Spaces:
Running
Running
File size: 17,668 Bytes
243285a e5064af 243285a ed1ecb7 243285a 4d7afb5 243285a 4d7afb5 243285a e5064af 243285a e5064af 243285a e5064af 243285a e5064af 243285a 4d7afb5 741c6b3 4d7afb5 ed1ecb7 4d7afb5 741c6b3 ed1ecb7 4d7afb5 741c6b3 4d7afb5 ed1ecb7 4d7afb5 741c6b3 ed1ecb7 4d7afb5 741c6b3 ed1ecb7 4d7afb5 741c6b3 ed1ecb7 4d7afb5 741c6b3 4d7afb5 c716b49 4d7afb5 ed1ecb7 243285a e5eda94 5ef1d32 243285a e5eda94 243285a e5064af 5ef1d32 243285a c6a824e 243285a 3a55a85 243285a 01e27b1 243285a 4d7afb5 243285a 5ef1d32 e5064af 5ef1d32 e5064af 243285a e5064af e5eda94 ee1c7a6 41e3f4e e5064af 243285a e5064af 01e27b1 3519daf 6434462 e5064af 6434462 3519daf 243285a 5ef1d32 e5064af 243285a e5064af 3519daf e5064af 243285a 4d7afb5 243285a 4d7afb5 ed1ecb7 243285a ed1ecb7 243285a ed1ecb7 243285a 5ef1d32 ed1ecb7 4d7afb5 243285a ed1ecb7 243285a ed1ecb7 243285a 7d960dc 243285a ed1ecb7 4d7afb5 c716b49 ed1ecb7 c716b49 ed1ecb7 243285a 7a5f01d 243285a ed1ecb7 4d7afb5 243285a 4d7afb5 741c6b3 4d7afb5 741c6b3 243285a ed1ecb7 243285a ed1ecb7 7a5f01d 741c6b3 ed1ecb7 bc597e1 741c6b3 ed1ecb7 bc597e1 ed1ecb7 741c6b3 ed1ecb7 bc597e1 741c6b3 7a5f01d 741c6b3 ed1ecb7 7a5f01d ed1ecb7 7a5f01d 243285a 741c6b3 243285a 741c6b3 243285a 741c6b3 4d7afb5 741c6b3 243285a bc597e1 243285a ed1ecb7 243285a ed1ecb7 4d7afb5 243285a 4d7afb5 ed1ecb7 4d7afb5 243285a 8f6b729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import json
import os
from datetime import datetime
from torch.nn.utils.rnn import pad_sequence
import firebase_admin
from firebase_admin import credentials, firestore
# Define the model architecture
class CTCTransliterator(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers=3, dropout=0.3, upsample_factor=3):
super().__init__()
self.embed = nn.Embedding(input_dim, hidden_dim, padding_idx=0)
self.lstm = nn.LSTM(hidden_dim, hidden_dim, num_layers=num_layers,
bidirectional=True, dropout=dropout)
self.layer_norm = nn.LayerNorm(hidden_dim * 2)
self.dropout = nn.Dropout(dropout)
self.upsample_factor = upsample_factor
self.fc = nn.Linear(hidden_dim * 2, output_dim)
def forward(self, x):
# x: (seq_len, batch, ...)
x = self.embed(x)
x, _ = self.lstm(x)
x = self.layer_norm(x)
x = self.dropout(x)
# (seq_len, batch, hidden) → (batch, hidden, seq_len)
x = x.permute(1, 2, 0)
x = F.interpolate(x, scale_factor=self.upsample_factor, mode='linear', align_corners=False)
# → (batch, hidden, seq_len*upsample_factor)
x = x.permute(2, 0, 1) # back to (seq_len*upsample_factor, batch, hidden)
x = self.fc(x)
x = x.log_softmax(dim=2)
return x
# Firebase Cache System
class FirebaseCache:
def __init__(self):
self.db = None
self.init_firebase()
def init_firebase(self):
"""Initialize Firebase connection"""
try:
# Try to initialize Firebase
if not firebase_admin._apps:
# For HuggingFace Spaces, use environment variables
if os.getenv('FIREBASE_CREDENTIALS'):
# Parse credentials from environment variable
import base64
cred_data = json.loads(base64.b64decode(os.getenv('FIREBASE_CREDENTIALS')).decode())
cred = credentials.Certificate(cred_data)
elif os.path.exists('firebase-credentials.json'):
# For local development
cred = credentials.Certificate('firebase-credentials.json')
else:
print("No Firebase credentials found. Using local cache fallback.")
