Spaces:
Running
Running
Upload 5 files
Browse files- .env +0 -0
- .gitattributes +0 -34
- .gitignore +36 -0
- app.py +556 -0
- requirements.txt +20 -0
.env
ADDED
|
File without changes
|
.gitattributes
CHANGED
|
@@ -1,35 +1 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.py[cod]
|
| 3 |
+
*$py.class
|
| 4 |
+
*.so
|
| 5 |
+
.Python
|
| 6 |
+
env/
|
| 7 |
+
venv/
|
| 8 |
+
ENV/
|
| 9 |
+
*.egg-info/
|
| 10 |
+
dist/
|
| 11 |
+
build/
|
| 12 |
+
|
| 13 |
+
# Flask
|
| 14 |
+
instance/
|
| 15 |
+
.webassets-cache
|
| 16 |
+
|
| 17 |
+
# Environment
|
| 18 |
+
.env
|
| 19 |
+
.env.local
|
| 20 |
+
|
| 21 |
+
# Uploads (but keep the directory structure)
|
| 22 |
+
static/uploads/*
|
| 23 |
+
!static/uploads/.gitkeep
|
| 24 |
+
|
| 25 |
+
# IDE
|
| 26 |
+
.vscode/
|
| 27 |
+
.idea/
|
| 28 |
+
*.swp
|
| 29 |
+
*.swo
|
| 30 |
+
|
| 31 |
+
# OS
|
| 32 |
+
.DS_Store
|
| 33 |
+
Thumbs.db
|
| 34 |
+
|
| 35 |
+
# Logs
|
| 36 |
+
*.log
|
app.py
ADDED
|
@@ -0,0 +1,556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, render_template, request, jsonify, session, redirect
|
| 2 |
+
import os
|
| 3 |
+
from werkzeug.utils import secure_filename
|
| 4 |
+
import json
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torchvision.transforms as transforms
|
| 10 |
+
import requests
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
import logging
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
|
| 16 |
+
# Configure logging
|
| 17 |
+
logging.basicConfig(level=logging.INFO)
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
|
| 20 |
+
# Load environment variables
|
| 21 |
+
load_dotenv()
|
| 22 |
+
|
| 23 |
+
app = Flask(__name__)
|
| 24 |
+
app.secret_key = os.environ.get('SECRET_KEY', 'dev-secret-key-change-in-production')
|
| 25 |
+
app.config['UPLOAD_FOLDER'] = 'static/uploads/'
|
| 26 |
+
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max
|
| 27 |
+
app.config['ALLOWED_EXTENSIONS'] = {'png', 'jpg', 'jpeg', 'webp'}
|
| 28 |
+
|
| 29 |
+
# Model configuration
|
| 30 |
+
MODEL_DIR = 'model'
|
| 31 |
+
MODEL_FILENAME = 'plant_disease_model_1_latest.pt'
|
| 32 |
+
MODEL_PATH = os.path.join(MODEL_DIR, MODEL_FILENAME)
|
| 33 |
+
MODEL_URL = "https://huggingface.co/spaces/bharath1108/crop-disease-model/resolve/main/plant_disease_model_1_latest.pt"
|
| 34 |
+
|
| 35 |
+
# Ensure necessary directories exist
|
| 36 |
+
try:
|
| 37 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
| 38 |
+
if not os.path.exists(app.config['UPLOAD_FOLDER']):
|
| 39 |
+
os.makedirs(app.config['UPLOAD_FOLDER'])
|
| 40 |
+
elif not os.path.isdir(app.config['UPLOAD_FOLDER']):
|
| 41 |
+
os.remove(app.config['UPLOAD_FOLDER'])
|
| 42 |
+
os.makedirs(app.config['UPLOAD_FOLDER'])
|
| 43 |
+
except Exception as e:
|
| 44 |
+
logger.warning(f"Could not create directories: {e}. Will attempt to use them anyway.")
