dfbowers commited on
Commit
d44030f
·
verified ·
1 Parent(s): 6635203

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -7
app.py CHANGED
@@ -21,26 +21,25 @@ def simulate_training(epochs, learning_rate):
21
  accuracies = []
22
  logs = []
23
 
24
- # start with lower accuracy range
25
  current_acc = 0.55 + random.uniform(0, 0.05)
26
 
27
  for epoch in range(epochs):
28
  time.sleep(0.3)
29
 
30
- # base improvement scaled by learning rate and some randomness
31
- improvement = learning_rate * random.uniform(20, 60) / 100
32
  current_acc += improvement
33
 
34
- # small noise and realistic plateau
35
  if epoch > epochs * 0.6:
36
- current_acc += random.uniform(-0.01, 0.005)
37
 
38
- # clamp and record
39
  current_acc = max(min(current_acc, 0.98), 0.55)
40
  accuracies.append(round(current_acc, 3))
41
  logs.append(f"Epoch {epoch+1}: Validation Accuracy = {current_acc:.3f}")
42
 
43
- # create chart with more visible change
44
  plt.figure(figsize=(4, 2))
45
  plt.plot(range(1, epochs + 1), accuracies, marker="o", color="tab:blue")
46
  plt.title("Simulated Validation Accuracy per Epoch")
 
21
  accuracies = []
22
  logs = []
23
 
24
+ # start lower for visible climb
25
  current_acc = 0.55 + random.uniform(0, 0.05)
26
 
27
  for epoch in range(epochs):
28
  time.sleep(0.3)
29
 
30
+ # scale improvement more aggressively
31
+ improvement = learning_rate * random.uniform(200, 400)
32
  current_acc += improvement
33
 
34
+ # plateau effect
35
  if epoch > epochs * 0.6:
36
+ current_acc += random.uniform(-0.01, 0.003)
37
 
 
38
  current_acc = max(min(current_acc, 0.98), 0.55)
39
  accuracies.append(round(current_acc, 3))
40
  logs.append(f"Epoch {epoch+1}: Validation Accuracy = {current_acc:.3f}")
41
 
42
+ # plot exaggerated climb
43
  plt.figure(figsize=(4, 2))
44
  plt.plot(range(1, epochs + 1), accuracies, marker="o", color="tab:blue")
45
  plt.title("Simulated Validation Accuracy per Epoch")