Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,113 +1,76 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import gradio as gr
|
| 3 |
-
from openai import OpenAI
|
| 4 |
from langchain_community.vectorstores import FAISS
|
| 5 |
from langchain_community.embeddings import FakeEmbeddings
|
| 6 |
-
from langchain.docstore.document import Document
|
| 7 |
from langchain.text_splitter import CharacterTextSplitter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
client = OpenAI(
|
| 11 |
base_url="https://openrouter.ai/api/v1",
|
| 12 |
api_key="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",
|
| 13 |
)
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
Document(page_content="You are not alone. Many have walked this path and found light again."),
|
| 20 |
-
Document(page_content="Small steps lead to big changes. Just begin.")
|
| 21 |
-
]
|
| 22 |
-
splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
|
| 23 |
-
split_docs = splitter.split_documents(documents)
|
| 24 |
-
vector_db = FAISS.from_documents(split_docs, FakeEmbeddings())
|
| 25 |
-
|
| 26 |
-
# --- Emotion Detection using DeepSeek R1 ---
|
| 27 |
-
def detect_emotion(user_input):
|
| 28 |
-
prompt = f"""
|
| 29 |
-
Analyze the message and return a JSON with:
|
| 30 |
-
{{
|
| 31 |
-
"emotion": "<Emotion>",
|
| 32 |
-
"tone": "<Suggested_Tone>",
|
| 33 |
-
"affirmation": "<One_Line_Affirmation>",
|
| 34 |
-
"response": "<Comforting response>"
|
| 35 |
-
}}
|
| 36 |
-
Message: "{user_input}"
|
| 37 |
-
"""
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
messages=[{"role": "user", "content": prompt}]
|
| 42 |
-
)
|
| 43 |
-
return json.loads(completion.choices[0].message.content)
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
completion = client.chat.completions.create(
|
| 48 |
-
model="deepseek/deepseek-r1:free",
|
| 49 |
-
messages=[{"role": "user", "content": "Give a one-line calming affirmation."}]
|
| 50 |
-
)
|
| 51 |
-
return completion.choices[0].message.content
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
|
| 60 |
-
def get_calming_technique():
|
| 61 |
completion = client.chat.completions.create(
|
| 62 |
model="deepseek/deepseek-r1:free",
|
| 63 |
-
messages=[{"role": "user", "content":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
)
|
|
|
|
| 65 |
return completion.choices[0].message.content
|
| 66 |
|
| 67 |
-
# --- Chatbot Main Logic ---
|
| 68 |
-
def chatbot_interface(name, issue):
|
| 69 |
-
emotion_data = detect_emotion(issue)
|
| 70 |
-
rag_support = "\n".join([d.page_content for d in vector_db.similarity_search(issue, k=2)])
|
| 71 |
-
|
| 72 |
-
system_prompt = f"""
|
| 73 |
-
You're MindMate, a kind mental health assistant.
|
| 74 |
-
Talk directly to {name}.
|
| 75 |
-
Emotion: {emotion_data['emotion']}
|
| 76 |
-
Tone: {emotion_data['tone']}
|
| 77 |
-
Affirmation: {emotion_data['affirmation']}
|
| 78 |
-
Message: {issue}
|
| 79 |
-
Based on this and the below RAG support:
|
| 80 |
-
{rag_support}
|
| 81 |
-
Write a warm, comforting response.