|
| 45 |
+
|
| 46 |
+
# OpenRouter API configuration
|
| 47 |
+
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY")
|
| 48 |
+
OPENROUTER_URL = "https://openrouter.ai/api/v1/chat/completions"
|
| 49 |
+
APP_URL = os.environ.get("APP_URL", "http://localhost:5000")
|
| 50 |
+
|
| 51 |
+
# Global variables for model and translations
|
| 52 |
+
model = None
|
| 53 |
+
device = None
|
| 54 |
+
transforms_pipeline = None
|
| 55 |
+
translations = None
|
| 56 |
+
class_labels = None
|
| 57 |
+
disease_info = None
|
| 58 |
+
|
| 59 |
+
def download_model_from_huggingface():
|
| 60 |
+
"""Download PyTorch model from Hugging Face if not exists locally"""
|
| 61 |
+
if os.path.exists(MODEL_PATH):
|
| 62 |
+
file_size = os.path.getsize(MODEL_PATH)
|
| 63 |
+
logger.info(f"Model already exists at {MODEL_PATH} ({file_size / (1024*1024):.2f} MB)")
|
| 64 |
+
return True
|
| 65 |
+
|
| 66 |
+
logger.info(f"Downloading model from Hugging Face: {MODEL_URL}")
|
| 67 |
+
try:
|
| 68 |
+
# Download with streaming to handle large files
|
| 69 |
+
response = requests.get(MODEL_URL, stream=True, timeout=300)
|
| 70 |
+
response.raise_for_status()
|
| 71 |
+
|
| 72 |
+
# Get total file size
|
| 73 |
+
total_size = int(response.headers.get('content-length', 0))
|
| 74 |
+
logger.info(f"Model size: {total_size / (1024*1024):.2f} MB")
|
| 75 |
+
|
| 76 |
+
# Download in chunks with progress
|
| 77 |
+
downloaded_size = 0
|
| 78 |
+
chunk_size = 8192
|
| 79 |
+
|
| 80 |
+
with open(MODEL_PATH, 'wb') as f:
|
| 81 |
+
for chunk in response.iter_content(chunk_size=chunk_size):
|
| 82 |
+
if chunk:
|
| 83 |
+
f.write(chunk)
|
| 84 |
+
downloaded_size += len(chunk)
|
| 85 |
+
if total_size > 0:
|
| 86 |
+
progress = (downloaded_size / total_size) * 100
|
| 87 |
+
if downloaded_size % (1024 * 1024 * 10) == 0: # Log every 10MB
|
| 88 |
+
logger.info(f"Download progress: {progress:.1f}%")
|
| 89 |
+
|
| 90 |
+
logger.info(f"Model downloaded successfully to {MODEL_PATH}")
|
| 91 |
+
return True
|
| 92 |
+
|
| 93 |
+
except requests.exceptions.RequestException as e:
|
| 94 |
+
logger.error(f"Error downloading model from Hugging Face: {str(e)}")
|
| 95 |
+
if os.path.exists(MODEL_PATH):
|
| 96 |
+
os.remove(MODEL_PATH)
|
| 97 |
+
return False
|
| 98 |
+
except Exception as e:
|
| 99 |
+
logger.error(f"Unexpected error during model download: {str(e)}")
|
| 100 |
+
if os.path.exists(MODEL_PATH):
|
| 101 |
+
os.remove(MODEL_PATH)
|
| 102 |
+
return False
|
| 103 |
+
|
| 104 |
+
def load_resources():
|
| 105 |
+
"""Load PyTorch model, translations, and class labels"""
|
| 106 |
+
global model, device, transforms_pipeline, translations, class_labels, disease_info
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
# Set device - force CPU to save memory
|
| 110 |
+
device = torch.device('cpu')
|
| 111 |
+
logger.info(f"Using device: {device}")
|
| 112 |
+
|
| 113 |
+
# Download model if needed
|
| 114 |
+
model_downloaded = download_model_from_huggingface()
|
| 115 |
+
|
| 116 |
+
# Load PyTorch model with memory optimization
|
| 117 |
+
if model_downloaded and os.path.exists(MODEL_PATH):
|
| 118 |
+
try:
|
| 119 |
+
logger.info(f"Loading model from {MODEL_PATH}...")
