Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -62,54 +62,45 @@ SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
|
|
| 62 |
|
| 63 |
#==================================================================================
|
| 64 |
|
| 65 |
-
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
device_type = 'cuda'
|
| 71 |
-
dtype = 'bfloat16'
|
| 72 |
-
|
| 73 |
-
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
| 74 |
-
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
| 75 |
-
|
| 76 |
-
SEQ_LEN = 2048
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
model_checkpoint = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer', filename=MODEL_CHECKPOINTS[model_selector])
|
| 101 |
-
|
| 102 |
-
model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True))
|
| 103 |
-
|
| 104 |
-
model = torch.compile(model, mode='max-autotune')
|
| 105 |
-
|
| 106 |
-
print('=' * 70)
|
| 107 |
-
print('Done!')
|
| 108 |
-
print('=' * 70)
|
| 109 |
-
print('Model will use', dtype, 'precision...')
|
| 110 |
-
print('=' * 70)
|
| 111 |
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
#==================================================================================
|
| 115 |
|
|
|
|
| 62 |
|
| 63 |
#==================================================================================
|
| 64 |
|
| 65 |
+
print('=' * 70)
|
| 66 |
+
print('Instantiating model...')
|
| 67 |
|
| 68 |
+
device_type = 'cuda'
|
| 69 |
+
dtype = 'bfloat16'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
| 72 |
+
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
| 73 |
|
| 74 |
+
SEQ_LEN = 4096
|
| 75 |
+
PAD_IDX = 1794
|
| 76 |
+
|
| 77 |
+
model = TransformerWrapper(
|
| 78 |
+
num_tokens = PAD_IDX+1,
|
| 79 |
+
max_seq_len = SEQ_LEN,
|
| 80 |
+
attn_layers = Decoder(dim = 2048,
|
| 81 |
+
depth = 4,
|
| 82 |
+
heads = 32,
|
| 83 |
+
rotary_pos_emb = True,
|
| 84 |
+
attn_flash = True
|
| 85 |
+
)
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
| 89 |
+
|
| 90 |
+
print('=' * 70)
|
| 91 |
+
print('Loading model checkpoint...')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
model_checkpoint = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer', filename=MODEL_CHECKPOINTS[model_selector])
|
| 94 |
+
|
| 95 |
+
model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True))
|
| 96 |
+
|
| 97 |
+
model = torch.compile(model, mode='max-autotune')
|
| 98 |
+
|
| 99 |
+
print('=' * 70)
|
| 100 |
+
print('Done!')
|
| 101 |
+
print('=' * 70)
|
| 102 |
+
print('Model will use', dtype, 'precision...')
|
| 103 |
+
print('=' * 70)
|
| 104 |
|
| 105 |
#==================================================================================
|
| 106 |
|