpMnT9bYsWNbjScmJrq8tmvXrmnWrFkerYO7dwyYXWfgbsNOdMCPZsyYoUuXLmnbtm0aM2aMpFu70BctWqQHH3xQH374ocOc8ePHq1u3blqxYoXTgzFbTsZ2pXfv3vrkk080ZMiQdq/vqaee0i9+8Qs9//zzSktL0//8z/9o+fLl2rVrl65du6by8nKHOVOnTlW/fv1UUFBgv3Xt+vXrSk1N1dWrV3X48GGf1JGkDRs2qLa2Vjk5OW734Pd2/QAAAAAAnu+KNnvAZXutRU6cONHutbrbOsbMHHcPWb2dmV3bU6dO1cKFC9sMqZuamnT06NFWf9ea6V+/YMECjRs3Tn/3d3/n0fMC7ieE6IAfWa1Wpaam6sCBA/a2Ik1NTZo2bZry8/MVHh7uMCckJEQnT56091D3VK9evVRZWelWiP7xxx/r22+/1eTJk/X1118rJSVF//Vf/6WoqCjl5eU57dF26tQpJSQk6MaNG/afV1ZWKjAwUIcOHXJ6gIiZOpKUlJSkkpIS9e3bV7GxsQ6tWfbt2+cwx9v1AwAAAID7nZkQ2OwBl2Zai5hpHWO23YyZkNpsIG6Gu4eYZmdn279vaGjQm2++qcTERI0aNcrhb+3ly5c7reXtYaRAZ0KIDnSAmpoae9/v4cOHa9iwYS4fO2nSJGVmZuqJJ54wVcuTEN0sm82m3bt3259TTEyMkpOTFRwc7NM6L7zwQps/37Fjh8OYt+sHAAAAAPc7MyGw2d7hntxN3aJ///46ePCg4uLiVFhYqKysLFVWVmrnzp3aunWrTp486ZM5kvshtS94G1K31b9+8ODBbl1DQECAamtrHcZ9cccA0JkQogN3ub179+q1117Tyy+/7PQT4UceeaTN+UuWLNGvf/1rhYaG/ijXt3btWkVERGj+/PmtxvPy8mS1Wj3aPfBj8Hb9AAAAAADmeHrApWSutYiZ1jFm283czt1DViXPA3FfhdTuHmLaoiUmbK+Fqpk7BoDOjBAd8KPm5mbl5+eruLjY6Quns9O/Ww4puV1AQMCPcjDmN998o8zMTJcv7FevXnWYM2jQIBUWFmrixImtxsvLyzVnzhydP3/eJ3VuZ7VaVV1dLUmKjo5WWFiYy8f6c/0AAAAA4F7laQjsSe9wb1uLmGkdY7bdzJ3cCanNBOLehNSe9q+XpO3bt2vjxo367LPPJElRUVFauXKlFi5c6LSGmTsGgM6sW0dfAHA/WbFihfLz85WYmKiRI0e6dTimsxDamdvfdLTHVT+zefPm6ezZs1qwYIHTQzid+fLLLzVgwACH8bCwMF2+fNlndaRbb6aWLVumgoIC+5u2rl27KiUlRZs2bVJISIjDHHfXDwAAAADgXHshsLMQPSEhwe3e4Rs3bmz17549e6q0tFSlpaWtxgMCApz+Pbty5UolJyfbW8fEx8dLkv74xz9q1KhRTmuamdPCWUidk5PTKqSeNWuWPaRes2aNfvOb33gUiF+7dk2zZs1y+/Et7uxfv379+lb96x944AG98cYbioyMtI9lZmbqzTff1LJlyzRhwgRJ0rFjx7Rq1SpdvHhRv/rVrxzqzJo1S4cOHeIwUtw32IkO+FFoaKgKCgo0ffp0n//uO/uZWa1W2Ww2WSwWSVJdXZ1CQkIUHh7utJ+ZdKt/ellZmcuDPZ2JiopSVlaW5s6d22p8165dysrKclrLTB1JWrx4sQ4fPqycnBz7rX9lZWVavny5nnzySW3evNmj3wcAAAAAaJ+ZXdG+6B3ubmsRyVzrGDNzzByyambXtpm2NpK5/vVhYWHKzs7Wc8891+px77zzjpYtW2bfle+Lw0iBzooQHfCjyMhI/eEPf2jzING2uPvCW1hYqNzcXG3fvl3R0dGSpOrqaqWlpWnx4sVKTk52Om/cuHHatGmTfvrTn7p9TevXr9f69ev1z//8z5oyZYokqbi4WK+88orS09P1D//wDz6pI936EKKoqMi+Q6BFSUmJZs+eLavV2uZ8bjcDAAAAAM95+7eUJ73DJc9bi3jSOsabOZK5kNrdQLyjQmqLxaLjx48rKiqq1XhNTY3Gjx+vuro6SY6b91xxdRgp0JkRogN+tGHDBtXW1ionJ8ftFia369WrlyorK9t94zJ06FAVFRVp9OjRrcYrKio0c+ZMly1Ojh8/rtWrVyszM1MjR450eJHu3bu3wxzDMLR69WplZ2ersbFRkhQUFKSMjAyXp4WbqSNJISEhqqioUExMTKvxTz/9VOPHj1dDQ4PTeS3cXT8AAAAAwA/M7oq+nbsHXLpqLZKTk6NVq1Y5bS0SGBjodusYb+Z4wkwg7quQ2tP+9cuWLVP37t315ptvthr/5S9/qevXr+utt95q83o8uWMA6KwI0QE/SkpKUklJifr27avY2FiHF859+/a1Od/dEDgkJESlpaUaN25cq/GPPvpI8fHxstlsTud99tlnev755x0ONXHnEM76+npVVVUpODhYUVFRLj+R96bO1KlT1a9fPxUUFCgoKEiSdP36daWmpurq1as6fPiwy5oSIToAAAAAuMsXu6LNHHDpbmuR25lpHeNNuxl3Qmpf7tr2JKQ2c4hpy9ljAwcOtN8xXl5erosXLyolJaXV//ftQbundwwAnRkhOuBHL7zwQps/37FjR5s/X7JkiX79618rNDS0zcfNmDFDly5d0rZt2zRmzBhJt3ahL1q0SA8++KA+/PBDp/PGjx+vbt26acWKFU4P/Gy5Fc1bZuucOnVKCQkJunHjhv22v8rKSgUGBurQoUOtdi844+76AQAAAMD9ztsQ2EzvcMn91iKueNo6xtM5ZkLq23kSiJsJqc30r3e3rU1AQICOHDkiydwdA0BnRogO3IOsVqtSU1N14MAB+yfGTU1NmjZtmvLz8xUeHu50XkhIiE6ePGnvo/5j8aaOzWbT7t27debMGUlSTEyMkpOTFRwc7OvLBAAAAADcwd0Q2EzvcMn71iKS+61jzMwxE1JLngfiZkNqf50FZuaOAaAzI0QHOoDValV1dbUkKTo6WmFhYa1+fvttc+1p6zCRmpoae9g8fPjwdg80nTRpkjIzM/XEE0+4Xd8Ms3XWrl2riIgIzZ8/v9V4Xl6erFar/U2Mr9YPAAAAAHCLv1p3mG0tYqZ1jJk5ZkJqM4G42ZDaF/3r3eHtHQNAZ0OIDvhRQ0OD/Q1By+1qXbt2VUpKijZt2qSQkBBJjrfNWa1W2Ww2WSwWSVJdXZ1CQkIUHh7u0xOv9+7dq9dee00vv/yy0z53jzzySIfWGTRokAoLCzVx4sRW4+Xl5ZozZ479wNSOWj8AAAAAuBeZ3RXt6