|
| 120 |
+
|
| 121 |
+
# Memory optimization: Load with reduced precision
|
| 122 |
+
import gc
|
| 123 |
+
gc.collect() # Force garbage collection before loading
|
| 124 |
+
|
| 125 |
+
# Load the entire model (weights + architecture)
|
| 126 |
+
model = torch.load(
|
| 127 |
+
MODEL_PATH,
|
| 128 |
+
map_location=device,
|
| 129 |
+
weights_only=False
|
| 130 |
+
)
|
| 131 |
+
model.eval()
|
| 132 |
+
|
| 133 |
+
# Use half precision to reduce memory (if supported)
|
| 134 |
+
try:
|
| 135 |
+
model = model.half()
|
| 136 |
+
logger.info("Model converted to half precision (FP16)")
|
| 137 |
+
except:
|
| 138 |
+
logger.info("Half precision not supported, using full precision")
|
| 139 |
+
|
| 140 |
+
# Force cleanup
|
| 141 |
+
gc.collect()
|
| 142 |
+
|
| 143 |
+
# Verify model loaded correctly
|
| 144 |
+
if hasattr(model, '__class__'):
|
| 145 |
+
logger.info(f"PyTorch model loaded successfully: {model.__class__.__name__}")
|
| 146 |
+
else:
|
| 147 |
+
logger.warning("Model loaded but structure unclear")
|
| 148 |
+
|
| 149 |
+
except Exception as e:
|
| 150 |
+
logger.error(f"Error loading PyTorch model: {str(e)}")
|
| 151 |
+
logger.warning("Falling back to mock predictions")
|
| 152 |
+
model = None
|
| 153 |
+
else:
|
| 154 |
+
logger.warning(f"Model not found at {MODEL_PATH}. Using mock predictions.")
|
| 155 |
+
|
| 156 |
+
# Define image transforms (standard ImageNet normalization)
|
| 157 |
+
transforms_pipeline = transforms.Compose([
|
| 158 |
+
transforms.Resize((224, 224)),
|
| 159 |
+
transforms.ToTensor(),
|
| 160 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 161 |
+
std=[0.229, 0.224, 0.225])
|
| 162 |
+
])
|
| 163 |
+
|
| 164 |
+
# Load translations
|
| 165 |
+
with open('translations/crop_names.json', 'r', encoding='utf-8') as f:
|
| 166 |
+
translations = json.load(f)
|
| 167 |
+
logger.info("Translations loaded successfully")
|
| 168 |
+
|
| 169 |
+
# Load class labels
|
| 170 |
+
with open('model/class_labels.json', 'r', encoding='utf-8') as f:
|
| 171 |
+
class_labels = json.load(f)
|
| 172 |
+
logger.info(f"Class labels loaded: {len(class_labels)} classes")
|
| 173 |
+
|
| 174 |
+
# Load disease information
|
| 175 |
+
try:
|
| 176 |
+
with open('translations/disease_info.json', 'r', encoding='utf-8') as f:
|
| 177 |
+
disease_info = json.load(f)
|
| 178 |
+
logger.info("Disease information loaded successfully")
|
| 179 |
+
except FileNotFoundError:
|
| 180 |
+
logger.warning("disease_info.json not found. Using basic info.")
|
| 181 |
+
disease_info = {}
|
| 182 |
+
|
| 183 |
+
except Exception as e:
|
| 184 |
+
logger.error(f"Error loading resources: {str(e)}")
|
| 185 |
+
# Initialize with empty data for development
|
| 186 |
+
translations = {"crops": {}, "diseases": {}, "ui_elements": {}}
|
| 187 |
+
class_labels = {}
|
| 188 |
+
disease_info = {}
|
| 189 |
+
|
| 190 |
+
def allowed_file(filename):
|
| 191 |
+
"""Check if file extension is allowed"""
|
| 192 |
+
return '.' in filename and \
|
| 193 |
+
filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']
|
| 194 |
+
|
| 195 |
+
def get_translation(key, lang='english'):
|
| 196 |
+
"""Get translation for a given key and language"""
|
| 197 |
+
if not translations:
|
| 198 |
+
return key
|
| 199 |
+
|
| 200 |
+
parts = key.split('.')
