David Driscoll
commited on
Commit
·
0b4ab6d
1
Parent(s):
4f14988
Update
Browse files
app.py
CHANGED
|
@@ -4,6 +4,9 @@ import numpy as np
|
|
| 4 |
from PIL import Image
|
| 5 |
import mediapipe as mp
|
| 6 |
from fer import FER # Facial emotion recognition
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# -----------------------------
|
| 9 |
# Configuration
|
|
@@ -11,6 +14,17 @@ from fer import FER # Facial emotion recognition
|
|
| 11 |
SKIP_RATE = 1 # For image processing, always run the analysis
|
| 12 |
DESIRED_SIZE = (640, 480)
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# -----------------------------
|
| 15 |
# Global caches for overlay info and frame counters
|
| 16 |
# -----------------------------
|
|
@@ -21,17 +35,20 @@ faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
|
|
| 21 |
# -----------------------------
|
| 22 |
# Initialize Models and Helpers
|
| 23 |
# -----------------------------
|
| 24 |
-
# MediaPipe Pose
|
| 25 |
mp_pose = mp.solutions.pose
|
| 26 |
pose = mp_pose.Pose()
|
| 27 |
mp_drawing = mp.solutions.drawing_utils
|
| 28 |
|
| 29 |
-
mp_face_detection = mp.solutions.face_detection
|
| 30 |
-
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
|
| 31 |
-
|
| 32 |
# Initialize the FER emotion detector (using the FER package)
|
| 33 |
emotion_detector = FER(mtcnn=True)
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# -----------------------------
|
| 36 |
# Overlay Drawing Functions
|
| 37 |
# -----------------------------
|
|
@@ -86,21 +103,18 @@ def compute_emotion_overlay(image):
|
|
| 86 |
return text
|
| 87 |
|
| 88 |
def compute_faces_overlay(image):
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
| 95 |
boxes = []
|
| 96 |
-
if
|
| 97 |
-
for
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
y = int(bbox.ymin * small_h)
|
| 101 |
-
box_w = int(bbox.width * small_w)
|
| 102 |
-
box_h = int(bbox.height * small_h)
|
| 103 |
-
boxes.append((x, y, x + box_w, y + box_h))
|
| 104 |
text = f"Detected {len(boxes)} face(s)"
|
| 105 |
else:
|
| 106 |
text = "No faces detected"
|
|
@@ -157,8 +171,11 @@ def compute_facemesh_overlay(image):
|
|
| 157 |
|
| 158 |
def analyze_facemesh(image):
|
| 159 |
annotated_image, mask_image, text = compute_facemesh_overlay(image)
|
| 160 |
-
return (
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
# -----------------------------
|
| 164 |
# Main Analysis Functions for Single Image
|
|
@@ -203,11 +220,13 @@ def analyze_faces_current(image):
|
|
| 203 |
# -----------------------------
|
| 204 |
custom_css = """
|
| 205 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
|
|
|
|
| 206 |
body {
|
| 207 |
background-color: #121212;
|
| 208 |
font-family: 'Orbitron', sans-serif;
|
| 209 |
-
color: #00ff00;
|
| 210 |
}
|
|
|
|
| 211 |
.gradio-container {
|
| 212 |
background: linear-gradient(135deg, #2d2d2d, #1a1a1a);
|
| 213 |
border: 2px solid #00ff00;
|
|
@@ -217,10 +236,13 @@ body {
|
|
| 217 |
max-width: 1200px;
|
| 218 |
margin: auto;
|
| 219 |
}
|
| 220 |
-
|
|
|
|
|
|
|
| 221 |
color: #00ff00 !important;
|
| 222 |
text-shadow: 0 0 10px #00ff00;
|
| 223 |
}
|
|
|
|
| 224 |
input, button, .output {
|
| 225 |
border: 1px solid #00ff00;
|
| 226 |
box-shadow: 0 0 8px #00ff00;
|
|
@@ -236,8 +258,9 @@ posture_interface = gr.Interface(
|
|
| 236 |
fn=analyze_posture_current,
|
| 237 |
inputs=gr.Image(label="Upload an Image for Posture Analysis"),
|
| 238 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Posture Analysis")],
|
| 239 |
-
title="Posture",
|
| 240 |
-
description="Detects
|
|
|
|
| 241 |
live=False
|
| 242 |
)
|
| 243 |
|
|
@@ -245,8 +268,9 @@ emotion_interface = gr.Interface(
|
|
| 245 |
fn=analyze_emotion_current,
|
| 246 |
inputs=gr.Image(label="Upload an Image for Emotion Analysis"),
|
| 247 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Emotion Analysis")],
|
| 248 |
-
title="Emotion",
