|
|
import inspect |
|
|
import warnings |
|
|
from itertools import repeat |
|
|
from typing import Callable, List, Optional, Union |
|
|
|
|
|
import torch |
|
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
|
|
from diffusers.image_processor import VaeImageProcessor |
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
|
from diffusers.models.attention_processor import AttnProcessor, Attention |
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
|
from diffusers.schedulers import DDIMScheduler |
|
|
from scheduling_dpmsolver_multistep_inject import DPMSolverMultistepSchedulerInject |
|
|
|
|
|
from diffusers.utils import logging |
|
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
|
from diffusers.pipelines.semantic_stable_diffusion import SemanticStableDiffusionPipelineOutput |
|
|
|
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
from tqdm import tqdm |
|
|
import torch.nn.functional as F |
|
|
import math |
|
|
from collections.abc import Iterable |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class AttentionStore(): |
|
|
@staticmethod |
|
|
def get_empty_store(): |
|
|
return {"down_cross": [], "mid_cross": [], "up_cross": [], |
|
|
"down_self": [], "mid_self": [], "up_self": []} |
|
|
|
|
|
def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False): |
|
|
|
|
|
bs = 2 + int(PnP) + editing_prompts |
|
|
skip = 2 if PnP else 1 |
|
|
|
|
|
head_size = int(attn.shape[0] / self.batch_size) |
|
|
attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3) |
|
|
source_batch_size = int(attn.shape[1] // bs) |
|
|
self.forward( |
|
|
attn[:, skip * source_batch_size:], |
|
|
is_cross, |
|
|
place_in_unet) |
|
|
|
|
|
def forward(self, attn, is_cross: bool, place_in_unet: str): |
|
|
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" |
|
|
if attn.shape[1] <= 32 ** 2: |
|
|
self.step_store[key].append(attn) |
|
|
|
|
|
def between_steps(self, store_step=True): |
|
|
if store_step: |
|
|
if self.average: |
|
|
if len(self.attention_store) == 0: |
|
|
self.attention_store = self.step_store |
|
|
else: |
|
|
for key in self.attention_store: |
|
|
for i in range(len(self.attention_store[key])): |
|
|
self.attention_store[key][i] += self.step_store[key][i] |
|
|
else: |
|
|
if len(self.attention_store) == 0: |
|
|
self.attention_store = [self.step_store] |
|
|
else: |
|
|
self.attention_store.append(self.step_store) |
|
|
|
|
|
self.cur_step += 1 |
|
|
self.step_store = self.get_empty_store() |
|
|
|
|
|
def get_attention(self, step: int): |
|
|
if self.average: |
|
|
attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in |
|
|
self.attention_store} |
|
|
else: |
|
|
assert (step is not None) |
|
|
attention = self.attention_store[step] |
|
|
return attention |
|
|
|
|
|
def aggregate_attention(self, attention_maps, prompts, res: int, |
|
|
from_where: List[str], is_cross: bool, select: int |
|
|
): |
|
|
out = [[] for x in range(self.batch_size)] |
|
|
num_pixels = res ** 2 |
|
|
for location in from_where: |
|
|
for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: |
|
|
for batch, item in enumerate(bs_item): |
|
|
if item.shape[1] == num_pixels: |
|
|
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select] |
|
|
out[batch].append(cross_maps) |
|
|
|
|
|
out = torch.stack([torch.cat(x, dim=0) for x in out]) |
|
|
|
|
|
out = out.sum(1) / out.shape[1] |
|
|
return out |
|
|
|
|
|
def __init__(self, average: bool, batch_size=1): |
|
|
self.step_store = self.get_empty_store() |
|
|
self.attention_store = [] |
|
|
self.cur_step = 0 |
|
|
self.average = average |
|
|
self.batch_size = batch_size |
|
|
|
|
|
|
|
|
class CrossAttnProcessor: |
|
|
|
|
|
def __init__(self, attention_store, place_in_unet, PnP, editing_prompts): |
|
|
self.attnstore = attention_store |
|
|
self.place_in_unet = place_in_unet |
|
|
self.editing_prompts = editing_prompts |
|
|
self.PnP = PnP |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
attn: Attention, |
|
|
hidden_states, |
|
|
encoder_hidden_states=None, |
|
|
attention_mask=None, |
|
|
temb=None, |
|
|
): |
|
|
assert (not attn.residual_connection) |
|
|
assert (attn.spatial_norm is None) |
|
|
assert (attn.group_norm is None) |
|
|
assert (hidden_states.ndim != 4) |
|
|
assert (encoder_hidden_states is not None) |
|
|
|
|
|
batch_size, sequence_length, _ = ( |
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
|
) |
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
|
|
if encoder_hidden_states is None: |
|
|
encoder_hidden_states = hidden_states |
|
|
elif attn.norm_cross: |
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
|
|
query = attn.head_to_batch_dim(query) |
|
|
key = attn.head_to_batch_dim(key) |
|
|
value = attn.head_to_batch_dim(value) |
|
|
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
|
self.attnstore(attention_probs, |
|
|
is_cross=True, |
|
|
place_in_unet=self.place_in_unet, |
|
|
editing_prompts=self.editing_prompts, |
|
|
PnP=self.PnP) |
|
|
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
|
|
|
class GaussianSmoothing(): |
|
|
|
|
|
def __init__(self, device): |
|
|
kernel_size = [3, 3] |
|
|
sigma = [0.5, 0.5] |
|
|
|
|
|
|
|
|
kernel = 1 |
|
|
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) |
|
|
for size, std, mgrid in zip(kernel_size, sigma, meshgrids): |
|
|
mean = (size - 1) / 2 |
|
|
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) |
|
|
|
|
|
|
|
|
kernel = kernel / torch.sum(kernel) |
|
|
|
|
|
|
|
|
kernel = kernel.view(1, 1, *kernel.size()) |
|
|
kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1)) |
|
|
|
|
|
self.weight = kernel.to(device) |
|
|
