Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,8 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
| 3 |
import os
|
| 4 |
import spaces
|
| 5 |
import torch
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
@@ -33,6 +35,10 @@ examples = [
|
|
| 33 |
, 256, 0.7, 0.9, 150, 8, 1.5],
|
| 34 |
]
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
@spaces.GPU
|
| 37 |
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
|
| 38 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
@@ -49,8 +55,19 @@ def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150,
|
|
| 49 |
pad_token_id=tokenizer.pad_token_id, # Explicit pad token
|
| 50 |
eos_token_id=tokenizer.eos_token_id, # Explicit eos token
|
| 51 |
)
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
if __name__ == "__main__":
|
| 55 |
# Create the Gradio interface
|
| 56 |
with gr.Blocks() as app:
|
|
@@ -70,5 +87,14 @@ if __name__ == "__main__":
|
|
| 70 |
description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.",
|
| 71 |
examples=examples,
|
| 72 |
)
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
app.launch()
|
|
|
|
| 3 |
import os
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
from huggingface_hub import CommitScheduler
|
| 8 |
|
| 9 |
|
| 10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 35 |
, 256, 0.7, 0.9, 150, 8, 1.5],
|
| 36 |
]
|
| 37 |
|
| 38 |
+
#inf_dataset=load_dataset("atlasia/atlaset_inference_ds",token=token,split="test",name="llm")
|
| 39 |
+
detected_commit=False
|
| 40 |
+
submit_file = Path("user_submit/") / f"data_{uuid.uuid4()}.json"
|
| 41 |
+
|
| 42 |
@spaces.GPU
|
| 43 |
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
|
| 44 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
| 55 |
pad_token_id=tokenizer.pad_token_id, # Explicit pad token
|
| 56 |
eos_token_id=tokenizer.eos_token_id, # Explicit eos token
|
| 57 |
)
|
| 58 |
+
result=tokenizer.decode(output[0], skip_special_tokens=True)
|
| 59 |
+
#inf_dataset.add_item({"inputs":prompt,"outputs":result,"params":f"{max_length},{temperature},{top_p},{top_k},{num_beams},{repetition_penalty}"})
|
| 60 |
+
save_feedback(prompt,result,f"{max_length},{temperature},{top_p},{top_k},{num_beams},{repetition_penalty}")
|
| 61 |
+
detected_commit=True
|
| 62 |
+
return result
|
| 63 |
|
| 64 |
+
def save_feedback(input,output,params) -> None:
|
| 65 |
+
with scheduler.lock:
|
| 66 |
+
with feedback_file.open("a") as f:
|
| 67 |
+
f.write(json.dumps({"input": input, "output": output, "params": params}))
|
| 68 |
+
f.write("\n")
|
| 69 |
+
detected_commit=True
|
| 70 |
+
|
| 71 |
if __name__ == "__main__":
|
| 72 |
# Create the Gradio interface
|
| 73 |
with gr.Blocks() as app:
|
|
|
|
| 87 |
description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.",
|
| 88 |
examples=examples,
|
| 89 |
)
|
| 90 |
+
if detected_commit:
|
| 91 |
+
print("[INFO] CommitScheduler...")
|
| 92 |
+
scheduler = CommitScheduler(
|
| 93 |
+
repo_id="atlasia/atlaset_inference_ds",
|
| 94 |
+
repo_type="dataset",
|
| 95 |
+
folder_path=submit_file,
|
| 96 |
+
every=5,
|
| 97 |
+
token=token
|
| 98 |
+
)
|
| 99 |
+
detected_commit=False
|
| 100 |
app.launch()
|