QGXkrnWImZax5htN2MmpDYTiHsSUvuif72nfHHHANCZEKIDfrR48WIdPnxYOTk5evTRRyVJZWVlWr58uZ588klt3rzZYU5hYaFyc3O1fft2e/uT6upqpaWlafHixUpOTnaY09zcrPz8fBUXFzt9s9LyRuNOXbp0cRgLCAhw62BRT5itExQUpKqqKoeQvLa2ViNGjNB3333nMMfM+gEAAAAAfmAmBPa2d7gnzLSO8WROZWWlfcxMSG1m17YnIbUvDzF1l9k7BoDOihAd8KPQ0FAVFRUpPj6+1XhJSYlmz54tq9XqMGfo0KEqKirS6NGjW41XVFRo5syZ9t3Xt1u6dKny8/OVmJioAQMGOPSq27hxo9Pru3DhQpvX/9BDD7X5c3eZrRMVFaWsrCzNnTu31fiuXbuUlZXl9M2AmfUDAAAAAPzATAhstnf43cgXh6x6umvbFyG1J4eYesrMHQNAZ9atoy8AuJ/YbDZFREQ4jIeHh8tmszmdc/nyZTU1NTmMNzc366uvvnI6Z8+ePXrvvfc0ffp0j67PVyH5j1UnLS1NK1eu1M2bNzVlyhRJUnFxsV555RWlp6c7nWNm/QAAAAAAP5g3b542b97sENZu3brV5d29165d06xZs/xxeZLMtY5xd46rzVeehNTbt2/XoUOHnAbiL730kv1xLWt8+vRpjRkzRpJ07tw5Sbc25oWGhur06dP2xzur7Y/+9SUlJT77XUBnwE50wI+mTp2qfv36qaCgQEFBQZKk69evKzU1VVevXtXhw4cd5syYMUOXLl3Stm3b7C+gFRUVWrRokR588EF9+OGHDnMiIyP1hz/8od2DRNvirxO9PaljGIZWr16t7OxsNTY2SrrV4iUjI8PlmyIz6wcAAAAA+IGZXdH+OuBSMtc6xpt2M56G1P7ctW22fz2AthGiA3506tQpJSQk6MaNG4qLi5MkVVZWKjAwUIcOHVJsbKzDHKvVqtTUVB04cMD+xqSpqUnTpk1Tfn6+wsPDHeZs2LBBtbW1ysnJMX3bVq9evVRZWfmjh+hm6tTX16uqqkrBwcGKiopy2b9OMrd+AAAAAIAfuBsCX7p0SUuXLpXkvwMuJXOtY8y2m7nbQ2oz/esBtI8QHfAzm82m3bt368yZM5KkmJgYJScnKzg4uM15NTU19jnDhw9vc5d5UlKSSkpK1LdvX8XGxjq8Wdm3b1+713k3h+hmeLJ+AAAAAADPdcQBl5K5O6nN3n19t4fUZvrXA2gfPdEBP1q7dq0iIiKUlpbWajwvL09Wq7XNT8CHDRvmdvBrsViUlJTk1bXOnTtXvXv39up33E11PFk/AAAAAIDnfNE73IxZs2bp0KFDHrWOMTNHkm7evKmxY8c6jP/VX/2V0/O4/M1M/3oA7WMnOuBHgwYNUmFhoSZOnNhqvLy8XHPmzHH6hqO5uVn5+fkqLi52etgJp1y3jfUDAAAAgI7xYx5wmZ2dbf/e3dYxZubcadmyZerevbtDSP3LX/5S169f11tvveXV8/KWmf71ANpHiA74UVBQkKqqqhxucautrdWIESP03XffOcxZunSp8vPzlZiYqAEDBjh8cr9x40aX9axWq6qrqyVJ0dHRCgsLc3jM7W8i2uNNzzp/1bmTN+sHAAAAADDnx+4dbqZ1jC/azdztIbU/DzEF7ieE6IAfRUVFKSsrS3Pnzm01vmvXLmVlZTl9kQ4NDVVBQYGmT5/udp2Ghgb7C3vLzuuuXbsqJSVFmzZtUkhIiP2xd76JsFqtstlsslgskqS6ujqFhIQoPDzcq551/qpzJzPrBwAAAADwTkf1DjfTOsaTOYTUwP2JnuiAH6WlpWnlypW6efOmpkyZIkkqLi7WK6+8ovT0dKdzevTooYcfftijOi+99JJKS0u1f/9+Pfroo5KksrIyLV++XOnp6dq8ebP9sbe3kCksLFRubq62b9+u6OhoSVJ1dbXS0tK0ePFij67hTv6qcycz6wcAAAAA8I6/e4ebaR1jZk5JSYlvLxxAp8BOdMCPDMPQ6tWrlZ2drcbGRkm3WrxkZGQoMzPT6ZwNGzaotrZWOTk5bn+SHhoaqqKiIsXHx7caLykp0ezZs2W1Wp3OGzp0qIqKijR69OhW4xUVFZo5c6bLQ2I85a86krn1AwAAAAB4x5+9w820jvmx280AuLcQogMdoL6+XlVVVQoODlZUVJQCAwNdPjYpKUklJSXq27evYmNjHQ472bdvn8OckJAQVVRUKCYmptX4p59+qvHjx6uhocFprZCQEJWWlmrcuHGtxj/66CPFx8fLZrO5+xTb5K86krn1AwAAAAB4x5+9w820jumodjMAOifauQAdoGfPng4BsisWi0VJSUke/f4JEyYoKytLBQUFCgoKkiRdv35dr7/+uv0TdmemTp2qxYsXa9u2bRozZoykW7vDlyxZoieeeMKja2iLv+pI5tYPAAAAAOCd06dP2//eO3funKRbd02Hhobq9OnT9sf54o5hM61j/N1uBkDnxk504B506tQpJSQk6MaNG4qLi5MkVVZWKjAwUIcOHVJsbKzTeVarVampqTpw4IB9V0BTU5OmTZum/Px8hYeH++T6/FUHAAAAAHDvM9M6xp/tZgB0foToQCdhtVpVXV0tSYqOjlZYWFibj7fZbNq9e7fOnDkjSYqJiVFycrKCg4PbrVVTU2OfN3z4cA0bNszLq+/YOpLn6wcAAAAA6BzMtI7xZ7sZAJ0fITpwl2toaLC/uH///feSpK5duyolJUWbNm1SSEiIw5y1a9cqIiJC8+fPbzWel5cnq9WqjIwMv1z73cDM+gEAAAAAOo/Jkye79biAgAAdOXLE9BwA9y9CdOAut3jxYh0+fFg5OTl69NFHJUllZWVavny5nnzySW3evNlhzqBBg1RYWKiJEye2Gi8vL9ecOXN0/vx5p7Wam5uVn5+v4uJiff311/bQuYWv3jj4q45kbv0AAAAAAACAFoTowF0uNDRURUVFio+PbzVeUlKi2bNny2q1OswJCgpSVVWVBg8e3Gq8trZWI0aM0Hfffee01tKlS5Wfn6/ExEQNGDDA4YCXjRs3evdk/FxHMrd+AAAAAAAAQItuHX0BANpms9kUERHhMB4eHi6bzeZ0zsCBA3X06FGHEP3o0aOKjIx0WWvPnj167733NH36dO8uuh3+qiOZWz8AAAAAAACgRZeOvgAAbZswYYKysrJa7R6/fv26Xn/9dU2YMMHpnLS0NK1cuVI7duzQhQsXdOHCBeXl5WnVqlVKS0tzWatHjx56+OGHff4cOqqOZG79AAAAAAAAgBa0cwHucqdOnVJCQoJu3LihuLg4SVJlZaUCAwN16NAhxcbGOswxDEOrV69Wdna2GhsbJd1q8ZKRkaHMzEyXtTZs2KDa2lrl5OQ4tFjxJX/VkcytHwAAAAAAANCCEB3oBGw2m3bv3q0zZ85IkmJiYpScnKzg4OA259XX16uqqkrBwcGKiopSYGBgm49PSkpSSUmJ+vbtq9jYWHXv3r3Vz/ft2+fdE/FznRZm1w8AAAAAAACgJzpwl1u7dq0iIiIc2rDk5eXJarUqIyPD5dyePXtq3LhxbteyWCxKSkoyfa13Wx3Ju/UDAAAAAAAA2IkO3OUGDRqkwsJCTZw4sdV4eXm55syZo/Pnz3fQlXUOrB8AAAAAAAC8wU504C735ZdfasCAAQ7jYWFhunz58o9S02q1qrq6WpIUHR2tsLCwTlunI9YPAAAAAAAA944uHX0BANo2cOBAHT161GH86NGjioyM9GmthoYGzZ8/XwMGDNCkSZM0adIkRUZGasGCBbLZbJ2ujuTf9QMAAAAAAMC9hxAduMulpaVp5cqV2rFjhy5cuKALFy4oLy9Pq1atcujz7a2XXnpJpaWl2r9/v+rq6lRXV6cPPvhApaWlSk9P73R1JP+uHwAAAAAAAO499EQH7nKGYWj16tXKzs5WY2OjJCkoKEgZGRnKzMz0aa3Q0FAVFRUpPj6+1XhJSYlmz54tq9XaqepI/l0/AAAAAAAA3HsI0YFOor6+XlVVVQoODlZUVJQCAwN9XiMkJEQVFRWKiYlpNf7pp59q/Pjxamho6FR1bueP9QMAAAAAAMC9hxAdgN3UqVPVr18/FRQUKCgoSJJ0/fp1paam6urVqzp8+HCnqgMAAAAAAAB4ixAdgN2pU6eUkJCgGzduKC4uTpJUWVmpwMBAHTp0SLGxsZ2qDgAAAAAAAOAtQnQArdhsNu3evVtnzpyRJMXExCg5OVnBwcGdsg4AAAAAAADgDUJ0AHZr165VRESE5s+f32o8Ly9PVqtVGRkZnaoOAAAAAAAA4K0uHX0BAO4eb7/9toYPH+4wHhsbqy1btnS6OgAAAAAAAIC3CNEB2H355ZcaMGCAw3hYWJguX77c6eoAAAAAAAAA3iJEB2A3cOBAHT161GH86NGjioyM7HR1AAAAAAAAAG916+gLAHD3SEtL08qVK3Xz5k1NmTJFklRcXKxXXnlF6enpna4OAAAAAAAA4C0OFgVgZxiGVq9erezsbDU2NkqSgoKClJGRoczMzE5XBwAAAAAAAPAWIToAB/X19aqqqlJwcLCioqIUGBjYqesAAAAAAAAAZhGiAwAAAAAAAADgAgeLAgAAAAAAAADgAiE6AAAAAAAAAAAuEKIDAAAAAAAAAOACIToAAAAAAAAAAC4QogMAAAAAAAAA4AIhOgAAAHAPCAgIaPPrtdde6+hLBAAAADqlbh19AQAAAAC8d/nyZfv37777rjIzM1VdXW0f69mzZ0dcFgAAANDpsRMdAAAAuAf079/f/tWnTx8FBAS0GmsJ0U+fPq2f//zn6tmzpyIiIjRv3jxduXLF/nvi4+MddrHPnDmzo54WAAAA0OEI0QEAAID7RF1dnaZMmaLRo0fr448/1oEDB/TVV19p9uzZrR6Xlpamy5cv27+2bdvWQVcMAAAAdDzauQAAAAD3iZycHI0ePVq//e1v7WN5eXkaOHCgampqNGzYMElSSEiI+vfv31GXCQAAANxVCNEBAACA+0RlZaVKSkqc9kc/d+6cPUQHAAAA8ANCdAAAAOA+UV9frxkzZuif/umfHH42YMCADrgiAAAA4O5HiA4AAADcJ8aMGaN/+Zd/0aBBg9StG38KAAAAAO7gYFEAAADgPvH3f//3unr1qp577jkdP35c586d08GDB/XCCy+oubm5oy8PAAAAuCsRogMAAAD3icjISB09elTNzc166qmnNGrUKK1cuVIWi0VduvCnAQAAAOBMgGEYRkdfBAAAAAAAAAAAdyO2mwAAAAAAAAAA4AIhOgAAAAAAAAAALhCiAwAAAAAAAADgAiE6AAAAAAAAAAAuEKIDAAAAAAAAAOACIToAAAAAAAAAAC4QogMAAAAAAAAA4AIhOgAAAAAAAAAALhCiAwAAAAAAAADgAiE6AAAAAAAAAAAuEKIDAAAAAAAAAOACIToAAAAAAAAAAC78fwq6Sf/qustQAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import json\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "with open(\"train.json\", \"r\", encoding=\"utf-8\") as file:\n", " data = json.load(file)\n", "\n", "filtered_data = [entry for entry in data if entry[\"support\"] >= 3]\n", "\n", "tags = [entry[\"label_name\"] for entry in filtered_data]\n", "precision = [entry[\"precision\"] for entry in filtered_data]\n", "recall = [entry[\"recall\"] for entry in filtered_data]\n", "\n", "indices = np.arange(len(tags))\n", "bar_width = 0.35\n", "\n", "fig, ax = plt.subplots(figsize=(15, 7))\n", "ax.bar(indices - bar_width/2, precision, bar_width, label=\"Precision\")\n", "ax.bar(indices + bar_width/2, recall, bar_width, label=\"Recall\")\n", "\n", "ax.set_xlabel(\"Тег\")\n", "ax.set_ylabel(\"Значение\")\n", "ax.set_title(\"Precision и Recall по тегам\")\n", "ax.set_xticks(indices)\n", "ax.set_xticklabels(tags, rotation=90)\n", "ax.legend()\n", "\n", "plt.tight_layout()\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#multilabel\n", "optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)\n", "criterion = torch.nn.BCEWithLogitsLoss()\n", "\n", "def lr_lambda(epoch):\n", " if epoch == 0:\n", " return 1.0\n", " elif epoch == 1:\n", " return 4.0\n", " else:\n", " return 4.0 * (1/2) ** (epoch - 1)\n", "\n", "scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)\n", "\n", "\n", "train_losses = []\n", "val_losses = []\n", "lrs = []\n", "num_epochs = 10\n", "best_val_loss = float('inf')\n", "\n", "for epoch in range(num_epochs):\n", " avg_train_loss = run_train_epoch(model, train_loader, optimizer, criterion, device)\n", " avg_val_loss = run_val_epoch(model, val_loader, criterion, device)\n", " \n", " train_losses.append(avg_train_loss)\n", " val_losses.append(avg_val_loss)\n", " current_lr = optimizer.param_groups[0]['lr']\n", " lrs.append(current_lr)\n", " \n", " plot_metrics(list(range(1, epoch+2)), train_losses, val_losses, lrs)\n", " print(f'Epoch {epoch+1}, Train Loss: {avg_train_loss:.4f}, Val Loss: {avg_val_loss:.4f}, LR: {current_lr:.6f}')\n", " \n", " \n", " \n", " # Сохранение текущей модели\n", " torch.save({\n", " 'epoch': epoch+1,\n", " 'model_state_dict': model.state_dict(),\n", " 'optimizer_state_dict': optimizer.state_dict(),\n", " 'train_losses': train_losses,\n", " 'val_losses': val_losses,\n", " 'lrs': lrs\n", " }, 'last_model.pt')\n", " \n", " # Сохранение лучшей модели по вал\n", " if avg_val_loss < best_val_loss:\n", " best_val_loss = avg_val_loss\n", " torch.save({\n", " 'epoch': epoch+1,\n", " 'model_state_dict': model.state_dict(),\n", " 'optimizer_state_dict': optimizer.state_dict(),\n", " 'train_losses': train_losses,\n", " 'val_losses': val_losses,\n", " 'lrs': lrs\n", " }, 'best_model.pt')\n", " \n", " scheduler.step()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "### проверка моделей\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", "num_classes = 101 #750 to other\n", "tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')\n", "config = DistilBertConfig.from_pretrained(\n", " 'distilbert-base-cased',\n", " num_labels=num_classes,\n", " problem_type=\"multi_label_classification\"\n", ")\n", "model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-cased', config=config)\n", "checkpoint = torch.load(\"models/003/best_model.pt\", map_location=device)\n", "model.load_state_dict(checkpoint[\"model_state_dict\"])\n", "model.to(device)\n", "model.eval()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import precision_score, recall_score\n", "def evaluate_model(model, val_loader, device, threshold=0.5):\n", " model.eval()\n", " all_preds = []\n", " all_labels = []\n", " hits = 0\n", " total = 0\n", " top1_hits = 0\n", "\n", " with torch.no_grad():\n", " for batch in tqdm(val_loader, desc=\"Validation\"):\n", " input_ids = batch[\"input_ids\"].to(device)\n", " attention_mask = batch[\"attention_mask\"].to(device)\n", " labels = batch[\"labels\"].to(device)\n", "\n", " outputs = model(input_ids=input_ids, attention_mask=attention_mask)\n", " logits = outputs.logits\n", " probs = torch.sigmoid(logits)\n", " \n", " # Multi-label\n", " preds = (probs > threshold).int()\n", " all_preds.append(preds.cpu())\n", " all_labels.append(labels.cpu())\n", " labels = labels.bool()\n", " preds = preds.bool()\n", " batch_hits = (preds & labels).sum(dim=1).bool().sum().item()\n", " hits += batch_hits\n", " total += labels.size(0)\n", " top1_preds = logits.argmax(dim=1)\n", " top1_hits += (labels.gather(1, top1_preds.unsqueeze(1)) .sum().item())\n", "\n", " all_preds = torch.cat(all_preds).numpy()\n", " all_labels = torch.cat(all_labels).numpy()\n", "\n", " example_accuracy = hits / total\n", " top1_accuracy = top1_hits / total\n", " \n", " precision_per_class = precision_score(all_labels, all_preds, average=None, zero_division=0)\n", " recall_per_class = recall_score(all_labels, all_preds, average=None, zero_division=0)\n", " accuracy_per_class = [(all_labels[:, i] == all_preds[:, i]).mean() for i in range(num_classes)]\n", "\n", " micro_precision = precision_score(all_labels, all_preds, average=\"micro\", zero_division=0)\n", " micro_recall = recall_score(all_labels, all_preds, average=\"micro\", zero_division=0)\n", " micro_f1 = 2 * (micro_precision * micro_recall) / (micro_precision + micro_recall + 1e-8)\n", " \n", " macro_precision = precision_score(all_labels, all_preds, average=\"macro\", zero_division=0)\n", " macro_recall = recall_score(all_labels, all_preds, average=\"macro\", zero_division=0)\n", " macro_f1 = 2 * (macro_precision * macro_recall) / (macro_precision + macro_recall + 1e-8)\n", "\n", " return {\n", " \"example_accuracy\": example_accuracy,\n", " \"top1_accuracy\": top1_accuracy,\n", " \"precision_per_class\": precision_per_class,\n", " \"recall_per_class\": recall_per_class,\n", " \"accuracy_per_class\": accuracy_per_class,\n", " \"micro_metrics\": (micro_precision, micro_recall, micro_f1),\n", " \"macro_metrics\": (macro_precision, macro_recall, macro_f1)\n", " }" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def print_metrics(metrics):\n", " print(f\"Example Accuracy: {metrics['example_accuracy']:.4f}\")\n", " print(f\"Top-1 Accuracy: {metrics['top1_accuracy']:.4f}\\n\")\n", " \n", " print(\"Class\\tPrecision\\tRecall\\tAccuracy\")\n", " for i, (prec, rec, acc) in enumerate(zip(\n", " metrics[\"precision_per_class\"], \n", " metrics[\"recall_per_class\"], \n", " metrics[\"accuracy_per_class\"]\n", " )):\n", " print(f\"{i}\\t{prec:.4f}\\t\\t{rec:.4f}\\t{acc:.4f}\")\n", " \n", " print(\"\\nMicro Metrics:\")\n", " print(f\"Precision: {metrics['micro_metrics'][0]:.4f}, Recall: {metrics['micro_metrics'][1]:.4f}, F1: {metrics['micro_metrics'][2]:.4f}\")\n", " \n", " print(\"\\nMacro Metrics:\")\n", " print(f\"Precision: {metrics['macro_metrics'][0]:.4f}, Recall: {metrics['macro_metrics'][1]:.4f}, F1: {metrics['macro_metrics'][2]:.4f}\")\n", "\n", "metrics = evaluate_model(model, val_loader, device)\n", "print_metrics(metrics)\n", "\n", "plt.figure(figsize=(15, 5))\n", "plt.bar(range(num_classes), metrics[\"precision_per_class\"], alpha=0.7, label=\"Precision\")\n", "plt.bar(range(num_classes), metrics[\"recall_per_class\"], alpha=0.7, label=\"Recall\")\n", "plt.xlabel(\"Class ID\")\n", "plt.ylabel(\"Score\")\n", "plt.title(\"Class-wise Metrics\")\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Interpretation of wave function by coherent ensembles of trajectories\n", "We re-use some original ideas of de~Broglie, Schr\\\"odiger, Dirac and Feynman to revise the ensemble interpretation of wave function in quantum mechanics. To this end we introduce coherence (auto-concordance) of ensembles of quantum trajectories in the space-time. The coherence condition