Spaces:
Sleeping
Sleeping
Upload 2 files
Browse filesMy updates for link front end to back end
- streamlit_app.py +95 -0
- streamlit_requirements.txt +3 -0
streamlit_app.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# streamlit_app.py
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import requests
|
| 6 |
+
|
| 7 |
+
# ----------------- CONFIGURATION -----------------
|
| 8 |
+
# CRITICAL: REPLACE THIS PLACEHOLDER URL with your actual deployed Docker Space URL
|
| 9 |
+
API_URL = "https://aibtus.ut.aiml.hf.space/predict"
|
| 10 |
+
|
| 11 |
+
# Define static categorical options (MUST match preprocessing categories)
|
| 12 |
+
CATEGORIES = {
|
| 13 |
+
'Product_Sugar_Content': ['no sugar', 'low sugar', 'regular'],
|
| 14 |
+
'Store_Size': ['Low', 'Medium', 'High'],
|
| 15 |
+
'Store_Location_City_Type': ['Tier 1', 'Tier 2', 'Tier 3'],
|
| 16 |
+
'Store_Type': ['Supermarket Type 1', 'Supermarket Type 2', 'Supermarket Type 3', 'Food Mart'],
|
| 17 |
+
'Product_Type': ['Snack Foods', 'Dairy', 'Baking Goods', 'Health and Hygiene', 'Frozen Foods', 'Others',
|
| 18 |
+
'Soft Drinks', 'Household', 'Meat', 'Fruits and Vegetables', 'Breads', 'Breakfast',
|
| 19 |
+
'Hard Drinks', 'Starchy Foods', 'Seafood', 'Canned'],
|
| 20 |
+
'Product_Category_Simplified': ['FD', 'DR', 'NC']
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
FEATURE_COLS = [
|
| 24 |
+
'Product_Weight', 'Product_Sugar_Content', 'Product_Allocated_Area',
|
| 25 |
+
'Product_Type', 'Product_MRP', 'Store_Size',
|
| 26 |
+
'Store_Location_City_Type', 'Store_Type', 'Store_Age',
|
| 27 |
+
'Product_Category_Simplified'
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
# ----------------- APP INTERFACE -----------------
|
| 31 |
+
|
| 32 |
+
st.set_page_config(page_title="SuperKart Sales Forecaster", layout="wide")
|
| 33 |
+
st.title(" SuperKart Sales Forecasting Tool")
|
| 34 |
+
|
| 35 |
+
with st.form("sales_prediction_form"):
|
| 36 |
+
st.header("Product Attributes")
|
| 37 |
+
|
| 38 |
+
col1, col2, col3 = st.columns(3)
|
| 39 |
+
|
| 40 |
+
product_weight = col1.number_input("Product Weight (kg)", min_value=1.0, max_value=20.0, value=10.0, step=0.1)
|
| 41 |
+
product_mrp = col2.number_input("Product MRP (₹)", min_value=10.0, max_value=300.0, value=150.0, step=1.0)
|
| 42 |
+
product_allocated_area = col3.number_input("Product Allocated Area", min_value=0.0, max_value=1.0, value=0.07, step=0.01)
|
| 43 |
+
|
| 44 |
+
product_type = col1.selectbox("Product Type", options=CATEGORIES['Product_Type'])
|
| 45 |
+
product_sugar_content = col2.selectbox("Product Sugar Content", options=CATEGORIES['Product_Sugar_Content'])
|
| 46 |
+
product_category_simplified = col3.selectbox("Product Category (FD/DR/NC)", options=CATEGORIES['Product_Category_Simplified'])
|
| 47 |
+
|
| 48 |
+
st.header("Store Attributes")
|
| 49 |
+
|
| 50 |
+
col4, col5, col6 = st.columns(3)
|
| 51 |
+
|
| 52 |
+
store_type = col4.selectbox("Store Type", options=CATEGORIES['Store_Type'])
|
| 53 |
+
store_location_city_type = col5.selectbox("Store Location City Type", options=CATEGORIES['Store_Location_City_Type'])
|
| 54 |
+
store_size = col6.selectbox("Store Size", options=CATEGORIES['Store_Size'])
|
| 55 |
+
|
| 56 |
+
store_age = st.slider("Store Age (Years)", min_value=5, max_value=35, value=10)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
submitted = st.form_submit_button("Forecast Sales")
|
| 60 |
+
|
| 61 |
+
if submitted:
|
| 62 |
+
input_data = {
|
| 63 |
+
'Product_Weight': product_weight,
|
| 64 |
+
'Product_Sugar_Content': product_sugar_content,
|
| 65 |
+
'Product_Allocated_Area': product_allocated_area,
|
| 66 |
+
'Product_Type': product_type,
|
| 67 |
+
'Product_MRP': product_mrp,
|
| 68 |
+
'Store_Size': store_size,
|
| 69 |
+
'Store_Location_City_Type': store_location_city_type,
|
| 70 |
+
'Store_Type': store_type,
|
| 71 |
+
'Store_Age': float(store_age),
|
| 72 |
+
'Product_Category_Simplified': product_category_simplified
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
payload = [input_data]
|
| 76 |
+
|
| 77 |
+
try:
|
| 78 |
+
st.info(f"Sending request to API at: {API_URL}...")
|
| 79 |
+
response = requests.post(API_URL, json=payload, timeout=15)
|
| 80 |
+
|
| 81 |
+
if response.status_code == 200:
|
| 82 |
+
result = response.json()
|
| 83 |
+
if result['status'] == 'success':
|
| 84 |
+
st.success(f" **Forecast Complete!**")
|
| 85 |
+
st.metric(label="Predicted Sales Revenue", value=f"₹{result['predicted_sales_revenue']:,.2f}")
|
| 86 |
+
st.balloons()
|
| 87 |
+
else:
|
| 88 |
+
st.error(f"Prediction API Error: {result.get('error', 'Unknown error')}")
|
| 89 |
+
else:
|
| 90 |
+
st.error(f"**API Connection Error** (Status {response.status_code}): Check API URL and Docker logs.")
|
| 91 |
+
|
| 92 |
+
except requests.exceptions.Timeout:
|
| 93 |
+
st.error("**Connection Failed:** Request timed out (15s). The Docker API might be slow or unreachable.")
|
| 94 |
+
except Exception as e:
|
| 95 |
+
st.error(f"An unexpected error occurred: {e}")
|
streamlit_requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.36.0
|
| 2 |
+
pandas==2.2.2
|
| 3 |
+
requests==2.32.3
|