arc-easy-evals / runner.py
dvilasuero's picture
dvilasuero HF Staff
Upload runner.py with huggingface_hub
eaf56e6 verified
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "inspect-ai @ git+https://github.com/dvsrepo/inspect_ai.git@fallback-to-modified-for-hf-fs",
# "datasets",
# "openai",
# "transformers",
# "accelerate",
# "huggingface_hub",
# "inspect-evals",
# "pandas",
# "pyarrow",
# ]
# ///
"""Runner that downloads an eval script and executes it using inspect CLI with HF filesystem logging."""
import os
import sys
import subprocess
import tempfile
import urllib.request
from pathlib import Path
from inspect_ai.analysis import evals_df, samples_df
def export_logs_to_parquet(log_dir: str, dataset_repo: str) -> None:
"""Export eval logs to parquet format and upload to HuggingFace dataset.
Args:
log_dir: HF filesystem path to logs (e.g., "hf://datasets/username/name/logs")
dataset_repo: Dataset repository ID (e.g., "datasets/username/name")
"""
from huggingface_hub import HfApi
# Get HF token from environment
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN environment variable not set")
api = HfApi(token=hf_token)
# Remove 'datasets/' prefix for API calls
repo_id = (
dataset_repo.replace("datasets/", "")
if dataset_repo.startswith("datasets/")
else dataset_repo
)
# Read evals dataframe
print(" Reading evals dataframe...")
print(f" Log directory: {log_dir}")
try:
evals = evals_df(logs=log_dir)
print(f" βœ“ Read {len(evals)} eval records")
except Exception as e:
print(f" βœ— Error reading evals: {e}")
raise
# Read samples dataframe
print(" Reading samples dataframe...")
try:
samples = samples_df(logs=log_dir)
print(f" βœ“ Read {len(samples)} sample records")
except Exception as e:
print(f" βœ— Error reading samples: {e}")
raise
# Write to temporary parquet files
with tempfile.TemporaryDirectory() as tmpdir:
evals_path = Path(tmpdir) / "evals.parquet"
samples_path = Path(tmpdir) / "samples.parquet"
print(f" Writing evals to parquet ({len(evals)} rows)...")
evals.to_parquet(evals_path, index=False, engine="pyarrow")
print(f" Writing samples to parquet ({len(samples)} rows)...")
samples.to_parquet(samples_path, index=False, engine="pyarrow")
# Upload parquet files to root (HuggingFace will auto-detect as separate data files)
# We use descriptive names so they can be loaded separately
print(" Uploading evals.parquet...")
api.upload_file(
path_or_fileobj=str(evals_path),
path_in_repo="evals.parquet",
repo_id=repo_id,
repo_type="dataset",
token=hf_token,
)
print(" Uploading samples.parquet...")
api.upload_file(
path_or_fileobj=str(samples_path),
path_in_repo="samples.parquet",
repo_id=repo_id,
repo_type="dataset",
token=hf_token,
)
print(
f" βœ“ Parquet files available at: https://huggingface.co/datasets/{repo_id}/tree/main"
)
if __name__ == "__main__":
if len(sys.argv) < 4:
print(
"Usage: eval_runner.py <eval_ref> <model> <dataset_repo> [--inspect-evals] [extra_args...]"
)
sys.exit(1)
eval_ref = sys.argv[1]
model = sys.argv[2]
dataset_repo = sys.argv[3] # Changed from space_id to dataset_repo
# Check if this is an inspect_evals path
is_inspect_evals = "--inspect-evals" in sys.argv
extra_args = [arg for arg in sys.argv[4:] if arg != "--inspect-evals"]
# Construct log directory path for HF filesystem
if not dataset_repo.startswith("datasets/"):
dataset_repo = f"datasets/{dataset_repo}"
log_dir = f"hf://{dataset_repo}/logs"
if is_inspect_evals:
# Use inspect_evals path directly
print(f"Using inspect_evals: {eval_ref}")
eval_target = eval_ref
cleanup_file = None
else:
# Download custom eval script
print(f"Downloading eval from {eval_ref}...")
with urllib.request.urlopen(eval_ref) as response:
eval_code = response.read().decode("utf-8")
eval_filename = "downloaded_eval.py"
with open(eval_filename, "w") as f:
f.write(eval_code)
eval_target = eval_filename
cleanup_file = eval_filename
try:
print(f"Running inspect eval with model {model}...")
print(f"Logs will be written to: {log_dir}")
# Build command with HF filesystem logging parameters
cmd = [
"inspect",
"eval",
eval_target,
"--model",
model,
"--log-dir",
log_dir,
"--log-shared", # Enable shared logging for remote filesystems
"--log-buffer",
"100", # Buffer size for stable ZIP files
]
cmd.extend(extra_args)
print(f"Command: {' '.join(cmd)}")
subprocess.run(cmd, check=True)
print("\nβœ“ Eval completed!")
print(
f"Logs are available at: https://huggingface.co/{dataset_repo}/tree/main/logs"
)
# Export logs to parquet and upload to dataset
print("\nExporting logs to parquet...")
try:
export_logs_to_parquet(log_dir, dataset_repo)
except Exception as e:
print(f"⚠ Warning: Could not export to parquet: {e}")
print(
f" Logs are still available at: https://huggingface.co/{dataset_repo}/tree/main/logs"
)
finally:
if cleanup_file and os.path.exists(cleanup_file):
os.unlink(cleanup_file)