Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,108 +1,37 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import time
|
| 3 |
-
import random
|
| 4 |
-
import matplotlib.pyplot as plt
|
| 5 |
from transformers import pipeline
|
| 6 |
|
|
|
|
| 7 |
MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
sentiment_analyzer = pipeline("sentiment-analysis", model=MODEL_NAME)
|
| 12 |
-
except Exception as e:
|
| 13 |
-
sentiment_analyzer = None
|
| 14 |
-
print("Model load failed:", e)
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
def simulate_training(epochs, learning_rate):
|
| 18 |
-
import matplotlib.pyplot as plt
|
| 19 |
-
import random, time
|
| 20 |
-
|
| 21 |
-
accuracies = []
|
| 22 |
-
logs = []
|
| 23 |
-
|
| 24 |
-
# Start lower for visible climb
|
| 25 |
-
current_acc = 0.55 + random.uniform(0, 0.05)
|
| 26 |
-
|
| 27 |
-
for epoch in range(epochs):
|
| 28 |
-
time.sleep(0.3)
|
| 29 |
-
|
| 30 |
-
# Improvement scaled for realistic visible growth
|
| 31 |
-
improvement = learning_rate * random.uniform(20, 80)
|
| 32 |
-
current_acc += improvement
|
| 33 |
-
|
| 34 |
-
# Add small random noise and plateau effect
|
| 35 |
-
if epoch > epochs * 0.6:
|
| 36 |
-
current_acc += random.uniform(-0.015, 0.005)
|
| 37 |
-
|
| 38 |
-
# Clamp values between 0.55 and 0.95
|
| 39 |
-
current_acc = max(min(current_acc, 0.95), 0.55)
|
| 40 |
-
accuracies.append(round(current_acc, 3))
|
| 41 |
-
logs.append(f"Epoch {epoch+1}: Validation Accuracy = {current_acc:.3f}")
|
| 42 |
-
|
| 43 |
-
# Create the chart
|
| 44 |
-
plt.figure(figsize=(4, 2))
|
| 45 |
-
plt.plot(range(1, epochs + 1), accuracies, marker="o", color="tab:blue")
|
| 46 |
-
plt.axhline(y=accuracies[0], color="gray", linestyle="--", linewidth=1, label="Starting accuracy")
|
| 47 |
-
plt.title("Simulated Validation Accuracy per Epoch")
|
| 48 |
-
plt.xlabel("Epoch")
|
| 49 |
-
plt.ylabel("Accuracy")
|
| 50 |
-
plt.ylim(0.5, 1.0)
|
| 51 |
-
plt.grid(True)
|
| 52 |
-
plt.legend()
|
| 53 |
-
|
| 54 |
-
final_acc = round(accuracies[-1], 3)
|
| 55 |
-
return plt, "\n".join(logs), final_acc
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# -------- Real Inference Function --------
|
| 59 |
def analyze_text(text):
|
| 60 |
-
if not sentiment_analyzer:
|
| 61 |
-
return "Model not loaded. Refresh the page and try again."
|
| 62 |
try:
|
| 63 |
result = sentiment_analyzer(text)[0]
|
| 64 |
label = result.get("label", "UNKNOWN")
|
| 65 |
-
score = round(result.get("score",
|
| 66 |
return f"{label} ({score})"
|
| 67 |
except Exception as e:
|
| 68 |
return f"Error during inference: {e}"
|
| 69 |
|
| 70 |
-
#
|
| 71 |
-
with gr.Blocks(title="CIS1160
|
| 72 |
-
gr.Markdown(
|
| 73 |
-
"### Part 1 – Simulated Training\n"
|
| 74 |
-
"Adjust the settings and click **Train** to visualize accuracy improvement.\n"
|
| 75 |
-
"_(This is a simulation – no real data is trained.)_"
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
with gr.Row():
|
| 79 |
-
epochs = gr.Slider(1, 10, value=3, step=1, label="Epochs")
|
| 80 |
-
lr = gr.Slider(0.001, 0.01, value=0.005, step=0.001, label="Learning Rate")
|
| 81 |
-
|
| 82 |
-
train_button = gr.Button("Train (Simulated)")
|
| 83 |
-
train_chart = gr.Plot(label="Simulated Validation Accuracy Chart")
|
| 84 |
-
train_log = gr.Textbox(label="Training Log", lines=8)
|
| 85 |
-
final_acc = gr.Number(label="Final Accuracy")
|
| 86 |
-
|
| 87 |
-
train_button.click(
|
| 88 |
-
simulate_training,
|
| 89 |
-
inputs=[epochs, lr],
|
| 90 |
-
outputs=[train_chart, train_log, final_acc]
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
gr.Markdown(
|
| 94 |
-
"
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
| 97 |
)
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
output_text = gr.Textbox(label="Sentiment Prediction")
|
| 102 |
|
| 103 |
run_button = gr.Button("Run Inference")
|
| 104 |
run_button.click(analyze_text, inputs=input_text, outputs=output_text)
|
| 105 |
|
| 106 |
-
# -------- Launch Application --------
|
| 107 |
if __name__ == "__main__":
|
| 108 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
|
| 4 |
+
# Choose a reliable model (you can change this)
|
| 5 |
MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 6 |
|
| 7 |
+
# Load the model once
|
| 8 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model=MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Function to analyze text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def analyze_text(text):
|
|
|
|
|
|
|
| 12 |
try:
|
| 13 |
result = sentiment_analyzer(text)[0]
|
| 14 |
label = result.get("label", "UNKNOWN")
|
| 15 |
+
score = round(result.get("score", 3))
|
| 16 |
return f"{label} ({score})"
|
| 17 |
except Exception as e:
|
| 18 |
return f"Error during inference: {e}"
|
| 19 |
|
| 20 |
+
# Gradio interface
|
| 21 |
+
with gr.Blocks(title="CIS1160 LLM Inference Demo") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
gr.Markdown(
|
| 23 |
+
"""
|
| 24 |
+
### Explore Inference
|
| 25 |
+
Enter any sentence and see how a trained model interprets it.
|
| 26 |
+
Try clearly positive, negative, and neutral examples.
|
| 27 |
+
"""
|
| 28 |
)
|
| 29 |
|
| 30 |
+
input_text = gr.Textbox(label="Enter text to analyze", lines=2)
|
| 31 |
+
output_text = gr.Textbox(label="Model Prediction")
|
|
|
|
| 32 |
|
| 33 |
run_button = gr.Button("Run Inference")
|
| 34 |
run_button.click(analyze_text, inputs=input_text, outputs=output_text)
|
| 35 |
|
|
|
|
| 36 |
if __name__ == "__main__":
|
| 37 |
+
demo.launch()
|