|
| 201 |
+
current = translations
|
| 202 |
+
|
| 203 |
+
try:
|
| 204 |
+
for part in parts:
|
| 205 |
+
current = current[part]
|
| 206 |
+
return current.get(lang, current.get('english', key))
|
| 207 |
+
except (KeyError, TypeError):
|
| 208 |
+
return key
|
| 209 |
+
|
| 210 |
+
def preprocess_image(image_path):
|
| 211 |
+
"""Preprocess image for PyTorch model prediction"""
|
| 212 |
+
try:
|
| 213 |
+
img = Image.open(image_path).convert('RGB')
|
| 214 |
+
img_tensor = transforms_pipeline(img)
|
| 215 |
+
img_tensor = img_tensor.unsqueeze(0) # Add batch dimension
|
| 216 |
+
|
| 217 |
+
# Convert to half precision if model uses it
|
| 218 |
+
if model is not None:
|
| 219 |
+
try:
|
| 220 |
+
img_tensor = img_tensor.half()
|
| 221 |
+
except:
|
| 222 |
+
pass
|
| 223 |
+
|
| 224 |
+
return img_tensor
|
| 225 |
+
except Exception as e:
|
| 226 |
+
logger.error(f"Error preprocessing image: {str(e)}")
|
| 227 |
+
raise
|
| 228 |
+
|
| 229 |
+
def predict_disease(image_path):
|
| 230 |
+
"""Predict disease from leaf image using PyTorch model"""
|
| 231 |
+
try:
|
| 232 |
+
if model is None:
|
| 233 |
+
# Mock prediction for development/testing
|
| 234 |
+
logger.warning("Using mock prediction - model not loaded")
|
| 235 |
+
return {
|
| 236 |
+
'crop': 'tomato',
|
| 237 |
+
'disease': 'early_blight',
|
| 238 |
+
'confidence': 89.5,
|
| 239 |
+
'is_healthy': False,
|
| 240 |
+
'severity': 'moderate'
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
# Preprocess image
|
| 244 |
+
img_tensor = preprocess_image(image_path).to(device)
|
| 245 |
+
|
| 246 |
+
# Predict
|
| 247 |
+
with torch.no_grad():
|
| 248 |
+
outputs = model(img_tensor)
|
| 249 |
+
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
| 250 |
+
confidence, predicted = torch.max(probabilities, 1)
|
| 251 |
+
|
| 252 |
+
class_idx = predicted.item()
|
| 253 |
+
confidence_score = confidence.item() * 100
|
| 254 |
+
|
| 255 |
+
logger.info(f"Prediction: class {class_idx}, confidence {confidence_score:.2f}%")
|
| 256 |
+
|
| 257 |
+
# Get disease info from class labels
|
| 258 |
+
disease_info_item = class_labels.get(str(class_idx), {
|
| 259 |
+
'crop': 'unknown',
|
| 260 |
+
'disease': 'unknown',
|
| 261 |
+
'is_healthy': False
|
| 262 |
+
})
|
| 263 |
+
|
| 264 |
+
# Determine severity based on confidence and disease type
|
| 265 |
+
severity = 'mild'
|
| 266 |
+
if not disease_info_item.get('is_healthy', False):
|
| 267 |
+
if confidence_score > 85:
|
| 268 |
+
severity = 'severe'
|
| 269 |
+
elif confidence_score > 70:
|
| 270 |
+
severity = 'moderate'
|
| 271 |
+
|
| 272 |
+
return {
|
| 273 |
+
'crop': disease_info_item.get('crop', 'unknown'),
|
| 274 |
+
'disease': disease_info_item.get('disease', 'unknown'),
|
| 275 |
+
'confidence': round(confidence_score, 2),
|
| 276 |
+
'is_healthy': disease_info_item.get('is_healthy', False),
|
| 277 |
+
'severity': severity
|
| 278 |
+
}
|
| 279 |
+
|
| 280 |
+
except Exception as e:
|
| 281 |
+
logger.error(f"Error predicting disease: {str(e)}")
|
| 282 |
+
raise
|
| 283 |
+
|
| 284 |
+
def get_disease_info(crop_name, disease_name, language='english'):
|
| 285 |
+
"""Get detailed disease information"""
|
| 286 |
+
if not disease_info:
|
| 287 |
+
return None
|
| 288 |
+
|
| 289 |
+
key = f"{crop_name}_{disease_name}"
|
| 290 |
+
info = disease_info.get(key, {})
|
| 291 |
+
|
| 292 |
+
if info:
|
| 293 |
+
return info.get(language, info.get('english', None))
|
| 294 |
+
return None
|
| 295 |
+
|
| 296 |
+
def generate_treatment_advice(crop_name, disease_name, language, location=""):
|
| 297 |
+
"""Generate treatment recommendations using OpenRouter LLaMA"""
|
| 298 |
+
|
| 299 |
+
# Language-specific instructions
|
| 300 |
+
language_instructions = {
|
| 301 |
+
'english': "Provide treatment advice in English.",
|
| 302 |
+
'telugu': "Provide treatment advice in Telugu (తెలుగు). Use Telugu script and simple farming terminology.",
|
| 303 |
+
'hindi': "Provide treatment advice in Hindi (हिंदी). Use Devanagari script and simple farming terminology."