|
|
|
def __call__(self, input): |
|
|
""" |
|
|
Arguments: |
|
|
Apply gaussian filter to input. |
|
|
input (torch.Tensor): Input to apply gaussian filter on. |
|
|
Returns: |
|
|
filtered (torch.Tensor): Filtered output. |
|
|
""" |
|
|
return F.conv2d(input, weight=self.weight.to(input.dtype)) |
|
|
|
|
|
|
|
|
def load_512(image_path, size, left=0, right=0, top=0, bottom=0, device=None, dtype=None): |
|
|
def pre_process(im, size, left=0, right=0, top=0, bottom=0): |
|
|
if type(im) is str: |
|
|
image = np.array(Image.open(im).convert('RGB'))[:, :, :3] |
|
|
elif isinstance(im, Image.Image): |
|
|
image = np.array((im).convert('RGB'))[:, :, :3] |
|
|
else: |
|
|
image = im |
|
|
h, w, c = image.shape |
|
|
left = min(left, w - 1) |
|
|
right = min(right, w - left - 1) |
|
|
top = min(top, h - left - 1) |
|
|
bottom = min(bottom, h - top - 1) |
|
|
image = image[top:h - bottom, left:w - right] |
|
|
h, w, c = image.shape |
|
|
if h < w: |
|
|
offset = (w - h) // 2 |
|
|
image = image[:, offset:offset + h] |
|
|
elif w < h: |
|
|
offset = (h - w) // 2 |
|
|
image = image[offset:offset + w] |
|
|
image = np.array(Image.fromarray(image).resize((size, size))) |
|
|
image = torch.from_numpy(image).float().permute(2, 0, 1) |
|
|
return image |
|
|
|
|
|
tmps = [] |
|
|
if isinstance(image_path, list): |
|
|
for item in image_path: |
|
|
tmps.append(pre_process(item, size, left, right, top, bottom)) |
|
|
else: |
|
|
tmps.append(pre_process(image_path, size, left, right, top, bottom)) |
|
|
image = torch.stack(tmps) / 127.5 - 1 |
|
|
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
return image |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def reset_dpm(scheduler): |
|
|
if isinstance(scheduler, DPMSolverMultistepSchedulerInject): |
|
|
scheduler.model_outputs = [ |
|
|
None, |
|
|
] * scheduler.config.solver_order |
|
|
scheduler.lower_order_nums = 0 |
|
|
|
|
|
|
|
|
class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline): |
|
|
r""" |
|
|
Pipeline for text-to-image generation with latent editing. |
|
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
|
|
This model builds on the implementation of ['StableDiffusionPipeline'] |
|
|
|
|
|
Args: |
|
|
vae ([`AutoencoderKL`]): |
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
|
text_encoder ([`CLIPTextModel`]): |
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
|
tokenizer (`CLIPTokenizer`): |
|
|
Tokenizer of class |
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
|
scheduler ([`SchedulerMixin`]): |
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of |
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
|
safety_checker ([`Q16SafetyChecker`]): |
|
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
|
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. |
|
|
feature_extractor ([`CLIPImageProcessor`]): |
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
|
""" |
|
|
|
|
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vae: AutoencoderKL, |
|
|
text_encoder: CLIPTextModel, |
|
|
tokenizer: CLIPTokenizer, |
|
|
unet: UNet2DConditionModel, |
|
|
scheduler: Union[DDIMScheduler,DPMSolverMultistepSchedulerInject], |
|
|
safety_checker: StableDiffusionSafetyChecker, |
|
|
feature_extractor: CLIPImageProcessor, |
|
|
requires_safety_checker: bool = True, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
if not isinstance(scheduler, DDIMScheduler) or not isinstance(scheduler, DPMSolverMultistepSchedulerInject): |
|
|
scheduler = DPMSolverMultistepSchedulerInject.from_config(scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2) |
|
|
logger.warning("This pipeline only supports DDIMScheduler and DPMSolverMultistepSchedulerInject. " |
|
|
"The scheduler has been changed to DPMSolverMultistepSchedulerInject.") |
|
|
|
|
|
if safety_checker is None and requires_safety_checker: |
|
|
logger.warning( |
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
|
) |
|
|
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
|
raise ValueError( |
|
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
|
) |
|
|
|
|
|
self.register_modules( |
|
|
vae=vae, |
|
|
text_encoder=text_encoder, |
|
|
tokenizer=tokenizer, |
|
|
unet=unet, |
|
|
scheduler=scheduler, |
|
|
safety_checker=safety_checker, |
|
|
feature_extractor=feature_extractor, |
|
|
) |
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
|
|
def progress_bar(self, iterable=None, total=None, verbose=True): |
|
|
if not hasattr(self, "_progress_bar_config"): |
|
|
self._progress_bar_config = {} |
|
|
elif not isinstance(self._progress_bar_config, dict): |
|
|
raise ValueError( |
|
|
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}." |
|
|
) |
|
|
if not verbose: |
|
|
return iterable |
|
|
elif iterable is not None: |
|
|
return tqdm(iterable, **self._progress_bar_config) |
|
|
elif total is not None: |
|
|
return tqdm(total=total, **self._progress_bar_config) |
|
|
else: |
|
|
raise ValueError("Either `total` or `iterable` has to be defined.") |
|
|
|
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
|
if self.safety_checker is None: |
|
|
has_nsfw_concept = None |
|
|
else: |
|
|
if torch.is_tensor(image): |
|
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
|
else: |
|
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
|
image, has_nsfw_concept = self.safety_checker( |
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
|
) |
|
|
return image, has_nsfw_concept |
|
|
|
|
|
|
|
|
def decode_latents(self, latents): |
|
|
warnings.warn( |
|
|
"The decode_latents method is deprecated and will be removed in a future version. Please" |