return
firebase_admin.initialize_app(cred)
self.db = firestore.client()
print("Firebase initialized successfully!")
else:
self.db = firestore.client()
except Exception as e:
print(f"Firebase initialization failed: {e}")
print("Falling back to local cache mode")
self.db = None
def _create_cache_key(self, input_text, direction):
"""Create a safe document key for Firestore"""
import hashlib
# Create hash to handle special characters and length limits
key = f"{input_text}_{direction}"
return hashlib.md5(key.encode()).hexdigest()
def get(self, input_text, direction):
"""Get cached translation from Firebase"""
if not self.db:
return None
try:
doc_key = self._create_cache_key(input_text, direction)
doc = self.db.collection('translations').document(doc_key).get()
if doc.exists:
data = doc.to_dict()
# Update usage count
self.db.collection('translations').document(doc_key).update({
'usage_count': data.get('usage_count', 0) + 1,
'last_used': datetime.now()
})
print(f"Cache hit: {input_text}")
return data.get('output', '')
return None
except Exception as e:
print(f"Cache read error: {e}")
return None
def set(self, input_text, direction, output):
"""Store translation in Firebase"""
if not self.db:
return False
try:
doc_key = self._create_cache_key(input_text, direction)
doc_data = {
'input': input_text,
'direction': direction,
'output': output,
'corrected_output': '',
'timestamp': datetime.now(),
'last_used': datetime.now(),
'usage_count': 1
}
self.db.collection('translations').document(doc_key).set(doc_data)
print(f"Cached: {input_text} → {output}")
return True
except Exception as e:
print(f"Cache write error: {e}")
return False
def update_correction(self, input_text, direction, corrected_output):
"""Update translation with user correction"""
if not self.db:
return False
try:
doc_key = self._create_cache_key(input_text, direction)
self.db.collection('translations').document(doc_key).update({
'corrected_output': corrected_output,
'correction_timestamp': datetime.now()
})
print(f"Correction saved: {input_text} → {corrected_output}")
return True
except Exception as e:
print(f"Correction save error: {e}")
return False
def get_stats(self):
"""Get cache statistics"""
if not self.db:
return "Firebase not connected"
try:
docs = self.db.collection('translations').get()
total = len(docs)
corrected = 0
total_usage = 0
for doc in docs:
data = doc.to_dict()
if data.get('corrected_output'):
corrected += 1
total_usage += data.get('usage_count', 0)
return f"""
Cache Statistics:
• Total translations: {total}
• With corrections: {corrected}
• Total usage count: {total_usage}
• Average usage: {total_usage/total if total > 0 else 0:.1f} per translation
""".strip()
except Exception as e:
return f"Error getting stats: {e}"
# Load vocabularies and model
def load_model_and_vocabs():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load vocabularies
with open('latin_stoi.json', 'r', encoding='utf-8') as f:
latin_stoi = json.load(f)
with open('latin_itos.json', 'r', encoding='utf-8') as f:
latin_itos = json.load(f)
with open('arabic_stoi.json', 'r', encoding='utf-8') as f:
arabic_stoi = json.load(f)
with open('arabic_itos.json', 'r', encoding='utf-8') as f:
arabic_itos= json.load(f)
# Initialize model
model = CTCTransliterator(
len(latin_stoi),
256,
len(arabic_stoi),
num_layers=3,
dropout=0.3,
upsample_factor=2
).to(device)
# Load trained weights
model.load_state_dict(torch.load('best_model.pth', map_location=device, weights_only=False))
model.eval()
blank_id = arabic_stoi.get('<blank>', len(arabic_itos)-1)
return model, latin_stoi, latin_itos, arabic_stoi, arabic_itos, blank_id, device
# Load everything at startup
model, latin_stoi, latin_itos, arabic_stoi, arabic_itos, blank_id, device = load_model_and_vocabs()
firebase_cache = FirebaseCache()
def encode_text(text, vocab):
"""Encode text using vocabulary"""
return torch.tensor([vocab.get(ch, 0) for ch in text.strip()], dtype=torch.long)
def greedy_decode(log_probs, blank_id, itos, stoi):
"""
Decode CTC outputs using greedy decoding.