|
| 249 |
-
description="Detects facial emotions using FER
|
|
|
|
| 250 |
live=False
|
| 251 |
)
|
| 252 |
|
|
@@ -254,8 +278,9 @@ faces_interface = gr.Interface(
|
|
| 254 |
fn=analyze_faces_current,
|
| 255 |
inputs=gr.Image(label="Upload an Image for Face Detection"),
|
| 256 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Face Detection")],
|
| 257 |
-
title="Faces",
|
| 258 |
-
description="Detects faces using
|
|
|
|
| 259 |
live=False
|
| 260 |
)
|
| 261 |
|
|
@@ -267,8 +292,9 @@ facemesh_interface = gr.Interface(
|
|
| 267 |
gr.Image(type="numpy", label="Mask Output"),
|
| 268 |
gr.HTML(label="Facemesh Analysis")
|
| 269 |
],
|
| 270 |
-
title="Facemesh",
|
| 271 |
-
description="Detects facial landmarks using MediaPipe Face Mesh
|
|
|
|
| 272 |
live=False
|
| 273 |
)
|
| 274 |
|
|
@@ -294,6 +320,10 @@ demo = gr.Blocks(css=custom_css)
|
|
| 294 |
with demo:
|
| 295 |
gr.Markdown("<h1 class='gradio-title'>Multi-Analysis Image App</h1>")
|
| 296 |
gr.Markdown("<p class='gradio-description'>Upload an image to run high-tech analysis for posture, emotions, faces, and facemesh landmarks.</p>")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
tabbed_interface.render()
|
| 298 |
|
| 299 |
if __name__ == "__main__":
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import mediapipe as mp
|
| 6 |
from fer import FER # Facial emotion recognition
|
| 7 |
+
from ultralytics import YOLO # YOLOv8 for face detection
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
from supervision import Detections
|
| 10 |
|
| 11 |
# -----------------------------
|
| 12 |
# Configuration
|
|
|
|
| 14 |
SKIP_RATE = 1 # For image processing, always run the analysis
|
| 15 |
DESIRED_SIZE = (640, 480)
|
| 16 |
|
| 17 |
+
# -----------------------------
|
| 18 |
+
# Sample Images (Preset Suggested Photos)
|
| 19 |
+
# -----------------------------
|
| 20 |
+
SAMPLE_IMAGES = [
|
| 21 |
+
"https://upload.wikimedia.org/wikipedia/commons/7/76/Daniel_Diermeier_2020_%28cropped%29.jpg",
|
| 22 |
+
"https://upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Gilbert_Stuart_Williamstown_Portrait_of_George_Washington.jpg/1200px-Gilbert_Stuart_Williamstown_Portrait_of_George_Washington.jpg",
|
| 23 |
+
"https://upload.wikimedia.org/wikipedia/commons/thumb/8/8d/President_Barack_Obama.jpg/800px-President_Barack_Obama.jpg",
|
| 24 |
+
"https://images.wsj.net/im-98527587?width=1280&size=1",
|
| 25 |
+
"https://media.npr.org/assets/img/2023/11/28/dr.buolamwiniheadshot_c-naima-green-1-_custom-05cd4ce4570c688d00cc558d16c76745abd07539.png"
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
# -----------------------------
|
| 29 |
# Global caches for overlay info and frame counters
|
| 30 |
# -----------------------------
|
|
|
|
| 35 |
# -----------------------------
|
| 36 |
# Initialize Models and Helpers
|
| 37 |
# -----------------------------
|
| 38 |
+
# MediaPipe Pose and Drawing
|
| 39 |
mp_pose = mp.solutions.pose
|
| 40 |
pose = mp_pose.Pose()
|
| 41 |
mp_drawing = mp.solutions.drawing_utils
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
# Initialize the FER emotion detector (using the FER package)
|
| 44 |
emotion_detector = FER(mtcnn=True)
|
| 45 |
|
| 46 |
+
# -----------------------------
|
| 47 |
+
# Download YOLOv8 face detection model from Hugging Face
|
| 48 |
+
# -----------------------------
|
| 49 |
+
model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt")
|
| 50 |
+
yolo_face_model = YOLO(model_path)
|
| 51 |
+
|
| 52 |
# -----------------------------
|
| 53 |
# Overlay Drawing Functions
|
| 54 |
# -----------------------------
|
|
|
|
| 103 |
return text
|
| 104 |
|
| 105 |
def compute_faces_overlay(image):
|
| 106 |
+
"""
|
| 107 |
+
Uses the YOLOv8 face detection model from Hugging Face.
|
| 108 |
+
Processes the input image and returns bounding boxes using Supervision Detections.