|
|
" use VaeImageProcessor instead", |
|
|
FutureWarning, |
|
|
) |
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
return image |
|
|
|
|
|
|
|
|
def prepare_extra_step_kwargs(self, eta): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
|
extra_step_kwargs = {} |
|
|
if accepts_eta: |
|
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
return extra_step_kwargs |
|
|
|
|
|
|
|
|
def check_inputs( |
|
|
self, |
|
|
prompt, |
|
|
height, |
|
|
width, |
|
|
callback_steps, |
|
|
negative_prompt=None, |
|
|
prompt_embeds=None, |
|
|
negative_prompt_embeds=None, |
|
|
): |
|
|
if height % 8 != 0 or width % 8 != 0: |
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
|
|
if (callback_steps is None) or ( |
|
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
|
): |
|
|
raise ValueError( |
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
|
f" {type(callback_steps)}." |
|
|
) |
|
|
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
|
" only forward one of the two." |
|
|
) |
|
|
elif prompt is None and prompt_embeds is None: |
|
|
raise ValueError( |
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
|
) |
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
|
raise ValueError( |
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
|
f" {negative_prompt_embeds.shape}." |
|
|
) |
|
|
|
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents): |
|
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
|
|
|
|
if latents.shape != shape: |
|
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
|
|
|
|
latents = latents.to(device) |
|
|
|
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
return latents |
|
|
|
|
|
def prepare_unet(self, attention_store, PnP: bool = False): |
|
|
attn_procs = {} |
|
|
for name in self.unet.attn_processors.keys(): |
|
|
if name.startswith("mid_block"): |
|
|
place_in_unet = "mid" |
|
|
elif name.startswith("up_blocks"): |
|
|
place_in_unet = "up" |
|
|
elif name.startswith("down_blocks"): |
|
|
place_in_unet = "down" |
|
|
else: |
|
|
continue |
|
|
|
|
|
if "attn2" in name: |
|
|
attn_procs[name] = CrossAttnProcessor( |
|
|
attention_store=attention_store, |
|
|
place_in_unet=place_in_unet, |
|
|
PnP=PnP, |
|
|
editing_prompts=self.enabled_editing_prompts) |
|
|
else: |
|
|
attn_procs[name] = AttnProcessor() |
|
|
|
|
|
self.unet.set_attn_processor(attn_procs) |
|
|
|
|
|
@torch.no_grad() |
|
|
def __call__( |
|
|
self, |
|
|
prompt: Union[str, List[str]] = "", |
|
|
height: Optional[int] = None, |
|
|
width: Optional[int] = None, |
|
|
|
|
|
guidance_scale: float = 7.5, |
|
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
|
|
|
|
eta: float = 1.0, |
|
|
|
|
|
|
|
|
output_type: Optional[str] = "pil", |
|
|
return_dict: bool = True, |
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
|
callback_steps: int = 1, |
|
|
editing_prompt: Optional[Union[str, List[str]]] = None, |
|
|
editing_prompt_embeddings: Optional[torch.Tensor] = None, |
|
|
reverse_editing_direction: Optional[Union[bool, List[bool]]] = False, |
|
|
edit_guidance_scale: Optional[Union[float, List[float]]] = 5, |
|
|
edit_warmup_steps: Optional[Union[int, List[int]]] = 10, |
|
|
edit_cooldown_steps: Optional[Union[int, List[int]]] = None, |
|
|
edit_threshold: Optional[Union[float, List[float]]] = 0.9, |
|
|
user_mask: Optional[torch.FloatTensor] = None, |
|
|
edit_momentum_scale: Optional[float] = 0.1, |
|
|
edit_mom_beta: Optional[float] = 0.4, |
|
|
edit_weights: Optional[List[float]] = None, |
|
|
sem_guidance: Optional[List[torch.Tensor]] = None, |
|
|
verbose=True, |
|
|
use_cross_attn_mask: bool = False, |
|
|
|
|
|
attn_store_steps: Optional[List[int]] = [], |
|
|
store_averaged_over_steps: bool = True, |
|
|
use_intersect_mask: bool = False, |
|
|
init_latents = None, |
|
|
zs = None, |
|
|
|
|
|
): |
|
|
r""" |
|
|
Function invoked when calling the pipeline for generation. |
|
|
|
|
|
Args: |
|
|
prompt (`str` or `List[str]`): |
|
|
The prompt or prompts to guide the image generation. |
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
|
The height in pixels of the generated image. |
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
|
The width in pixels of the generated image. |
|
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
|
expense of slower inference. |
|
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
|
usually at the expense of lower image quality. |
|
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
|
if `guidance_scale` is less than `1`). |
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
|
The number of images to generate per prompt. |
|
|
eta (`float`, *optional*, defaults to 0.0): |
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
|
generator (`torch.Generator`, *optional*): |
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
|
to make generation deterministic. |
|
|
latents (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
|
The output format of the generate image. Choose between |
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
|
plain tuple. |
|
|
callback (`Callable`, *optional*): |
|
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
|
callback_steps (`int`, *optional*, defaults to 1): |
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
|
called at every step. |
|
|
editing_prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts to use for Semantic guidance. Semantic guidance is disabled by setting |
|
|
`editing_prompt = None`. Guidance direction of prompt should be specified via |
|
|
`reverse_editing_direction`. |
|
|
editing_prompt_embeddings (`torch.Tensor>`, *optional*): |
