Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# --- 步驟 1:載入 Hugging Face Pipeline (書中第 5 章核心) ---
|
| 5 |
+
# 我們指定一個針對中文評論微調過的模型 (uer/roberta-base-finetuned-dianping-chinese)
|
| 6 |
+
# task="sentiment-analysis" 會自動處理文字輸入到模型輸出的所有細節
|
| 7 |
+
print("正在下載並載入模型,請稍候...")
|
| 8 |
+
classifier = pipeline("sentiment-analysis", model="uer/roberta-base-finetuned-dianping-chinese")
|
| 9 |
+
|
| 10 |
+
# --- 步驟 2:定義處理函式 ---
|
| 11 |
+
def analyze_text(text):
|
| 12 |
+
# Pipeline 的輸出格式通常是 [{'label': 'positive (mysql)', 'score': 0.99}]
|
| 13 |
+
# 這裡我們做一點處理,讓 Gradio 更容易顯示
|
| 14 |
+
results = classifier(text)
|
| 15 |
+
label = results[0]['label']
|
| 16 |
+
score = results[0]['score']
|
| 17 |
+
|
| 18 |
+
# 將標籤轉為中文顯示
|
| 19 |
+
chinese_label = "正面/滿意 😊" if "positive" in label else "負面/不滿 😡"
|
| 20 |
+
|
| 21 |
+
# 回傳給 Gradio 的格式 (標籤與信心分數)
|
| 22 |
+
return {chinese_label: score}
|
| 23 |
+
|
| 24 |
+
# --- 步驟 3:建立 Gradio 介面 ---
|
| 25 |
+
# 這是您最熟悉的部分,建立輸入框與輸出區
|
| 26 |
+
demo = gr.Interface(
|
| 27 |
+
fn=analyze_text,
|
| 28 |
+
inputs=gr.Textbox(lines=3, placeholder="請輸入一段中文文字(例如:這本書寫得真好!)..."),
|
| 29 |
+
outputs=gr.Label(num_top_classes=1, label="分析結果"),
|
| 30 |
+
title="Hugging Face 中文情感分析器",
|
| 31 |
+
description="輸入一段文字,AI 會自動判斷其情緒傾向。(基於 BERT/RoBERTa 模型)",
|
| 32 |
+
examples=[
|
| 33 |
+
["這本書的內容深入淺出,對我學習 NLP 幫助很大!"],
|
| 34 |
+
["運送速度太慢了,書角還有點摺痕,失望。"],
|
| 35 |
+
["地震預警系統的反應速度對於防災至關重要。"]
|
| 36 |
+
]
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# 啟動網頁
|
| 40 |
+
if __name__ == "__main__":
|
| 41 |
+
demo.launch()
|