"""
eos_id = stoi.get('<eos>', len(stoi)-2)
preds = log_probs.argmax(2).T.cpu().numpy() # (B, T)
results = []
raw_results = []
print(eos_id, blank_id)
print(stoi)
print(type(blank_id))
print(stoi.get('<eos>',0))
for i, pred in enumerate(preds):
prev = None
decoded = []
raw_result = []
for p in pred:
print(p, itos[str(p)])
if p == eos_id: # Stop at EOS!
break
# CTC collapse: skip blanks and repeated characters
if p != blank_id and p != prev:
decoded.append(itos[str(p)])
prev = p
raw_result.append(itos[str(p)])
results.append("".join(decoded))
raw_results.append("".join(raw_result))
print(results, raw_results)
return results
def transliterate_latin_to_arabic(text):
"""Transliterate Latin script to Arabic script with Firebase caching"""
if not text.strip():
return ""
# Check Firebase cache first
cached_result = firebase_cache.get(text, "Latin → Arabic")
if cached_result:
return cached_result
try:
# Encode input text
src = encode_text(text, latin_stoi).unsqueeze(1).to(device)
# Generate prediction
with torch.no_grad():
out = model(src)
# Decode output
decoded = greedy_decode(out, blank_id, arabic_itos, arabic_stoi)
result = decoded[0] if decoded else ""
# Cache the result in Firebase
firebase_cache.set(text, "Latin → Arabic", result)
return result
except Exception as e:
return f"Error: {str(e)}"
def transliterate_arabic_to_latin(text):
"""Transliterate Arabic script to Latin script (placeholder)"""
return "Arabic to Latin transliteration not implemented yet."
def transliterate(text, direction):
"""Main transliteration function"""
if direction == "Latin → Arabic":
return transliterate_latin_to_arabic(text.lower())
else:
return transliterate_arabic_to_latin(text)
def save_correction(input_text, direction, corrected_output):
"""Save user correction to Firebase"""
if firebase_cache.update_correction(input_text, direction, corrected_output):
return "Correction saved to the database! Thank you for improving the model."
else:
return "Could not save correction to databse."