|
|
Pre-computed embeddings to use for semantic guidance. Guidance direction of embedding should be |
|
|
specified via `reverse_editing_direction`. |
|
|
reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`): |
|
|
Whether the corresponding prompt in `editing_prompt` should be increased or decreased. |
|
|
edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5): |
|
|
Guidance scale for semantic guidance. If provided as list values should correspond to `editing_prompt`. |
|
|
`edit_guidance_scale` is defined as `s_e` of equation 6 of [SEGA |
|
|
Paper](https://arxiv.org/pdf/2301.12247.pdf). |
|
|
edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10): |
|
|
Number of diffusion steps (for each prompt) for which semantic guidance will not be applied. Momentum |
|
|
will still be calculated for those steps and applied once all warmup periods are over. |
|
|
`edit_warmup_steps` is defined as `delta` (δ) of [SEGA Paper](https://arxiv.org/pdf/2301.12247.pdf). |
|
|
edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`): |
|
|
Number of diffusion steps (for each prompt) after which semantic guidance will no longer be applied. |
|
|
edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9): |
|
|
Threshold of semantic guidance. |
|
|
edit_momentum_scale (`float`, *optional*, defaults to 0.1): |
|
|
Scale of the momentum to be added to the semantic guidance at each diffusion step. If set to 0.0 |
|
|
momentum will be disabled. Momentum is already built up during warmup, i.e. for diffusion steps smaller |
|
|
than `sld_warmup_steps`. Momentum will only be added to latent guidance once all warmup periods are |
|
|
finished. `edit_momentum_scale` is defined as `s_m` of equation 7 of [SEGA |
|
|
Paper](https://arxiv.org/pdf/2301.12247.pdf). |
|
|
edit_mom_beta (`float`, *optional*, defaults to 0.4): |
|
|
Defines how semantic guidance momentum builds up. `edit_mom_beta` indicates how much of the previous |
|
|
momentum will be kept. Momentum is already built up during warmup, i.e. for diffusion steps smaller |
|
|
than `edit_warmup_steps`. `edit_mom_beta` is defined as `beta_m` (β) of equation 8 of [SEGA |
|
|
Paper](https://arxiv.org/pdf/2301.12247.pdf). |
|
|
edit_weights (`List[float]`, *optional*, defaults to `None`): |
|
|
Indicates how much each individual concept should influence the overall guidance. If no weights are |
|
|
provided all concepts are applied equally. `edit_mom_beta` is defined as `g_i` of equation 9 of [SEGA |
|
|
Paper](https://arxiv.org/pdf/2301.12247.pdf). |
|
|
sem_guidance (`List[torch.Tensor]`, *optional*): |
|
|
List of pre-generated guidance vectors to be applied at generation. Length of the list has to |
|
|
correspond to `num_inference_steps`. |
|
|
|
|
|
Returns: |
|
|
[`~pipelines.semantic_stable_diffusion.SemanticStableDiffusionPipelineOutput`] or `tuple`: |
|
|
[`~pipelines.semantic_stable_diffusion.SemanticStableDiffusionPipelineOutput`] if `return_dict` is True, |
|
|
otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the |
|
|
second element is a list of `bool`s denoting whether the corresponding generated image likely represents |
|
|
"not-safe-for-work" (nsfw) content, according to the `safety_checker`. |
|
|
""" |
|
|
|
|
|
num_images_per_prompt = 1 |
|
|
|
|
|
latents = init_latents |
|
|
|
|
|
use_ddpm = True |
|
|
|
|
|
reset_dpm(self.scheduler) |
|
|
|
|
|
if use_intersect_mask: |
|
|
use_cross_attn_mask = True |
|
|
|
|
|
if use_cross_attn_mask: |
|
|
self.smoothing = GaussianSmoothing(self.device) |
|
|
|
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
|
|
|
self.check_inputs(prompt, height, width, callback_steps) |
|
|
|
|
|
org_prompt = prompt |
|
|
if isinstance(prompt, list): |
|
|
assert len(prompt) == self.batch_size |
|
|
elif isinstance(prompt, str): |
|
|
prompt = list(repeat(prompt, self.batch_size)) |
|
|
|
|
|
|
|
|
batch_size = self.batch_size |
|
|
|
|
|
if editing_prompt: |
|
|
enable_edit_guidance = True |
|
|
if isinstance(editing_prompt, str): |
|
|
editing_prompt = [editing_prompt] |
|
|
self.enabled_editing_prompts = len(editing_prompt) |
|
|
elif editing_prompt_embeddings is not None: |
|
|
enable_edit_guidance = True |
|
|
self.enabled_editing_prompts = editing_prompt_embeddings.shape[0] |
|
|
else: |
|
|
self.enabled_editing_prompts = 0 |
|
|
enable_edit_guidance = False |
|
|
|
|
|
|
|
|
text_inputs = self.tokenizer( |
|
|
prompt, |
|
|
padding="max_length", |
|
|
max_length=self.tokenizer.model_max_length, |
|
|
truncation=True, |
|
|
return_tensors="pt", |
|
|
) |
|
|
text_input_ids = text_inputs.input_ids |
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
|
text_input_ids, untruncated_ids |
|
|
): |
|
|
removed_text = self.tokenizer.batch_decode( |
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1] |
|
|
) |
|
|
logger.warning( |
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
|
) |
|
|
|
|
|
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0] |
|
|
|
|
|
|
|
|
bs_embed, seq_len, _ = text_embeddings.shape |
|
|
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) |
|
|
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if enable_edit_guidance: |
|
|
|
|
|
if editing_prompt_embeddings is None: |
|
|
edit_concepts_input = self.tokenizer( |
|
|
[x for item in editing_prompt for x in repeat(item, batch_size)], |
|
|
padding="max_length", |
|
|
max_length=self.tokenizer.model_max_length, |
|
|
truncation=True, |
|
|
return_tensors="pt", |
|
|
return_length=True |
|
|
) |
|
|
|
|
|
num_edit_tokens = edit_concepts_input.length - 2 |
|
|
edit_concepts_input_ids = edit_concepts_input.input_ids |