|
| 82 |
-
"""
|
| 83 |
-
|
| 84 |
-
final_response = client.chat.completions.create(
|
| 85 |
-
model="deepseek/deepseek-r1:free",
|
| 86 |
-
messages=[{"role": "user", "content": system_prompt}]
|
| 87 |
-
)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
fn=chatbot_interface,
|
| 107 |
-
inputs=inputs,
|
| 108 |
-
outputs=outputs,
|
| 109 |
-
title="🧠 MindMate: Your Mental Health Companion",
|
| 110 |
-
description="Just share your name and how you're feeling. MindMate will support you emotionally with warmth, care, and science. Powered by DeepSeek R1 via OpenRouter 💖"
|
| 111 |
-
)
|
| 112 |
|
| 113 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from langchain_community.vectorstores import FAISS
|
| 2 |
from langchain_community.embeddings import FakeEmbeddings
|
|
|
|
| 3 |
from langchain.text_splitter import CharacterTextSplitter
|
| 4 |
+
from langchain_community.document_loaders import TextLoader
|
| 5 |
+
from openai import OpenAI
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import json
|
| 10 |
+
|
| 11 |
+
# ========== Load Documents and Create Vector DB ==========
|
| 12 |
+
loader = TextLoader("mindmate.txt")
|
| 13 |
+
documents = loader.load()
|
| 14 |
|
| 15 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 16 |
+
split_docs = text_splitter.split_documents(documents)
|
| 17 |
+
|
| 18 |
+
# Fix for FakeEmbeddings requiring size
|
| 19 |
+
embedding = FakeEmbeddings(size=1536)
|
| 20 |
+
vector_db = FAISS.from_documents(split_docs, embedding)
|
| 21 |
+
|
| 22 |
+
# ========== OpenRouter DeepSeek R1 Setup ==========
|
| 23 |
client = OpenAI(
|
| 24 |
base_url="https://openrouter.ai/api/v1",
|
| 25 |
api_key="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",
|
| 26 |
)
|
| 27 |
|
| 28 |
+
# ========== Gradio App ==========
|
| 29 |
+
def mindmate(name, feeling):
|
| 30 |
+
if not name or not feeling:
|
| 31 |
+
return "Please enter your name and what's troubling you."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
context_docs = vector_db.similarity_search(feeling, k=2)
|
| 34 |
+
context_text = "\n".join([doc.page_content for doc in context_docs])
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
prompt = f"""You are a compassionate and empathetic mental health support assistant named MindMate.
|
| 37 |
+
The user's name is {name}. They said: "{feeling}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
Based on the context and user's input, respond with a warm, personalized, emotionally intelligent response.
|
| 40 |
+
Use the following context to help, but DO NOT mention it's from a document:
|
| 41 |
+
|
| 42 |
+
Context:
|
| 43 |
+
{context_text}
|
| 44 |
+
"""
|
| 45 |
|
|
|
|
| 46 |
completion = client.chat.completions.create(
|
| 47 |
model="deepseek/deepseek-r1:free",
|
| 48 |
+
messages=[{"role": "user", "content": prompt}],
|
| 49 |
+
extra_headers={
|
| 50 |
+
"HTTP-Referer": "https://huggingface.co/spaces/dhruvilhere/mindmate-chatbot",
|
| 51 |
+
"X-Title": "MindMate Chatbot",
|
| 52 |
+
},
|
| 53 |
)
|
| 54 |
+
|
| 55 |
return completion.choices[0].message.content
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# ========== Gradio UI ==========
|
| 59 |
+
with gr.Blocks(theme=gr.themes.Soft(), ssr=True) as demo:
|
| 60 |
+
gr.Markdown("🧠 **MindMate: Your Mental Health Companion**")
|
| 61 |
+
gr.Markdown("Just share your name and how you're feeling. MindMate will support you emotionally with warmth, care, and science. No key needed ❤️")
|
| 62 |
+
|
| 63 |
+
with gr.Row():
|
| 64 |
+
with gr.Column():
|
| 65 |
+
name = gr.Textbox(label="Your Name")
|
| 66 |
+
feeling = gr.Textbox(label="What's troubling you today?", lines=4)
|
| 67 |
+
submit_btn = gr.Button("Submit", scale=1)
|
| 68 |
+
clear_btn = gr.Button("Clear")
|
| 69 |
+
|
| 70 |
+
with gr.Column():
|
| 71 |
+
output = gr.JSON(label="🧘 MindMate's Support")
|
| 72 |
+
|
| 73 |
+
submit_btn.click(fn=mindmate, inputs=[name, feeling], outputs=output)
|
| 74 |
+
clear_btn.click(fn=lambda: ("", "", {}), inputs=[], outputs=[name, feeling, output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
demo.launch()
|