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
# Get translated crop and disease names
|
| 307 |
+
crop_display = get_translation(f'crops.{crop_name}', language)
|
| 308 |
+
disease_display = get_translation(f'diseases.{disease_name}', language)
|
| 309 |
+
|
| 310 |
+
# Get additional disease info if available
|
| 311 |
+
extra_info = get_disease_info(crop_name, disease_name, language)
|
| 312 |
+
extra_context = f"\n**Additional Context**: {extra_info}" if extra_info else ""
|
| 313 |
+
|
| 314 |
+
prompt = f"""{language_instructions.get(language, language_instructions['english'])}
|
| 315 |
+
|
| 316 |
+
**Crop**: {crop_display} ({crop_name})
|
| 317 |
+
**Disease Detected**: {disease_display} ({disease_name})
|
| 318 |
+
**Farmer Location**: {location or 'India'}{extra_context}
|
| 319 |
+
|
| 320 |
+
As an agricultural expert, provide clear, actionable treatment advice for this crop disease. Structure your response as follows:
|
| 321 |
+
|
| 322 |
+
1. **रोग की जानकारी / Disease Overview** (2-3 sentences)
|
| 323 |
+
2. **तुरंत करें / Immediate Action** (What to do right now)
|
| 324 |
+
3. **जैविक उपचार / Organic Treatment** (3-4 natural methods with dosage)
|
| 325 |
+
4. **रासायनिक उपचार / Chemical Treatment** (2-3 pesticides/fungicides with dosage)
|
| 326 |
+
5. **रोकथाम / Prevention** (How to prevent in future)
|
| 327 |
+
6. **ठीक होने का समय / Recovery Time**
|
| 328 |
+
|
| 329 |
+
Keep language simple and practical. Use measurements familiar to Indian farmers (liters per acre, grams per liter). Focus on treatments available in rural India."""
|
| 330 |
+
|
| 331 |
+
try:
|
| 332 |
+
# Make request to OpenRouter API using requests
|
| 333 |
+
response = requests.post(
|
| 334 |
+
url=OPENROUTER_URL,
|
| 335 |
+
headers={
|
| 336 |
+
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
|
| 337 |
+
"Content-Type": "application/json",
|
| 338 |
+
"HTTP-Referer": APP_URL,
|
| 339 |
+
"X-Title": "Crop Disease Detector"
|
| 340 |
+
},
|
| 341 |
+
json={
|
| 342 |
+
"model": "meta-llama/llama-3.1-8b-instruct:free",
|
| 343 |
+
"messages": [
|
| 344 |
+
{
|
| 345 |
+
"role": "system",
|
| 346 |
+
"content": "You are an expert agricultural advisor helping Indian farmers. You speak Telugu, Hindi, and English fluently. Provide practical, field-tested advice suitable for small and medium farmers."