accounts phases proportional to classical action, which are in foundation of the Feynman path integral technique. Therefore, our interpretation is entirely based on well-known and tested concepts and methods of wave mechanics. Similarly to other ensemble interpretations our approach allows us to avoid all problems and paradoxes related to wave function collapse during a measurement process. Another consequence is that no quantum computation or quantum cryptography method will ever work if it assumes that a particular q-bit represents the entire wave function.\n", "[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.\n", " 0. 0. 0. 0. 0.]\n", "Sample 1:\n", "quant-ph: 0.9962\n", "\n", "Sample 2:\n", "stat.ML: 0.9272\n", "cs.LG: 0.9032\n", "\n" ] } ], "source": [ "def predict(texts, model, tokenizer, top_threshold=0.95):\n", " model.eval()\n", " predictions = []\n", " \n", " with torch.no_grad():\n", " for text in texts:\n", " inputs = tokenizer(\n", " text,\n", " max_length=512,\n", " padding='max_length',\n", " truncation=True,\n", " return_tensors='pt'\n", " ).to(device)\n", " \n", " outputs = model(**inputs)\n", " probs = torch.sigmoid(outputs.logits).cpu().numpy().flatten()\n", " \n", " # Сортировка и накопление вероятностей\n", " sorted_indices = np.argsort(-probs)\n", " cumulative = 0\n", " selected = []\n", " \n", " for idx in sorted_indices:\n", " cumulative += probs[idx]\n", " selected.append((unique_tags[idx], probs[idx]))\n", " if cumulative >= top_threshold:\n", " break\n", " \n", " predictions.append(selected)\n", " \n", " return predictions\n", "j = 11\n", "# Пример использования\n", "test_samples = [\n", " X_train.iloc[j]['title'] + ' ' + X_train.iloc[j]['summary'], # С текстом\n", " X_train.iloc[j]['title']\n", "]\n", "print(X_train.iloc[j]['title'])\n", "print(X_train.iloc[j]['summary'])\n", "print(y_train.iloc[j])\n", "predictions = predict(test_samples, model, tokenizer)\n", "\n", "for i, pred in enumerate(predictions):\n", " print(f\"Sample {i+1}:\")\n", " for tag, prob in pred:\n", " print(f\"{tag}: {prob:.4f}\")\n", " print()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-cased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#### predicts\n", "import numpy as np\n", "import torch\n", "from transformers import DistilBertForSequenceClassification, DistilBertTokenizer\n", "\n", "tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')\n", "config = DistilBertConfig.from_pretrained(\n", " 'distilbert-base-cased',\n", " num_labels=num_classes,\n", " problem_type=\"single_label_classification\"\n", ")\n", "\n", "# Инициализация модели\n", "model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-cased', config=config)\n", "\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "model.to(device)\n", "\n", "checkpoint = torch.load(\"best_model.pt\", map_location=device)\n", "model.load_state_dict(checkpoint[\"model_state_dict\"])\n" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['Other',\n", " 'astro-ph.CO',\n", " 'astro-ph.EP',\n", " 'astro-ph.GA',\n", " 'astro-ph.HE',\n", " 'astro-ph.IM',\n", " 'astro-ph.SR',\n", " 'cond-mat.dis-nn',\n", " 'cond-mat.mes-hall',\n", " 'cond-mat.mtrl-sci',\n", " 'cond-mat.quant-gas',\n", " 'cond-mat.soft',\n", " 'cond-mat.stat-mech',\n", " 'cond-mat.str-el',\n", " 'cond-mat.supr-con',\n", " 