# Arabic keyboard layout
arabic_keys = [
['ض', 'ص', 'ث', 'ق', 'ف', 'غ', 'ع', 'ه', 'خ', 'ح', 'ج', 'د'],
['ش', 'س', 'ي', 'ب', 'ل', 'ا', 'ت', 'ن', 'م', 'ك', 'ط'],
['ئ', 'ء', 'ؤ', 'ر', 'لا', 'ى', 'ة', 'و', 'ز', 'ظ'],
['ذ', '١', '٢', '٣', '٤', '٥', '٦', '٧', '٨', '٩', '٠']
]
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Darija Transliterator", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# Darija Transliterator
Convert between Latin script and Arabic script for Moroccan Darija
**Firebase-Powered**: Persistent caching across sessions
**Arabic Keyboard**: Built-in Arabic keyboard for corrections
**Real-time Stats**: Live usage analytics
"""
)
# Stats section
with gr.Row():
stats_btn = gr.Button("Show Statistics", variant="secondary")
stats_display = gr.Textbox(
label="Firebase Statistics",
interactive=False,
visible=False,
lines=5
)
with gr.Row():
with gr.Column(scale=1):
direction = gr.Radio(
choices=["Latin → Arabic", "Arabic → Latin"],
value="Latin → Arabic",
label="Translation Direction"
)
input_text = gr.Textbox(
placeholder="Enter text to transliterate...",
label="Input Text",
lines=4,
max_lines=10
)
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
translate_btn = gr.Button("Transliterate", variant="primary")
with gr.Column(scale=1):
output_text = gr.Textbox(
label="Output",
lines=4,
max_lines=10,
interactive=True
)
# Arabic Keyboard
gr.Markdown("### Arabic Keyboard")
gr.Markdown("*Click letters to edit the output text above*")
with gr.Group():
for row in arabic_keys:
with gr.Row():
for char in row:
btn = gr.Button(char, size="sm", scale=1)
btn.click(
fn=None,
js=f"(output_text) => output_text + '{char}'",
inputs=[output_text],
outputs=[output_text],
show_progress=False,
queue=False
)
with gr.Row():
space_btn = gr.Button("Space", size="sm", scale=2)
backspace_btn = gr.Button("⌫ Backspace", size="sm", scale=2)
clear_output_btn = gr.Button("Clear Output", size="sm", scale=2)
# Correction system
with gr.Group():
gr.Markdown("### Correction System")
correction_status = gr.Textbox(
label="Status",
interactive=False,
visible=False
)
save_correction_btn = gr.Button("Save Correction", variant="secondary")
# Keyboard utility buttons
space_btn.click(
fn=None,
js="(output_text) => output_text + ' '",
inputs=[output_text],
outputs=[output_text],
show_progress=False,
queue=False
)
backspace_btn.click(
fn=None,
js="(output_text) => output_text.slice(0, -1)",
inputs=[output_text],
outputs=[output_text],
show_progress=False,
queue=False
)
clear_output_btn.click(
fn=None,
js="() => ''",
outputs=[output_text],
show_progress=False,
queue=False
)
# Stats button
stats_btn.click(
fn=firebase_cache.get_stats,
outputs=[stats_display]
).then(
fn=lambda: gr.update(visible=True),
outputs=[stats_display]
)
# Example inputs
gr.Markdown("### Examples")
examples = [
["makay3nich bli katkhdam bzaf", "Latin → Arabic"],
["rah bayn dkchi li katdir kolchi 3ay9 bik", "Latin → Arabic"],
["wach na9dar nakhod caipirinha, 3afak", "Latin → Arabic"],
["ghadi temchi f lkhedma mzyan", "Latin → Arabic"]
]
gr.Examples(
examples=examples,
inputs=[input_text, direction],
outputs=output_text,
fn=transliterate,
cache_examples=False
)
# Event handlers
translate_btn.click(
fn=transliterate,
inputs=[input_text, direction],
outputs=output_text
).then(
fn=lambda: gr.update(visible=True),
outputs=[correction_status]
)
clear_btn.click(
fn=lambda: ("", ""),
outputs=[input_text, output_text]
)
input_text.submit(
fn=transliterate,
inputs=[input_text, direction],
outputs=output_text
)
save_correction_btn.click(
fn=save_correction,
inputs=[input_text, direction, output_text],
outputs=[correction_status]
).then(
fn=lambda: gr.update(visible=True),
outputs=[correction_status]
)
# Information
gr.Markdown(
"""
### About
This model transliterates Moroccan Darija between Latin and Arabic scripts using a CTC-based neural network.
**Firebase Features:**
- **Persistent Storage**: All translations are saved permanently
- **Analytics**: Track usage patterns and popular translations
- **Fast Responses**: Cached results load instantly
- **Global Access**: Data synced across all users
- **Corrections**: Help improve the model by fixing outputs
**How to help improve the model:**
1. Use the Arabic keyboard to correct any wrong translations
2. Click "Save Correction" to store your improvement
3. Your corrections help train better models for everyone!
"""
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True) |