Spaces:
Runtime error
Runtime error
Commit
Β·
4e0a19f
1
Parent(s):
2810f97
Create false_positive_rate.py
Browse files- false_positive_rate.py +58 -0
false_positive_rate.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datasets
|
| 2 |
+
from sklearn.metrics import confusion_matrix
|
| 3 |
+
import evaluate
|
| 4 |
+
|
| 5 |
+
_DESCRIPTION = """
|
| 6 |
+
FPR is the proportion of negative cases incorrectly identified as positive cases in the data (i.e. the probability that false alerts will be raised). It is defined as:
|
| 7 |
+
FPR = FP / (FP + TN)
|
| 8 |
+
Where:
|
| 9 |
+
TN: True negative
|
| 10 |
+
FP: False positive
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
_KWARGS_DESCRIPTION = """
|
| 15 |
+
Args:
|
| 16 |
+
predictions (`list` of `int`): Predicted labels.
|
| 17 |
+
references (`list` of `int`): Ground truth (correct) target values.
|
| 18 |
+
normalize (`boolean`): Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized.
|
| 19 |
+
sample_weight (`list` of `float`): Sample weights. Defaults to None.
|
| 20 |
+
Returns:
|
| 21 |
+
false positive rate (`float` or `int`): FPR score. Minimum possible value is 0. Maximum possible value is 1.0.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
_CITATION = """
|
| 25 |
+
@misc{ enwiki:1178431122,
|
| 26 |
+
author = "{Wikipedia contributors}",
|
| 27 |
+
title = "False positives and false negatives --- {Wikipedia}{,} The Free Encyclopedia",
|
| 28 |
+
year = "2023",
|
| 29 |
+
url = "https://en.wikipedia.org/w/index.php?title=False_positives_and_false_negatives&oldid=1178431122",
|
| 30 |
+
note = "[Online; accessed 17-November-2023]"
|
| 31 |
+
}
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 35 |
+
class FPR(evaluate.Metric):
|
| 36 |
+
def _info(self):
|
| 37 |
+
return evaluate.MetricInfo(
|
| 38 |
+
description=_DESCRIPTION,
|
| 39 |
+
citation=_CITATION,
|
| 40 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
| 41 |
+
features=datasets.Features(
|
| 42 |
+
{
|
| 43 |
+
"predictions": datasets.Sequence(datasets.Value("int32")),
|
| 44 |
+
"references": datasets.Sequence(datasets.Value("int32")),
|
| 45 |
+
}
|
| 46 |
+
if self.config_name == "multilabel"
|
| 47 |
+
else {
|
| 48 |
+
"predictions": datasets.Value("int32"),
|
| 49 |
+
"references": datasets.Value("int32"),
|
| 50 |
+
}
|
| 51 |
+
),
|
| 52 |
+
reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html"],
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
def _compute(self, predictions, references, normalize=None, sample_weight=None):
|
| 56 |
+
tn, fp, fn, tp = confusion_matrix(references, predictions, normalize=normalize, sample_weight=sample_weight).ravel()
|
| 57 |
+
fpr = fp / (fp + tn)
|
| 58 |
+
return {"false_positive_rate": fpr}
|