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"role": "user",
|
| 350 |
+
"content": prompt
|
| 351 |
+
}
|
| 352 |
+
],
|
| 353 |
+
"temperature": 0.7,
|
| 354 |
+
"max_tokens": 1500
|
| 355 |
+
},
|
| 356 |
+
timeout=30 # 30 second timeout
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
response.raise_for_status() # Raise exception for bad status codes
|
| 360 |
+
|
| 361 |
+
result = response.json()
|
| 362 |
+
return result['choices'][0]['message']['content']
|
| 363 |
+
|
| 364 |
+
except requests.exceptions.Timeout:
|
| 365 |
+
logger.error("OpenRouter API request timed out")
|
| 366 |
+
fallback_messages = {
|
| 367 |
+
'english': f"Treatment advice request timed out. Please try again in a moment.",
|
| 368 |
+
'hindi': f"उपचार सलाह अनुरोध समय समाप्त हो गया। कृपया कुछ देर में फिर से प्रयास करें।",
|
| 369 |
+
'telugu': f"చికిత్స సలహా అభ్యర్థన సమయం ముగిసింది. దయచేసి కొద్దిసేపు తర్వాత మళ్లీ ప్రయత్నించండి."
|
| 370 |
+
}
|
| 371 |
+
return fallback_messages.get(language, fallback_messages['english'])
|
| 372 |
+
|
| 373 |
+
except requests.exceptions.RequestException as e:
|
| 374 |
+
logger.error(f"Error calling OpenRouter API: {str(e)}")
|
| 375 |
+
# Fallback response
|
| 376 |
+
fallback_messages = {
|
| 377 |
+
'english': f"Treatment advice for {disease_display} in {crop_display} is being prepared. Please try again in a moment.",
|
| 378 |
+
'hindi': f"{crop_display} में {disease_display} के लिए उपचार सलाह तैयार की जा रही है। कृपया कुछ देर में फिर से प्रयास करें।",
|
| 379 |
+
'telugu': f"{crop_display}లో {disease_display} కోసం చికిత్స సలహా సిద్ధం చేయబడుతోంది. దయచేసి కొద్దిసేపు తర్వాత మళ్లీ ప్రయత్నించండి."
|
| 380 |
+
}
|
| 381 |
+
return fallback_messages.get(language, fallback_messages['english'])
|
| 382 |
+
|
| 383 |
+
except Exception as e:
|
| 384 |
+
logger.error(f"Unexpected error generating treatment advice: {str(e)}")
|
| 385 |
+
fallback_messages = {
|
| 386 |
+
'english': f"Unable to generate treatment advice at this time. Please try again later.",
|
| 387 |
+
'hindi': f"इस समय उपचार सलाह तैयार करने में असमर्थ। कृपया बाद में पुन: प्रयास करें।",
|
| 388 |
+
'telugu': f"ఈ సమయంలో చికిత్స సలహాను రూపొందించడం సాధ్యం కాలేదు. దయచేసి తర్వాత మళ్లీ ప్రయత్నించండి."