|
|
untruncated_ids = self.tokenizer( |
|
|
[x for item in editing_prompt for x in repeat(item, batch_size)], |
|
|
padding="longest", |
|
|
return_tensors="pt").input_ids |
|
|
|
|
|
if untruncated_ids.shape[-1] >= edit_concepts_input_ids.shape[-1] and not torch.equal( |
|
|
edit_concepts_input_ids, untruncated_ids |
|
|
): |
|
|
removed_text = self.tokenizer.batch_decode( |
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1] |
|
|
) |
|
|
logger.warning( |
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
|
) |
|
|
|
|
|
edit_concepts = self.text_encoder(edit_concepts_input_ids.to(self.device))[0] |
|
|
else: |
|
|
edit_concepts = editing_prompt_embeddings.to(self.device).repeat(batch_size, 1, 1) |
|
|
|
|
|
|
|
|
bs_embed_edit, seq_len_edit, _ = edit_concepts.shape |
|
|
edit_concepts = edit_concepts.repeat(1, num_images_per_prompt, 1) |
|
|
edit_concepts = edit_concepts.view(bs_embed_edit * num_images_per_prompt, seq_len_edit, -1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
uncond_tokens: List[str] |
|
|
if negative_prompt is None: |
|
|
uncond_tokens = [""] |
|
|
elif type(prompt) is not type(negative_prompt): |
|
|
raise TypeError( |
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
|
f" {type(prompt)}." |
|
|
) |
|
|
elif isinstance(negative_prompt, str): |
|
|
uncond_tokens = [negative_prompt] |
|
|
elif batch_size != len(negative_prompt): |
|
|
raise ValueError( |
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
|
" the batch size of `prompt`." |
|
|
) |
|
|
else: |
|
|
uncond_tokens = negative_prompt |
|
|
|
|
|
max_length = text_input_ids.shape[-1] |
|
|
uncond_input = self.tokenizer( |
|
|
uncond_tokens, |
|
|
padding="max_length", |
|
|
max_length=max_length, |
|
|
truncation=True, |
|
|
return_tensors="pt", |
|
|
) |
|
|
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] |
|
|
|
|
|
|
|
|
seq_len = uncond_embeddings.shape[1] |
|
|
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1) |
|
|
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.text_cross_attention_maps = [org_prompt] if isinstance(org_prompt, str) else org_prompt |
|
|
if enable_edit_guidance: |
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings, edit_concepts]) |
|
|
self.text_cross_attention_maps += \ |
|
|
([editing_prompt] if isinstance(editing_prompt, str) else editing_prompt) |
|
|
else: |
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
|
|
|
|
|
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
if use_ddpm: |
|
|
t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])} |
|
|
timesteps = timesteps[-zs.shape[0]:] |
|
|
|
|
|
if use_cross_attn_mask: |
|
|
self.attention_store = AttentionStore(average=store_averaged_over_steps, batch_size=batch_size) |
|
|
self.prepare_unet(self.attention_store, PnP=False) |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
|
latents = self.prepare_latents( |
|
|
batch_size * num_images_per_prompt, |
|
|
num_channels_latents, |
|
|
height, |
|
|
width, |
|
|
text_embeddings.dtype, |
|
|
self.device, |
|
|
latents, |
|
|
) |
|
|
|
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(eta) |
|
|
|
|
|
|
|
|
edit_momentum = None |
|
|
|
|
|
self.uncond_estimates = None |
|
|
self.text_estimates = None |
|
|
self.edit_estimates = None |
|
|
self.sem_guidance = None |
|
|
self.activation_mask = None |
|
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps, verbose=verbose)): |
|
|
idx = t_to_idx[int(t)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
latent_model_input = torch.cat([latents] * (2 + self.enabled_editing_prompts)) |
|
|
else: |
|
|
latent_model_input = latents |
|
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
text_embed_input = text_embeddings |
|
|
|
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input).sample |
|
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
|
|
|
noise_pred_out = noise_pred.chunk(2 + self.enabled_editing_prompts) |
|
|
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1] |
|
|
noise_pred_edit_concepts = noise_pred_out[2:] |
|
|
|
|
|
|
|
|
noise_guidance = guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if self.uncond_estimates is None: |
|
|
self.uncond_estimates = torch.zeros((len(timesteps), *noise_pred_uncond.shape)) |
|
|
self.uncond_estimates[i] = noise_pred_uncond.detach().cpu() |
|
|
|
|
|
if self.text_estimates is None: |
|
|
self.text_estimates = torch.zeros((len(timesteps), *noise_pred_text.shape)) |
|
|
self.text_estimates[i] = noise_pred_text.detach().cpu() |
|
|
|
|
|
if edit_momentum is None: |
|
|
edit_momentum = torch.zeros_like(noise_guidance) |
|
|
|
|
|
if sem_guidance is not None and len(sem_guidance) > i: |
|
|
edit_guidance = sem_guidance[i].to(self.device) |
|
|
edit_momentum = edit_mom_beta * edit_momentum + (1 - edit_mom_beta) * edit_guidance |
|
|
noise_guidance = noise_guidance + edit_guidance |
|
|
|
|
|
elif enable_edit_guidance: |
|
|
if self.activation_mask is None: |
|
|
self.activation_mask = torch.zeros( |
|
|
(len(timesteps), len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape) |
|
|
) |
|
|
if self.edit_estimates is None and enable_edit_guidance: |
|
|
self.edit_estimates = torch.zeros( |
|
|
(len(timesteps), len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape) |
|
|
) |
|
|
|
|
|
if self.sem_guidance is None: |
|
|
self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_text.shape)) |
|
|
|
|
|
concept_weights = torch.zeros( |
|
|
(len(noise_pred_edit_concepts), noise_guidance.shape[0]), |
|
|
device=self.device, |
|
|
dtype=noise_guidance.dtype, |
|
|
) |
|
|
noise_guidance_edit = torch.zeros( |
|
|