|
| 109 |
+
"""
|
| 110 |
+
pil_image = image if isinstance(image, Image.Image) else Image.fromarray(image)
|
| 111 |
+
output = yolo_face_model(pil_image)
|
| 112 |
+
results = Detections.from_ultralytics(output[0])
|
| 113 |
boxes = []
|
| 114 |
+
if results.xyxy.shape[0] > 0:
|
| 115 |
+
for box in results.xyxy:
|
| 116 |
+
x1, y1, x2, y2 = map(int, box)
|
| 117 |
+
boxes.append((x1, y1, x2, y2))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
text = f"Detected {len(boxes)} face(s)"
|
| 119 |
else:
|
| 120 |
text = "No faces detected"
|
|
|
|
| 171 |
|
| 172 |
def analyze_facemesh(image):
|
| 173 |
annotated_image, mask_image, text = compute_facemesh_overlay(image)
|
| 174 |
+
return (
|
| 175 |
+
annotated_image,
|
| 176 |
+
mask_image,
|
| 177 |
+
f"<div style='color: #00ff00 !important;'>Facemesh Analysis: {text}</div>"
|
| 178 |
+
)
|
| 179 |
|
| 180 |
# -----------------------------
|
| 181 |
# Main Analysis Functions for Single Image
|
|
|
|
| 220 |
# -----------------------------
|
| 221 |
custom_css = """
|
| 222 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
|
| 223 |
+
|
| 224 |
body {
|
| 225 |
background-color: #121212;
|
| 226 |
font-family: 'Orbitron', sans-serif;
|
| 227 |
+
color: #00ff00 !important;
|
| 228 |
}
|
| 229 |
+
|
| 230 |
.gradio-container {
|
| 231 |
background: linear-gradient(135deg, #2d2d2d, #1a1a1a);
|
| 232 |
border: 2px solid #00ff00;
|
|
|
|
| 236 |
max-width: 1200px;
|
| 237 |
margin: auto;
|
| 238 |
}
|
| 239 |
+
|
| 240 |
+
.gradio-title, .gradio-description, .tab-item, .tab-item *,
|
| 241 |
+
label, .label, .wrap .label, .wrap .input, .wrap .output, .wrap .description {
|
| 242 |
color: #00ff00 !important;
|
| 243 |
text-shadow: 0 0 10px #00ff00;
|
| 244 |
}
|
| 245 |
+
|
| 246 |
input, button, .output {
|
| 247 |
border: 1px solid #00ff00;
|
| 248 |
box-shadow: 0 0 8px #00ff00;
|
|
|
|
| 258 |
fn=analyze_posture_current,
|
| 259 |
inputs=gr.Image(label="Upload an Image for Posture Analysis"),
|
| 260 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Posture Analysis")],
|
| 261 |
+
title="<div style='color:#00ff00;'>Posture",
|
| 262 |
+
description="<div style='color:#00ff00;'>Detects posture using MediaPipe with connector lines.</div>",
|
| 263 |
+
examples=SAMPLE_IMAGES, # clickable examples at bottom
|
| 264 |
live=False
|
| 265 |
)
|
| 266 |
|
|
|
|
| 268 |
fn=analyze_emotion_current,
|
| 269 |
inputs=gr.Image(label="Upload an Image for Emotion Analysis"),
|
| 270 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Emotion Analysis")],
|
| 271 |
+
title="<div style='color:#00ff00;'>Emotion",
|
| 272 |
+
description="<div style='color:#00ff00;'>Detects facial emotions using FER.</div>",
|
| 273 |
+
examples=SAMPLE_IMAGES,
|
| 274 |
live=False
|
| 275 |
)
|
| 276 |
|
|
|
|
| 278 |
fn=analyze_faces_current,
|
| 279 |
inputs=gr.Image(label="Upload an Image for Face Detection"),
|
| 280 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Face Detection")],
|
| 281 |
+
title="<div style='color:#00ff00;'>Faces",
|
| 282 |
+
description="<div style='color:#00ff00;'>Detects faces using fine-tuned YOLOv8 model.</div>",
|
| 283 |
+
examples=SAMPLE_IMAGES,
|
| 284 |
live=False
|
| 285 |
)
|
| 286 |
|
|
|
|
| 292 |
gr.Image(type="numpy", label="Mask Output"),
|
| 293 |
gr.HTML(label="Facemesh Analysis")
|
| 294 |
],
|
| 295 |
+
title="<div style='color:#00ff00;'>Facemesh",
|
| 296 |
+
description="<div style='color:#00ff00;'>Detects facial landmarks using MediaPipe Face Mesh.</div>",
|
| 297 |
+
examples=SAMPLE_IMAGES,
|
| 298 |
live=False
|
| 299 |
)
|
| 300 |
|
|
|
|
| 320 |
with demo:
|
| 321 |
gr.Markdown("<h1 class='gradio-title'>Multi-Analysis Image App</h1>")
|
| 322 |
gr.Markdown("<p class='gradio-description'>Upload an image to run high-tech analysis for posture, emotions, faces, and facemesh landmarks.</p>")
|
| 323 |
+
|
| 324 |
+
# We removed the top-row sample images and now rely on
|
| 325 |
+
# the built-in Gradio examples at the bottom of each tab.
|
| 326 |
+
|
| 327 |
tabbed_interface.render()
|
| 328 |
|
| 329 |
if __name__ == "__main__":
|