|
| 389 |
+
}
|
| 390 |
+
return fallback_messages.get(language, fallback_messages['english'])
|
| 391 |
+
|
| 392 |
+
@app.route('/')
|
| 393 |
+
def index():
|
| 394 |
+
"""Home page with language selection"""
|
| 395 |
+
language = session.get('language', 'english')
|
| 396 |
+
return render_template('index.html',
|
| 397 |
+
lang=language,
|
| 398 |
+
translations=translations)
|
| 399 |
+
|
| 400 |
+
@app.route('/set-language/<lang>')
|
| 401 |
+
def set_language(lang):
|
| 402 |
+
"""Set user's preferred language"""
|
| 403 |
+
if lang in ['english', 'hindi', 'telugu']:
|
| 404 |
+
session['language'] = lang
|
| 405 |
+
return jsonify({'success': True, 'language': lang})
|
| 406 |
+
return jsonify({'success': False, 'error': 'Invalid language'}), 400
|
| 407 |
+
|
| 408 |
+
@app.route('/upload', methods=['GET', 'POST'])
|
| 409 |
+
def upload():
|
| 410 |
+
"""Upload and process leaf image"""
|
| 411 |
+
language = session.get('language', 'english')
|
| 412 |
+
|
| 413 |
+
if request.method == 'GET':
|
| 414 |
+
return render_template('upload.html',
|
| 415 |
+
lang=language,
|
| 416 |
+
translations=translations)
|
| 417 |
+
|
| 418 |
+
# POST request - handle file upload
|
| 419 |
+
try:
|
| 420 |
+
if 'leaf_image' not in request.files:
|
| 421 |
+
return jsonify({'error': 'No file uploaded'}), 400
|
| 422 |
+
|
| 423 |
+
file = request.files['leaf_image']
|
| 424 |
+
if file.filename == '':
|
| 425 |
+
return jsonify({'error': 'No file selected'}), 400
|
| 426 |
+
|
| 427 |
+
if not allowed_file(file.filename):
|
| 428 |
+
return jsonify({'error': 'Invalid file type. Please upload PNG, JPG, or JPEG'}), 400
|
| 429 |
+
|
| 430 |
+
# Save file with timestamp
|
| 431 |
+
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 432 |
+
filename = secure_filename(f"{timestamp}_{file.filename}")
|
| 433 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
| 434 |
+
file.save(filepath)
|
| 435 |
+
|
| 436 |
+
logger.info(f"File uploaded: {filename}")
|
| 437 |
+
|
| 438 |
+
# Predict disease
|
| 439 |
+
prediction = predict_disease(filepath)
|
| 440 |
+
|
| 441 |
+
# Store prediction in session for result page
|
| 442 |
+
session['prediction'] = prediction
|
| 443 |
+
session['image_filename'] = filename
|
| 444 |
+
|
| 445 |
+
return jsonify({
|
| 446 |
+
'success': True,
|
| 447 |
+
'redirect': '/result'
|
| 448 |
+
})
|
| 449 |
+
|
| 450 |
+
except Exception as e:
|
| 451 |
+
logger.error(f"Error processing upload: {str(e)}")
|
| 452 |
+
return jsonify({'error': 'Error processing image. Please try again.'}), 500
|
| 453 |
+
|
| 454 |
+
@app.route('/result')
|
| 455 |
+
def result():
|
| 456 |
+
"""Display disease detection results"""
|
| 457 |
+
language = session.get('language', 'english')
|
| 458 |
+
prediction = session.get('prediction')
|
| 459 |
+
image_filename = session.get('image_filename')
|
| 460 |
+
|
| 461 |
+
if not prediction:
|
| 462 |
+
return redirect('/')
|
| 463 |
+
|
| 464 |
+
# Generate treatment advice
|
| 465 |
+
treatment = None
|
| 466 |
+
if not prediction.get('is_healthy', False) and prediction['confidence'] > 60:
|
| 467 |
+
location = request.args.get('location', '')
|
| 468 |
+
treatment = generate_treatment_advice(
|
| 469 |
+
crop_name=prediction['crop'],
|
| 470 |
+
disease_name=prediction['disease'],
|
| 471 |
+
language=language,
|
| 472 |
+
location=location
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
return render_template('result.html',
|
| 476 |
+
prediction=prediction,
|
| 477 |
+
treatment=treatment,
|
| 478 |
+
image_filename=image_filename,
|
| 479 |
+
lang=language,
|
| 480 |
+
translations=translations)
