File size: 10,009 Bytes
c493734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright 2025 Yuan He. All Rights Reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by: https://github.com/THUDM/slime/tree/main/examples/search-r1

from __future__ import annotations
import asyncio
import random

import aiohttp
import chardet

from models import WebContent, WebSearchAction, WebSearchObservation


class WebSearchTool:
    """A tool for searching the web using Google Search API (via Serper.dev)."""

    def __init__(
        self,
        api_key: str | None = None,
        top_k: int = 5,
        timeout: int = 60,
        snippet_only: bool = False,
        proxy: str | None = None,
    ):
        self.api_key = api_key
        self.top_k = top_k
        self.timeout = timeout
        self.snippet_only = snippet_only
        self.proxy = proxy

    async def execute(self, web_search_action: WebSearchAction) -> WebSearchObservation:
        """
        Execute a web search based on the query.
        """
        query = web_search_action.query.strip()
        try:
            web_contents = await self.google_search(
                api_key=self.api_key,
                query=query,
                top_k=self.top_k,
                timeout=self.timeout,
                snippet_only=self.snippet_only,
            )
            if web_contents:
                return WebSearchObservation(
                    content=self.format_web_contents(web_contents, query),
                    web_contents=web_contents,
                    done=False,
                    metadata={"query": query},
                )
            else:
                return WebSearchObservation(
                    content=f"[ERROR] No search results found for query: {query}",
                    web_contents=[],
                    done=False,
                    metadata={"query": query, "error": "No search results found"},
                )

        except Exception as e:
            import traceback
            tb_str = traceback.format_exc()
            return WebSearchObservation(
                content=f"[ERROR] Search failed due to: {str(e)}\nTraceback:\n{tb_str}",
                web_contents=[],
                done=False,
                metadata={"query": query, "error": str(e), "traceback": tb_str},
            )

    async def google_search(
        self,
        api_key: str,
        query: str,
        top_k: int = 5,
        timeout: int = 60,
        snippet_only: bool = False,
    ) -> list[WebContent]:
        """
        Perform a Google search using Serper.dev API.

        Args:
            api_key: Serper.dev API key.
            query: Search query string.
            top_k: Number of results to return.
            timeout: Request timeout in seconds.
            snippet_only: If `True`, return only snippets; if `False`, fetch full webpage content.

        Returns:
            list[dict[str, Any]]: List of search results with titles and content.
        """
        timeout_obj = aiohttp.ClientTimeout(total=timeout)
        session_kwargs = {}
        if self.proxy:
            session_kwargs["proxy"] = self.proxy

        async with aiohttp.ClientSession(**session_kwargs) as session:
            async with session.post(
                "https://google.serper.dev/search",
                json={
                    "q": query,
                    "num": top_k,
                    "gl": "us",
                    "hl": "en",
                },
                headers={
                    "Content-Type": "application/json",
                    "X-API-KEY": api_key,
                },
                timeout=timeout_obj,
            ) as resp:
                resp.raise_for_status()
                response = await resp.json()
                items = response.get("organic", [])

        web_contents = []
        if snippet_only:
            # Quick mode: just use snippets
            for item in items:
                title = item.get("title", "")
                snippet = item.get("snippet", "")
                context = " ".join(self.parse_search_snippet(snippet))

                if title or context:
                    title = title or "No title."
                    context = context or "No snippet available."
                    web_contents.append(WebContent(title=title, content=context, url=item.get("link", "")))
        else:
            # Deep mode: fetch full page content
            links = [item.get("link", "") for item in items if "link" in item]
            raw_contents = await self.fetch_web_contents(links)

            for i, item in enumerate(items):
                title = item.get("title", "")
                snippet = item.get("snippet", "")

                # Extract relevant context from the full page
                context = self.expand_search_snippet(snippet, raw_contents[i]) if i < len(raw_contents) and raw_contents[i] else snippet

                if title or context:
                    title = title or "No title."
                    context = context or "No content available."
                    web_contents.append(WebContent(title=title, content=context, url=item.get("link", "")))

        return web_contents

    @staticmethod
    async def fetch_web_contents(urls: list[str], limit: int = 8) -> list[str]:
        """
        Fetch multiple web contents concurrently with rate limiting.

        Args:
            urls (list[str]): List of URLs to fetch.
            limit (int): Maximum concurrent requests.

        Returns:
            list[str]: List of page contents (empty string for failed requests).
        """

        async def _fetch(url: str, session: aiohttp.ClientSession, semaphore: asyncio.Semaphore) -> str:
            if url == "":
                return ""

            user_agents = [
                "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
                "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
                "Mozilla/5.0 (compatible; Googlebot/2.1; +https://www.google.com/bot.html)",
            ]
            headers = {"User-Agent": random.choice(user_agents)}

            async with semaphore:
                try:
                    async with session.get(url, headers=headers, timeout=aiohttp.ClientTimeout(total=10)) as response:
                        raw = await response.read()
                        detected = chardet.detect(raw)
                        encoding = detected.get("encoding") or "utf-8"
                        return raw.decode(encoding, errors="ignore")
                except (aiohttp.ClientError, asyncio.TimeoutError, Exception):
                    # Silently fail for individual pages
                    return ""

        semaphore = asyncio.Semaphore(limit)
        timeout = aiohttp.ClientTimeout(total=10)
        connector = aiohttp.TCPConnector(limit_per_host=limit, force_close=True)

        async with aiohttp.ClientSession(timeout=timeout, connector=connector) as session:
            tasks = [_fetch(url, session, semaphore) for url in urls]
            return await asyncio.gather(*tasks)

    @staticmethod
    def parse_search_snippet(snippet: str) -> list[str]:
        """
        Parse a search snippet into meaningful segments.

        Args:
            snippet: The snippet text with ellipsis separators.

        Returns:
            List of text segments with at least 5 words.
        """
        segments = snippet.split("...")
        return [s.strip() for s in segments if len(s.strip().split()) > 5]

    @staticmethod
    def expand_search_snippet(snippet: str, web_content: str) -> str:
        """
        Finds snippet segments in the web content and expands them to full paragraphs.

        Args:
            snippet (str): The search snippet with key phrases.
            web_content (str): The full web content text.

        Returns:
            str: The expanded full context of the snippet.
        """
        snippets = WebSearchTool.parse_search_snippet(snippet)
        ctx_paras = []

        for s in snippets:
            # Find snippet in document
            pos = web_content.replace("\n", " ").find(s)
            if pos == -1:
                continue

            # Expand to paragraph boundaries
            sta = pos
            while sta > 0 and web_content[sta] != "\n":
                sta -= 1

            end = pos + len(s)
            while end < len(web_content) and web_content[end] != "\n":
                end += 1

            para = web_content[sta:end].strip()
            if para and para not in ctx_paras:
                ctx_paras.append(para)

        return "\n".join(ctx_paras)

    @staticmethod
    def format_web_contents(web_contents: list[WebContent], query: str) -> str:
        """
        Format search results into a readable string.

        Args:
            results (list[dict[str, Any]]): List of search result dictionaries.
            query (str): Original search query.

        Returns:
            str: Formatted string representation of results.
        """
        lines = [f"Search results for: {query}\n"]

        for i, result in enumerate(web_contents, 1):
            lines.append(f"[{i}] {result.title}")
            lines.append(f"    URL: {result.url or 'N/A'}")
            lines.append(f"    {result.content[:500]}{'...' if len(result.content) > 500 else ''}")
            lines.append("")

        return "\n".join(lines)