'cs.AI',\n", " 'cs.CC',\n", " 'cs.CE',\n", " 'cs.CG',\n", " 'cs.CL',\n", " 'cs.CR',\n", " 'cs.CV',\n", " 'cs.CY',\n", " 'cs.DB',\n", " 'cs.DC',\n", " 'cs.DM',\n", " 'cs.DS',\n", " 'cs.GR',\n", " 'cs.GT',\n", " 'cs.HC',\n", " 'cs.IR',\n", " 'cs.IT',\n", " 'cs.LG',\n", " 'cs.LO',\n", " 'cs.MA',\n", " 'cs.MM',\n", " 'cs.NA',\n", " 'cs.NE',\n", " 'cs.NI',\n", " 'cs.PL',\n", " 'cs.RO',\n", " 'cs.SD',\n", " 'cs.SE',\n", " 'cs.SI',\n", " 'cs.SY',\n", " 'eess.AS',\n", " 'eess.IV',\n", " 'eess.SP',\n", " 'eess.SY',\n", " 'gr-qc',\n", " 'hep-ex',\n", " 'hep-lat',\n", " 'hep-ph',\n", " 'hep-th',\n", " 'math-ph',\n", " 'math.AC',\n", " 'math.AG',\n", " 'math.AP',\n", " 'math.AT',\n", " 'math.CA',\n", " 'math.CO',\n", " 'math.CV',\n", " 'math.DG',\n", " 'math.DS',\n", " 'math.FA',\n", " 'math.GR',\n", " 'math.GT',\n", " 'math.IT',\n", " 'math.LO',\n", " 'math.MG',\n", " 'math.MP',\n", " 'math.NA',\n", " 'math.NT',\n", " 'math.OC',\n", " 'math.PR',\n", " 'math.QA',\n", " 'math.RA',\n", " 'math.RT',\n", " 'math.ST',\n", " 'nucl-ex',\n", " 'nucl-th',\n", " 'physics.app-ph',\n", " 'physics.atom-ph',\n", " 'physics.bio-ph',\n", " 'physics.chem-ph',\n", " 'physics.comp-ph',\n", " 'physics.data-an',\n", " 'physics.flu-dyn',\n", " 'physics.ins-det',\n", " 'physics.med-ph',\n", " 'physics.optics',\n", " 'physics.soc-ph',\n", " 'q-bio.NC',\n", " 'q-bio.PE',\n", " 'q-bio.QM',\n", " 'quant-ph',\n", " 'stat.AP',\n", " 'stat.CO',\n", " 'stat.ME',\n", " 'stat.ML',\n", " 'stat.TH']" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "unique_tags" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "import json\n", "\n", "with open('unique_tags.json', 'w', encoding='utf-8') as f:\n", " json.dump(unique_tags, f, ensure_ascii=False, indent=4)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "def predict(texts, model, tokenizer, top_threshold=0.95):\n", " model.eval()\n", " predictions = []\n", " \n", " if len(texts) == 2:\n", " texts = [\" \".join(texts)]\n", " \n", " with torch.no_grad():\n", " for text in texts:\n", " inputs = tokenizer(\n", " text,\n", " max_length=512,\n", " padding='max_length',\n", " truncation=True,\n", " return_tensors='pt'\n", " ).to(device)\n", " \n", " outputs = model(**inputs)\n", " probs = torch.sigmoid(outputs.logits).cpu().numpy().flatten()\n", " \n", " sorted_indices = probs.argsort()[::-1]\n", " cumulative = 0\n", " selected = []\n", " \n", " for idx in sorted_indices:\n", " cumulative += probs[idx]\n", " selected.append((unique_tags[idx], probs[idx]))\n", " if cumulative >= top_threshold:\n", " break\n", " \n", " predictions.append(selected)\n", " \n", " return predictions" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[('quant-ph', 0.99657404)]]\n" ] } ], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-cased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import json\n", "\n", "import numpy as np\n", "import torch\n", "from transformers import DistilBertForSequenceClassification, DistilBertTokenizer\n", "\n", "\n", "with open('unique_tags.json', 'r', encoding='utf-8') as f:\n", " unique_tags = json.load(f)\n", "\n", "def predict(texts, model, tokenizer, unique_tags, top_threshold=0.95, max_tags=4):\n", " \"\"\"\n", " Делает предсказания для списка текстов.\n", "\n", " - Суммируем вероятности всех тегов, чтобы они = 1 (принудительная нормализация).