|
| 481 |
+
|
| 482 |
+
@app.route('/api/predict', methods=['POST'])
|
| 483 |
+
def api_predict():
|
| 484 |
+
"""API endpoint for disease prediction"""
|
| 485 |
+
try:
|
| 486 |
+
if 'image' not in request.files:
|
| 487 |
+
return jsonify({'error': 'No image provided'}), 400
|
| 488 |
+
|
| 489 |
+
file = request.files['image']
|
| 490 |
+
if not allowed_file(file.filename):
|
| 491 |
+
return jsonify({'error': 'Invalid file type'}), 400
|
| 492 |
+
|
| 493 |
+
# Save and process
|
| 494 |
+
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 495 |
+
filename = secure_filename(f"api_{timestamp}_{file.filename}")
|
| 496 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
| 497 |
+
file.save(filepath)
|
| 498 |
+
|
| 499 |
+
# Predict
|
| 500 |
+
prediction = predict_disease(filepath)
|
| 501 |
+
|
| 502 |
+
# Generate treatment if requested
|
| 503 |
+
language = request.form.get('language', 'english')
|
| 504 |
+
include_treatment = request.form.get('include_treatment', 'true').lower() == 'true'
|
| 505 |
+
|
| 506 |
+
response = {
|
| 507 |
+
'success': True,
|
| 508 |
+
'prediction': prediction,
|
| 509 |
+
'image_url': f"/static/uploads/{filename}"
|
| 510 |
+
}
|
| 511 |
+
|
| 512 |
+
if include_treatment and not prediction.get('is_healthy', False):
|
| 513 |
+
treatment = generate_treatment_advice(
|
| 514 |
+
crop_name=prediction['crop'],
|
| 515 |
+
disease_name=prediction['disease'],
|
| 516 |
+
language=language
|
| 517 |
+
)
|
| 518 |
+
response['treatment'] = treatment
|
| 519 |
+
|
| 520 |
+
return jsonify(response)
|
| 521 |
+
|
| 522 |
+
except Exception as e:
|
| 523 |
+
logger.error(f"API prediction error: {str(e)}")
|
| 524 |
+
return jsonify({'error': 'Prediction failed'}), 500
|
| 525 |
+
|
| 526 |
+
@app.route('/health')
|
| 527 |
+
def health():
|
| 528 |
+
"""Health check endpoint"""
|
| 529 |
+
return jsonify({
|
| 530 |
+
'status': 'healthy',
|
| 531 |
+
'model_loaded': model is not None,
|
| 532 |
+
'model_exists': os.path.exists(MODEL_PATH),
|
| 533 |
+
'translations_loaded': translations is not None,
|
| 534 |
+
'device': str(device) if device else 'not set',
|
| 535 |
+
'num_classes': len(class_labels) if class_labels else 0
|
| 536 |
+
})
|
| 537 |
+
|
| 538 |
+
@app.errorhandler(413)
|
| 539 |
+
def request_entity_too_large(error):
|
| 540 |
+
"""Handle file too large error"""
|
| 541 |
+
return jsonify({'error': 'File too large. Maximum size is 16MB'}), 413
|
| 542 |
+
|
| 543 |
+
@app.errorhandler(500)
|
| 544 |
+
def internal_error(error):
|
| 545 |
+
"""Handle internal server errors"""
|
| 546 |
+
logger.error(f"Internal error: {str(error)}")
|
| 547 |
+
return jsonify({'error': 'Internal server error'}), 500
|
| 548 |
+
|
| 549 |
+
if __name__ == '__main__':
|
| 550 |
+
# Load resources on startup
|
| 551 |
+
load_resources()
|
| 552 |
+
|
| 553 |
+
# Run app
|
| 554 |
+
port = int(os.environ.get('PORT', 5000))
|
| 555 |
+
debug = os.environ.get('FLASK_ENV') == 'development'
|
| 556 |
+
app.run(host='0.0.0.0', port=port, debug=debug)
|
requirements.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core Flask dependencies
|
| 2 |
+
Flask==3.0.0
|
| 3 |
+
Werkzeug==3.0.1
|
| 4 |
+
|
| 5 |
+
# PyTorch and Image Processing
|
| 6 |
+
torch>=2.5.0
|
| 7 |
+
torchvision>=0.20.0
|
| 8 |
+
Pillow==11.0.0
|
| 9 |
+
numpy>=1.24.0,<2.0.0
|
| 10 |
+
|
| 11 |
+
# HTTP requests for OpenRouter API
|
| 12 |
+
requests==2.31.0
|
| 13 |
+
|
| 14 |
+
# Environment and utilities
|
| 15 |
+
python-dotenv==1.0.0
|
| 16 |
+
gunicorn==21.2.0
|
| 17 |
+
|
| 18 |
+
# Optional but recommended
|
| 19 |
+
redis==5.0.1
|
| 20 |
+
celery==5.3.4
|