Spaces:
Running
Running
Create vision_tools.py
Browse files- vision_tools.py +81 -0
vision_tools.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Vision tools: image captioning using Hugging Face Inference API with a local fallback.
|
| 3 |
+
|
| 4 |
+
Functions:
|
| 5 |
+
- `caption_image(path)`: returns a short caption for an image file.
|
| 6 |
+
"""
|
| 7 |
+
from typing import Optional
|
| 8 |
+
import os
|
| 9 |
+
import logging
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
from huggingface_hub import InferenceApi
|
| 15 |
+
except Exception:
|
| 16 |
+
InferenceApi = None
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
from transformers import pipeline
|
| 20 |
+
except Exception:
|
| 21 |
+
pipeline = None
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
from smolagents import tool
|
| 25 |
+
except Exception:
|
| 26 |
+
tool = None
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def caption_image(path: str, model: str = "nlpconnect/vit-gpt2-image-captioning") -> str:
|
| 30 |
+
"""Caption an image at `path` using HF Inference API when possible, otherwise local pipeline if available.
|
| 31 |
+
|
| 32 |
+
Returns a short textual caption or an error string.
|
| 33 |
+
"""
|
| 34 |
+
if not os.path.exists(path):
|
| 35 |
+
return "(file not found)"
|
| 36 |
+
|
| 37 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 38 |
+
# Try Inference API first
|
| 39 |
+
if hf_token and InferenceApi is not None:
|
| 40 |
+
try:
|
| 41 |
+
client = InferenceApi(repo_id=model, token=hf_token)
|
| 42 |
+
with open(path, "rb") as f:
|
| 43 |
+
out = client(inputs=f)
|
| 44 |
+
# InferenceApi for image-to-text may return text or structure
|
| 45 |
+
if isinstance(out, dict) and "generated_text" in out:
|
| 46 |
+
return out["generated_text"].strip()
|
| 47 |
+
if isinstance(out, list) and len(out) > 0:
|
| 48 |
+
first = out[0]
|
| 49 |
+
if isinstance(first, dict) and "generated_text" in first:
|
| 50 |
+
return first["generated_text"].strip()
|
| 51 |
+
return str(first)
|
| 52 |
+
return str(out)
|
| 53 |
+
except Exception as e:
|
| 54 |
+
logger.warning("HF Inference image captioning failed: %s", e)
|
| 55 |
+
|
| 56 |
+
# Local pipeline fallback (may not be installed or suitable for large models)
|
| 57 |
+
if pipeline is not None:
|
| 58 |
+
try:
|
| 59 |
+
pipe = pipeline("image-to-text", model=model)
|
| 60 |
+
res = pipe(path)
|
| 61 |
+
if isinstance(res, list) and len(res) > 0:
|
| 62 |
+
return res[0].get("generated_text", str(res[0]))
|
| 63 |
+
return str(res)
|
| 64 |
+
except Exception as e:
|
| 65 |
+
logger.warning("Local pipeline image captioning failed: %s", e)
|
| 66 |
+
|
| 67 |
+
return "(image captioning unavailable)"
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# Export a smolagents-wrapped tool if possible
|
| 71 |
+
if tool is not None:
|
| 72 |
+
try:
|
| 73 |
+
@tool
|
| 74 |
+
def caption_image_tool(path: str, model: str = "nlpconnect/vit-gpt2-image-captioning") -> str:
|
| 75 |
+
return caption_image(path, model=model)
|
| 76 |
+
except Exception:
|
| 77 |
+
caption_image_tool = caption_image
|
| 78 |
+
else:
|
| 79 |
+
caption_image_tool = caption_image
|
| 80 |
+
|
| 81 |
+
__all__ = ["caption_image", "caption_image_tool"]
|