\n", " - Сортируем теги по убыванию вероятности.\n", " - Идём по ним, пока суммарная вероятность не превысит top_threshold или не наберём max_tags.\n", " \"\"\"\n", " device = next(model.parameters()).device\n", " model.eval()\n", " predictions = []\n", " \n", " with torch.no_grad():\n", " for text in texts:\n", " inputs = tokenizer(\n", " text,\n", " max_length=512,\n", " padding='max_length',\n", " truncation=True,\n", " return_tensors='pt'\n", " ).to(device)\n", " \n", " outputs = model(**inputs)\n", " raw_probs = torch.sigmoid(outputs.logits).cpu().numpy().flatten()\n", " \n", " sum_raw = raw_probs.sum()\n", " if sum_raw > 0:\n", " raw_probs /= sum_raw\n", " \n", " sorted_indices = raw_probs.argsort()[::-1]\n", " \n", " cumulative = 0.0\n", " selected = []\n", " \n", " for idx in sorted_indices:\n", " prob = raw_probs[idx]\n", " cumulative += prob\n", " selected.append((unique_tags[idx], float(prob)))\n", " \n", " if cumulative >= top_threshold or len(selected) == max_tags:\n", " break\n", " \n", " predictions.append(selected)\n", " \n", " return predictions\n", "\n", "\n", "tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')\n", "config = DistilBertConfig.from_pretrained(\n", " 'distilbert-base-cased',\n", " num_labels=num_classes,\n", " problem_type=\"single_label_classification\"\n", ")\n", "\n", "# Инициализация модели\n", "model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-cased', config=config)\n", "\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "model.to(device)\n", "\n", "checkpoint = torch.load(\"best_model1.pt\", map_location=device)\n", "model.load_state_dict(checkpoint[\"model_state_dict\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 95 0 70 54 49 90 53 12 13 85 84 15 82 8 64 71 73 36\n", " 86 67 31 10 20 52 32 63 57 33 81 80 74 9 48 5 21 19\n", " 7 44 75 51 88 59 76 47 14 87 62 91 16 99 100 68 6 2\n", " 78 1 46 26 4 40 37 30 77 96 98 56 11 25 17 3 42 83\n", " 65 92 60 50 61 45 94 29 97 55 69 28 38 35 39 72 22 89\n", " 41 79 27 34 24 66 43 58 18 23 93]\n", "[[('quant-ph', 0.99657404)]]\n" ] } ], "source": [ "title = \"Interpretation of wave function by coherent ensembles of trajectories\"\n", "abstract = \"We re-use some original ideas of de~Broglie, Schr\\\"odiger, Dirac and Feynman to revise the ensemble interpretation of wave function in quantum mechanics. To this end we introduce coherence (auto-concordance) of ensembles of quantum trajectories in the space-time. The coherence condition accounts phases proportional to classical action, which are in foundation of the Feynman path integral technique. Therefore, our interpretation is entirely based on well-known and tested concepts and methods of wave mechanics. Similarly to other ensemble interpretations our approach allows us to avoid all problems and paradoxes related to wave function collapse during a measurement process. Another consequence is that no quantum computation or quantum cryptography method will ever work if it assumes that a particular q-bit represents the entire wave function\"\n", "test_samples = [title, abstract]\n", "\n", "predictions = predict(test_samples, model, tokenizer)\n", "print(predictions)" ] } ], "metadata": { "kernelspec": { "display_name": "EDA", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 2 }