(len(noise_pred_edit_concepts), *noise_guidance.shape), |
|
|
device=self.device, |
|
|
dtype=noise_guidance.dtype, |
|
|
) |
|
|
|
|
|
warmup_inds = [] |
|
|
for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts): |
|
|
self.edit_estimates[i, c] = noise_pred_edit_concept |
|
|
if isinstance(edit_guidance_scale, list): |
|
|
edit_guidance_scale_c = edit_guidance_scale[c] |
|
|
else: |
|
|
edit_guidance_scale_c = edit_guidance_scale |
|
|
|
|
|
if isinstance(edit_threshold, list): |
|
|
edit_threshold_c = edit_threshold[c] |
|
|
else: |
|
|
edit_threshold_c = edit_threshold |
|
|
if isinstance(reverse_editing_direction, list): |
|
|
reverse_editing_direction_c = reverse_editing_direction[c] |
|
|
else: |
|
|
reverse_editing_direction_c = reverse_editing_direction |
|
|
if edit_weights: |
|
|
edit_weight_c = edit_weights[c] |
|
|
else: |
|
|
edit_weight_c = 1.0 |
|
|
if isinstance(edit_warmup_steps, list): |
|
|
edit_warmup_steps_c = edit_warmup_steps[c] |
|
|
else: |
|
|
edit_warmup_steps_c = edit_warmup_steps |
|
|
|
|
|
if isinstance(edit_cooldown_steps, list): |
|
|
edit_cooldown_steps_c = edit_cooldown_steps[c] |
|
|
elif edit_cooldown_steps is None: |
|
|
edit_cooldown_steps_c = i + 1 |
|
|
else: |
|
|
edit_cooldown_steps_c = edit_cooldown_steps |
|
|
if i >= edit_warmup_steps_c: |
|
|
warmup_inds.append(c) |
|
|
if i >= edit_cooldown_steps_c: |
|
|
noise_guidance_edit[c, :, :, :, :] = torch.zeros_like(noise_pred_edit_concept) |
|
|
continue |
|
|
|
|
|
noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond |
|
|
|
|
|
tmp_weights = (noise_guidance - noise_pred_edit_concept).sum(dim=(1, 2, 3)) |
|
|
|
|
|
tmp_weights = torch.full_like(tmp_weights, edit_weight_c) |
|
|
if reverse_editing_direction_c: |
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 |
|
|
concept_weights[c, :] = tmp_weights |
|
|
|
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c |
|
|
|
|
|
if user_mask is not None: |
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask |
|
|
|
|
|
if use_cross_attn_mask: |
|
|
out = self.attention_store.aggregate_attention( |
|
|
attention_maps=self.attention_store.step_store, |
|
|
prompts=self.text_cross_attention_maps, |
|
|
res=16, |
|
|
from_where=["up", "down"], |
|
|
is_cross=True, |
|
|
select=self.text_cross_attention_maps.index(editing_prompt[c]), |
|
|
) |
|
|
attn_map = out[:, :, :, 1:1 + num_edit_tokens[c]] |
|
|
|
|
|
|
|
|
assert (attn_map.shape[3] == num_edit_tokens[c]) |
|
|
attn_map = torch.sum(attn_map, dim=3) |
|
|
|
|
|
|
|
|
attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect") |
|
|
attn_map = self.smoothing(attn_map).squeeze(1) |
|
|
|
|
|
|
|
|
if attn_map.dtype == torch.float32: |
|
|
tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1) |
|
|
else: |
|
|
tmp = torch.quantile(attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1).to(attn_map.dtype) |
|
|
attn_mask = torch.where(attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1,16,16), 1.0, 0.0) |
|
|
|
|
|
|
|
|
attn_mask = F.interpolate( |
|
|
attn_mask.unsqueeze(1), |
|
|
noise_guidance_edit_tmp.shape[-2:] |
|
|
).repeat(1, 4, 1, 1) |
|
|
self.activation_mask[i, c] = attn_mask.detach().cpu() |
|
|
if not use_intersect_mask: |
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask |
|
|
|
|
|
if use_intersect_mask: |
|
|
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) |
|
|
noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1, |
|
|
keepdim=True) |
|
|
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1) |
|
|
|
|
|
|
|
|
if noise_guidance_edit_tmp_quantile.dtype == torch.float32: |
|
|
tmp = torch.quantile( |
|
|
noise_guidance_edit_tmp_quantile.flatten(start_dim=2), |
|
|
edit_threshold_c, |
|
|
dim=2, |
|
|
keepdim=False, |
|
|
) |
|
|
else: |
|
|
tmp = torch.quantile( |
|
|
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), |
|
|
edit_threshold_c, |
|
|
dim=2, |
|
|
keepdim=False, |
|
|
).to(noise_guidance_edit_tmp_quantile.dtype) |
|
|
|
|
|
intersect_mask = torch.where( |
|
|
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], |
|
|
torch.ones_like(noise_guidance_edit_tmp), |
|
|
torch.zeros_like(noise_guidance_edit_tmp), |
|
|
) * attn_mask |
|
|
|
|
|
self.activation_mask[i, c] = intersect_mask.detach().cpu() |
|
|
|
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask |
|
|
|
|
|
elif not use_cross_attn_mask: |
|
|
|
|
|
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) |
|
|
noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1, |
|
|
keepdim=True) |
|
|
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1) |
|
|
|
|
|
|
|
|
if noise_guidance_edit_tmp_quantile.dtype == torch.float32: |
|
|
tmp = torch.quantile( |
|
|
noise_guidance_edit_tmp_quantile.flatten(start_dim=2), |
|
|
edit_threshold_c, |
|
|
dim=2, |
|
|
keepdim=False, |
|
|
) |
|
|
else: |
|
|
tmp = torch.quantile( |
|
|
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), |
|
|
edit_threshold_c, |
|
|
dim=2, |
|
|
keepdim=False, |
|
|
).to(noise_guidance_edit_tmp_quantile.dtype) |
|
|
|
|
|
self.activation_mask[i, c] = torch.where( |
|
|
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], |
|
|
torch.ones_like(noise_guidance_edit_tmp), |
|
|
torch.zeros_like(noise_guidance_edit_tmp), |
|
|
).detach().cpu() |
|
|
|
|
|
noise_guidance_edit_tmp = torch.where( |
|
|
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], |
|
|
noise_guidance_edit_tmp, |
|
|
torch.zeros_like(noise_guidance_edit_tmp), |
|
|
) |
|
|
|
|
|
noise_guidance_edit[c, :, :, :, :] = noise_guidance_edit_tmp |
|
|
|
|
|
warmup_inds = torch.tensor(warmup_inds).to(self.device) |
|
|
