Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -111,80 +111,28 @@ print('=' * 70)
|
|
| 111 |
def load_midi(input_midi):
|
| 112 |
|
| 113 |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
|
| 114 |
-
|
| 115 |
-
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)
|
| 116 |
-
|
| 117 |
-
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=16)
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
#=======================================================
|
| 122 |
-
# FINAL PROCESSING
|
| 123 |
-
#=======================================================
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
# Break between compositions / Intro seq
|
| 128 |
|
| 129 |
-
|
| 130 |
-
drums_present = 19331 # Yes
|
| 131 |
-
else:
|
| 132 |
-
drums_present = 19330 # No
|
| 133 |
-
|
| 134 |
-
pat = escore_notes[0][6]
|
| 135 |
|
| 136 |
-
|
| 137 |
|
| 138 |
-
|
| 139 |
-
# MAIN PROCESSING CYCLE
|
| 140 |
-
#=======================================================
|
| 141 |
|
| 142 |
-
|
|
|
|
| 143 |
|
| 144 |
-
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
# Timings...
|
| 148 |
-
|
| 149 |
-
# Cliping all values...
|
| 150 |
-
delta_time = max(0, min(255, e[1]-pe[1]))
|
| 151 |
-
|
| 152 |
-
# Durations and channels
|
| 153 |
-
|
| 154 |
-
dur = max(0, min(255, e[2]))
|
| 155 |
-
cha = max(0, min(15, e[3]))
|
| 156 |
-
|
| 157 |
-
# Patches
|
| 158 |
-
if cha == 9: # Drums patch will be == 128
|
| 159 |
-
pat = 128
|
| 160 |
-
|
| 161 |
-
else:
|
| 162 |
-
pat = e[6]
|
| 163 |
-
|
| 164 |
-
# Pitches
|
| 165 |
-
|
| 166 |
-
ptc = max(1, min(127, e[4]))
|
| 167 |
-
|
| 168 |
-
# Velocities
|
| 169 |
-
|
| 170 |
-
# Calculating octo-velocity
|
| 171 |
-
vel = max(8, min(127, e[5]))
|
| 172 |
-
velocity = round(vel / 15)-1
|
| 173 |
-
|
| 174 |
-
#=======================================================
|
| 175 |
-
# FINAL NOTE SEQ
|
| 176 |
-
#=======================================================
|
| 177 |
-
|
| 178 |
-
# Writing final note asynchronously
|
| 179 |
-
|
| 180 |
-
dur_vel = (8 * dur) + velocity
|
| 181 |
-
pat_ptc = (129 * pat) + ptc
|
| 182 |
-
|
| 183 |
-
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
|
| 184 |
-
|
| 185 |
-
pe = e
|
| 186 |
|
| 187 |
-
return
|
| 188 |
|
| 189 |
#==================================================================================
|
| 190 |
|
|
@@ -198,50 +146,25 @@ def save_midi(tokens, batch_number=None):
|
|
| 198 |
vel = 90
|
| 199 |
pitch = 0
|
| 200 |
channel = 0
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
patches[
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
patch = (ss-2304) // 129
|
| 222 |
-
|
| 223 |
-
if patch < 128:
|
| 224 |
-
|
| 225 |
-
if patch not in patches:
|
| 226 |
-
if 0 in channels:
|
| 227 |
-
cha = channels.index(0)
|
| 228 |
-
channels[cha] = 1
|
| 229 |
-
else:
|
| 230 |
-
cha = 15
|
| 231 |
-
|
| 232 |
-
patches[cha] = patch
|
| 233 |
-
channel = patches.index(patch)
|
| 234 |
-
else:
|
| 235 |
-
channel = patches.index(patch)
|
| 236 |
-
|
| 237 |
-
if patch == 128:
|
| 238 |
-
channel = 9
|
| 239 |
-
|
| 240 |
-
pitch = (ss-2304) % 129
|
| 241 |
-
|
| 242 |
-
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
|
| 243 |
-
|
| 244 |
-
patches = [0 if x==-1 else x for x in patches]
|
| 245 |
|
| 246 |
if batch_number == None:
|
| 247 |
fname = 'Monster-Piano-Transformer-Music-Composition'
|
|
@@ -273,20 +196,11 @@ def generate_music(prime,
|
|
| 273 |
):
|
| 274 |
|
| 275 |
if not prime:
|
| 276 |
-
inputs = [
|
| 277 |
|
| 278 |
else:
|
| 279 |
inputs = prime[-num_mem_tokens:]
|
| 280 |
-
|
| 281 |
-
if gen_outro == 'Force':
|
| 282 |
-
inputs.extend([18945])
|
| 283 |