if len(noise_pred_edit_concepts) > warmup_inds.shape[0] > 0: |
|
|
concept_weights = concept_weights.to("cpu") |
|
|
noise_guidance_edit = noise_guidance_edit.to("cpu") |
|
|
|
|
|
concept_weights_tmp = torch.index_select(concept_weights.to(self.device), 0, warmup_inds) |
|
|
concept_weights_tmp = torch.where( |
|
|
concept_weights_tmp < 0, torch.zeros_like(concept_weights_tmp), concept_weights_tmp |
|
|
) |
|
|
concept_weights_tmp = concept_weights_tmp / concept_weights_tmp.sum(dim=0) |
|
|
|
|
|
|
|
|
noise_guidance_edit_tmp = torch.index_select( |
|
|
noise_guidance_edit.to(self.device), 0, warmup_inds |
|
|
) |
|
|
noise_guidance_edit_tmp = torch.einsum( |
|
|
"cb,cbijk->bijk", concept_weights_tmp, noise_guidance_edit_tmp |
|
|
) |
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp |
|
|
noise_guidance = noise_guidance + noise_guidance_edit_tmp |
|
|
|
|
|
self.sem_guidance[i] = noise_guidance_edit_tmp.detach().cpu() |
|
|
|
|
|
del noise_guidance_edit_tmp |
|
|
del concept_weights_tmp |
|
|
concept_weights = concept_weights.to(self.device) |
|
|
noise_guidance_edit = noise_guidance_edit.to(self.device) |
|
|
|
|
|
concept_weights = torch.where( |
|
|
concept_weights < 0, torch.zeros_like(concept_weights), concept_weights |
|
|
) |
|
|
|
|
|
concept_weights = torch.nan_to_num(concept_weights) |
|
|
|
|
|
noise_guidance_edit = torch.einsum("cb,cbijk->bijk", concept_weights, noise_guidance_edit) |
|
|
|
|
|
noise_guidance_edit = noise_guidance_edit + edit_momentum_scale * edit_momentum |
|
|
|
|
|
edit_momentum = edit_mom_beta * edit_momentum + (1 - edit_mom_beta) * noise_guidance_edit |
|
|
|
|
|
if warmup_inds.shape[0] == len(noise_pred_edit_concepts): |
|
|
noise_guidance = noise_guidance + noise_guidance_edit |
|
|
self.sem_guidance[i] = noise_guidance_edit.detach().cpu() |
|
|
|
|
|
noise_pred = noise_pred_uncond + noise_guidance |
|
|
|
|
|
|
|
|
if use_ddpm: |
|
|
idx = t_to_idx[int(t)] |
|
|
latents = self.scheduler.step(noise_pred, t, latents, variance_noise=zs[idx], |
|
|
**extra_step_kwargs).prev_sample |
|
|
|
|
|
else: |
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
|
|
|
if use_cross_attn_mask: |
|
|
store_step = i in attn_store_steps |
|
|
if store_step: |
|
|
print(f"storing attention for step {i}") |
|
|
self.attention_store.between_steps(store_step) |
|
|
|
|
|
|
|
|
if callback is not None and i % callback_steps == 0: |
|
|
callback(i, t, latents) |
|
|
|
|
|
|
|
|
if not output_type == "latent": |
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
|
image, has_nsfw_concept = self.run_safety_checker(image, self.device, text_embeddings.dtype) |
|
|
else: |
|
|
image = latents |
|
|
has_nsfw_concept = None |
|
|
|
|
|
if has_nsfw_concept is None: |
|
|
do_denormalize = [True] * image.shape[0] |
|
|
else: |
|
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
if not return_dict: |
|
|
return (image, has_nsfw_concept) |
|
|
|
|
|
return SemanticStableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
|
|
def encode_text(self, prompts): |
|
|
text_inputs = self.tokenizer( |
|
|
prompts, |
|
|
padding="max_length", |
|
|
max_length=self.tokenizer.model_max_length, |
|
|
return_tensors="pt", |
|
|
) |
|
|
text_input_ids = text_inputs.input_ids |
|
|
|
|
|
if text_input_ids.shape[-1] > self.tokenizer.model_max_length: |
|
|
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length:]) |
|
|
logger.warning( |
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
|
) |
|
|
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] |
|
|
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0] |
|
|
|
|
|
return text_embeddings |
|
|
|
|
|
@torch.no_grad() |
|
|
def invert(self, |
|
|
image_path: str, |
|
|
source_prompt: str = "", |
|
|
source_guidance_scale=3.5, |
|
|
num_inversion_steps: int = 30, |
|
|
skip: float = 0.15, |
|
|
eta: float = 1.0, |
|
|
generator: Optional[torch.Generator] = None, |
|
|
verbose=True, |
|
|
): |
|
|
""" |
|
|
Inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf, |
|
|
based on the code in https://github.com/inbarhub/DDPM_inversion |
|
|
|
|
|
returns: |
|
|
zs - noise maps |
|
|
xts - intermediate inverted latents |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
skip = skip/100 |
|
|
print("YOOOOOOOOOOOOOOOOO ", skip, num_inversion_steps) |
|
|
train_steps = self.scheduler.config.num_train_timesteps |
|
|
timesteps = torch.from_numpy( |
|
|
np.linspace(train_steps - skip * train_steps - 1, 1, num_inversion_steps).astype(np.int64)).to(self.device) |
|
|
|
|
|
|
|
|
self.num_inversion_steps = timesteps.shape[0] |
|
|
self.scheduler.num_inference_steps = timesteps.shape[0] |
|
|
self.scheduler.timesteps = timesteps |
|
|
|
|
|
|
|
|
|
|
|
self.unet.set_attn_processor(AttnProcessor()) |
|
|
|
|
|
|
|
|
|
|
|
uncond_embedding = self.encode_text("") |
|
|
|
|
|
|
|
|
x0 = self.encode_image(image_path, dtype=uncond_embedding.dtype) |
|
|
self.batch_size = x0.shape[0] |
|
|
|
|
|
if not source_prompt == "": |
|
|
text_embeddings = self.encode_text(source_prompt).repeat((self.batch_size, 1, 1)) |
|
|
uncond_embedding = uncond_embedding.repeat((self.batch_size, 1, 1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
variance_noise_shape = ( |
|
|
self.num_inversion_steps, |
|
|
self.batch_size, |
|
|
self.unet.config.in_channels, |
|
|
self.unet.sample_size, |
|
|
self.unet.sample_size) |
|
|
|
|
|
|
|
|
t_to_idx = {int(v): k for k, v in enumerate(timesteps)} |
|
|
xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype) |
|
|
|
|
|
for t in reversed(timesteps): |
|
|
idx = self.num_inversion_steps-t_to_idx[int(t)] - 1 |
|
|
noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype) |
|
|
xts[idx] = self.scheduler.add_noise(x0, noise, t) |
|
|
xts = torch.cat([x0.unsqueeze(0), xts], dim=0) |
|
|
|
|
|
reset_dpm(self.scheduler) |
|
|
|
|
|
zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype) |
|
|
|
|
|
for t in self.progress_bar(timesteps, verbose=verbose): |
|
|
|
|
|
idx = self.num_inversion_steps-t_to_idx[int(t)]-1 |
|
|
|
|
|
xt = xts[idx+1] |
|
|
|
|
|
noise_pred = self.unet(xt, timestep=t, encoder_hidden_states=uncond_embedding).sample |
|
|
|
|
|
if not source_prompt == "": |
|
|
noise_pred_cond = self.unet(xt, timestep=t, encoder_hidden_states=text_embeddings).sample |
|
|
noise_pred = noise_pred + source_guidance_scale * (noise_pred_cond - noise_pred) |
|
|
|
|
|
xtm1 = xts[idx] |
|
|
z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, eta) |
|
|
zs[idx] = z |
|
|
|
|
|
|
|
|
xts[idx] = xtm1_corrected |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zs = zs.flip(0) |
|
|
|
|
|
|
|
|
|
|
|
return zs, xts |
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def encode_image(self, image_path, dtype=None): |
|
|
image = load_512(image_path, |
|
|
size=self.unet.sample_size * self.vae_scale_factor, |
|
|
device=self.device, |
|
|
dtype=dtype) |
|
|
x0 = self.vae.encode(image).latent_dist.mode() |
|
|
x0 = self.vae.config.scaling_factor * x0 |
|
|
return x0 |
|
|
|
|
|
def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta): |
|
|
|
|
|
prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps |
|
|
|
|
|
|
|
|
alpha_prod_t = scheduler.alphas_cumprod[timestep] |
|
|
alpha_prod_t_prev = ( |
|
|
scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod |
|
|
) |
|
|
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
|
|
|
|
|
|
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) |
|
|
|
|
|
|
|
|
if scheduler.config.clip_sample: |
|
|
pred_original_sample = torch.clamp(pred_original_sample, -1, 1) |
|
|
|
|
|
|
|
|
|
|
|
variance = scheduler._get_variance(timestep, prev_timestep) |
|
|
std_dev_t = eta * variance ** (0.5) |
|
|
|
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** (0.5) * noise_pred |
|
|
|
|
|
|
|
|
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction |
|
|
noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta) |
|
|
|
|
|
return noise, mu_xt + (eta * variance ** 0.5) * noise |
|
|
|
|
|
|
|
|
def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta): |
|
|
|
|
|
def first_order_update(model_output, timestep, prev_timestep, sample): |
|
|
lambda_t, lambda_s = scheduler.lambda_t[prev_timestep], scheduler.lambda_t[timestep] |
|
|
alpha_t, alpha_s = scheduler.alpha_t[prev_timestep], scheduler.alpha_t[timestep] |
|
|
sigma_t, sigma_s = scheduler.sigma_t[prev_timestep], scheduler.sigma_t[timestep] |
|
|
h = lambda_t - lambda_s |
|
|
|
|
|
mu_xt = ( |
|
|
(sigma_t / sigma_s * torch.exp(-h)) * sample |
|
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output |
|
|
) |
|
|
sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) |
|
|
|
|
|
noise = (prev_latents - mu_xt) / sigma |
|
|
|
|
|
prev_sample = mu_xt + sigma * noise |
|
|
|
|
|
return noise, prev_sample |
|
|
def second_order_update(model_output_list, timestep_list, prev_timestep, sample): |
|
|
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] |
|
|
m0, m1 = model_output_list[-1], model_output_list[-2] |
|
|
lambda_t, lambda_s0, lambda_s1 = scheduler.lambda_t[t], scheduler.lambda_t[s0], scheduler.lambda_t[s1] |
|
|
alpha_t, alpha_s0 = scheduler.alpha_t[t], scheduler.alpha_t[s0] |
|
|
sigma_t, sigma_s0 = scheduler.sigma_t[t], scheduler.sigma_t[s0] |
|
|
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 |
|
|
r0 = h_0 / h |
|
|
D0, D1 = m0, (1.0 / r0) * (m0 - m1) |
|
|
|
|
|
mu_xt = ( |
|
|
(sigma_t / sigma_s0 * torch.exp(-h)) * sample |
|
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 |
|
|
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 |
|
|
) |
|
|
sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) |
|
|
|
|
|
noise = (prev_latents - mu_xt) / sigma |
|
|
|
|
|
prev_sample = mu_xt + sigma * noise |
|
|
|
|
|
return noise, prev_sample |
|
|
|
|
|
step_index = (scheduler.timesteps == timestep).nonzero() |
|
|
if len(step_index) == 0: |
|
|
step_index = len(scheduler.timesteps) - 1 |
|
|
else: |
|
|
step_index = step_index.item() |
|
|
|
|
|
prev_timestep = 0 if step_index == len(scheduler.timesteps) - 1 else scheduler.timesteps[step_index + 1] |
|
|
|
|
|
model_output = scheduler.convert_model_output(noise_pred, timestep, latents) |
|
|
|
|
|
for i in range(scheduler.config.solver_order - 1): |
|
|
scheduler.model_outputs[i] = scheduler.model_outputs[i + 1] |
|
|
scheduler.model_outputs[-1] = model_output |
|
|
|
|
|
if scheduler.lower_order_nums < 1: |
|
|
noise, prev_sample = first_order_update(model_output, timestep, prev_timestep, latents) |
|
|
else: |
|
|
timestep_list = [scheduler.timesteps[step_index - 1], timestep] |
|
|
noise, prev_sample = second_order_update(scheduler.model_outputs, timestep_list, prev_timestep, latents) |
|
|
|
|
|
if scheduler.lower_order_nums < scheduler.config.solver_order: |
|
|
scheduler.lower_order_nums += 1 |
|
|
|
|
|
return noise, prev_sample |
|
|
|
|
|
def compute_noise(scheduler, *args): |
|
|
if isinstance(scheduler, DDIMScheduler): |
|
|
return compute_noise_ddim(scheduler, *args) |
|
|
elif isinstance(scheduler, DPMSolverMultistepSchedulerInject) and scheduler.config.algorithm_type == 'sde-dpmsolver++'\ |
|
|
and scheduler.config.solver_order == 2: |
|
|
return compute_noise_sde_dpm_pp_2nd(scheduler, *args) |
|
|
else: |
|
|
raise NotImplementedError |