-
|
| 284 |
-
if gen_drums:
|
| 285 |
-
drums = [36, 38]
|
| 286 |
-
drum_pitch = random.choice(drums)
|
| 287 |
-
inputs.extend([0, ((8*8)+6)+256, ((128*129)+drum_pitch)+2304])
|
| 288 |
|
| 289 |
-
# torch.cuda.empty_cache()
|
| 290 |
model.cuda()
|
| 291 |
model.eval()
|
| 292 |
|
|
@@ -300,27 +214,18 @@ def generate_music(prime,
|
|
| 300 |
with torch.inference_mode():
|
| 301 |
out = model.generate(inp,
|
| 302 |
num_gen_tokens,
|
| 303 |
-
filter_logits_fn=top_p,
|
| 304 |
-
filter_kwargs={'thres': model_sampling_top_p},
|
| 305 |
temperature=model_temperature,
|
| 306 |
return_prime=False,
|
| 307 |
verbose=False)
|
| 308 |
|
| 309 |
output = out.tolist()
|
| 310 |
|
| 311 |
-
output_batches = []
|
| 312 |
-
|
| 313 |
-
if gen_outro == 'Disable':
|
| 314 |
-
for o in output:
|
| 315 |
-
output_batches.append([t for t in o if not 18944 < t < 19330])
|
| 316 |
-
|
| 317 |
-
else:
|
| 318 |
-
output_batches = output
|
| 319 |
-
|
| 320 |
print('Done!')
|
| 321 |
print('=' * 70)
|
| 322 |
|
| 323 |
-
return
|
| 324 |
|
| 325 |
#==================================================================================
|
| 326 |
|
|
|
|
| 111 |
def load_midi(input_midi):
|
| 112 |
|
| 113 |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
|
| 116 |
+
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32)
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes, keep_drums=False)
|
| 119 |
+
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
|
|
|
|
| 120 |
|
| 121 |
+
cscore = TMIDIX.chordify_score([1000, zscore])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
score = []
|
| 124 |
|
| 125 |
+
pc = cscore[0]
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
for c in cscore:
|
| 128 |
+
score.append(max(0, min(127, c[0][1]-pc[0][1])))
|
| 129 |
|
| 130 |
+
for n in c:
|
| 131 |
+
score.extend([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256, max(1, min(127, n[5]))+384])
|
| 132 |
|
| 133 |
+
pc = c
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
return score
|
| 136 |
|
| 137 |
#==================================================================================
|
| 138 |
|
|
|
|
| 146 |
vel = 90
|
| 147 |
pitch = 0
|
| 148 |
channel = 0
|
| 149 |
+
patch = 0
|
| 150 |
+
|
| 151 |
+
patches = [0] * 16
|
| 152 |
+
|
| 153 |
+
for m in song:
|
| 154 |
+
|
| 155 |
+
if 0 <= m < 128:
|
| 156 |
+
time += m * 32
|
| 157 |
+
|
| 158 |
+
elif 128 < m < 256:
|
| 159 |
+
dur = (m-128) * 32
|
| 160 |
+
|
| 161 |
+
elif 256 < m < 384:
|
| 162 |
+
pitch = (m-256)
|
| 163 |
+
|
| 164 |
+
elif 384 < m < 512:
|
| 165 |
+
vel = (m-384)
|
| 166 |
+
|
| 167 |
+
song_f.append(['note', time, dur, 0, pitch, vel, 0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
if batch_number == None:
|
| 170 |
fname = 'Monster-Piano-Transformer-Music-Composition'
|
|
|
|
| 196 |
):
|
| 197 |
|
| 198 |
if not prime:
|
| 199 |
+
inputs = [0]
|
| 200 |
|
| 201 |
else:
|
| 202 |
inputs = prime[-num_mem_tokens:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
|
|
|
| 204 |
model.cuda()
|
| 205 |
model.eval()
|
| 206 |
|
|
|
|
| 214 |
with torch.inference_mode():
|
| 215 |
out = model.generate(inp,
|
| 216 |
num_gen_tokens,
|
| 217 |
+
#filter_logits_fn=top_p,
|
| 218 |
+
#filter_kwargs={'thres': model_sampling_top_p},
|
| 219 |
temperature=model_temperature,
|
| 220 |
return_prime=False,
|
| 221 |
verbose=False)
|
| 222 |
|
| 223 |
output = out.tolist()
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
print('Done!')
|
| 226 |
print('=' * 70)
|
| 227 |
|
| 228 |
+
return output
|
| 229 |
|
| 230 |
#==================================================================================
|
| 231 |
|