Update app.py
Browse files
app.py
CHANGED
|
@@ -1,23 +1,19 @@
|
|
| 1 |
# --- START OF FILE app.py ---
|
| 2 |
|
| 3 |
-
import json
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
| 6 |
import plotly.express as px
|
| 7 |
-
import os
|
| 8 |
-
import numpy as np
|
| 9 |
-
import duckdb
|
| 10 |
-
from tqdm.auto import tqdm # Standard tqdm for console, gr.Progress will track it
|
| 11 |
import time
|
| 12 |
-
import
|
| 13 |
|
| 14 |
# --- Constants ---
|
| 15 |
MODEL_SIZE_RANGES = {
|
| 16 |
"Small (<1GB)": (0, 1), "Medium (1-5GB)": (1, 5), "Large (5-20GB)": (5, 20),
|
| 17 |
"X-Large (20-50GB)": (20, 50), "XX-Large (>50GB)": (50, float('inf'))
|
| 18 |
}
|
| 19 |
-
|
| 20 |
-
|
|
|
|
| 21 |
|
| 22 |
TAG_FILTER_CHOICES = [
|
| 23 |
"Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images",
|
|
@@ -38,139 +34,16 @@ PIPELINE_TAGS = [
|
|
| 38 |
'table-question-answering',
|
| 39 |
]
|
| 40 |
|
| 41 |
-
def extract_model_size(safetensors_data):
|
| 42 |
-
try:
|
| 43 |
-
if pd.isna(safetensors_data): return 0.0
|
| 44 |
-
data_to_parse = safetensors_data
|
| 45 |
-
if isinstance(safetensors_data, str):
|
| 46 |
-
try:
|
| 47 |
-
if (safetensors_data.startswith('{') and safetensors_data.endswith('}')) or \
|
| 48 |
-
(safetensors_data.startswith('[') and safetensors_data.endswith(']')):
|
| 49 |
-
data_to_parse = ast.literal_eval(safetensors_data)
|
| 50 |
-
else: data_to_parse = json.loads(safetensors_data)
|
| 51 |
-
except: return 0.0
|
| 52 |
-
if isinstance(data_to_parse, dict) and 'total' in data_to_parse:
|
| 53 |
-
try:
|
| 54 |
-
total_bytes_val = data_to_parse['total']
|
| 55 |
-
size_bytes = float(total_bytes_val)
|
| 56 |
-
return size_bytes / (1024 * 1024 * 1024)
|
| 57 |
-
except (ValueError, TypeError): pass
|
| 58 |
-
return 0.0
|
| 59 |
-
except: return 0.0
|
| 60 |
-
|
| 61 |
-
def extract_org_from_id(model_id):
|
| 62 |
-
if pd.isna(model_id): return "unaffiliated"
|
| 63 |
-
model_id_str = str(model_id)
|
| 64 |
-
return model_id_str.split("/")[0] if "/" in model_id_str else "unaffiliated"
|
| 65 |
-
|
| 66 |
-
def process_tags_for_series(series_of_tags_values):
|
| 67 |
-
processed_tags_accumulator = []
|
| 68 |
-
|
| 69 |
-
for i, tags_value_from_series in enumerate(tqdm(series_of_tags_values, desc="Standardizing Tags", leave=False, unit="row")):
|
| 70 |
-
temp_processed_list_for_row = []
|
| 71 |
-
current_value_for_error_msg = str(tags_value_from_series)[:200] # Truncate for long error messages
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
current_tags_in_list = []
|
| 78 |
-
for idx_tag, tag_item in enumerate(tags_value_from_series):
|
| 79 |
-
try:
|
| 80 |
-
# Ensure item is not NaN before string conversion if it might be a float NaN in a list
|
| 81 |
-
if pd.isna(tag_item): continue
|
| 82 |
-
str_tag = str(tag_item)
|
| 83 |
-
stripped_tag = str_tag.strip()
|
| 84 |
-
if stripped_tag:
|
| 85 |
-
current_tags_in_list.append(stripped_tag)
|
| 86 |
-
except Exception as e_inner_list_proc:
|
| 87 |
-
print(f"ERROR processing item '{tag_item}' (type: {type(tag_item)}) within a list for row {i}. Error: {e_inner_list_proc}. Original list: {current_value_for_error_msg}")
|
| 88 |
-
temp_processed_list_for_row = current_tags_in_list
|
| 89 |
-
|
| 90 |
-
# 2. Handle NumPy arrays
|
| 91 |
-
elif isinstance(tags_value_from_series, np.ndarray):
|
| 92 |
-
# Convert to list, then process elements, handling potential NaNs within the array
|
| 93 |
-
current_tags_in_list = []
|
| 94 |
-
for idx_tag, tag_item in enumerate(tags_value_from_series.tolist()): # .tolist() is crucial
|
| 95 |
-
try:
|
| 96 |
-
if pd.isna(tag_item): continue # Check for NaN after converting to Python type
|
| 97 |
-
str_tag = str(tag_item)
|
| 98 |
-
stripped_tag = str_tag.strip()
|
| 99 |
-
if stripped_tag:
|
| 100 |
-
current_tags_in_list.append(stripped_tag)
|
| 101 |
-
except Exception as e_inner_array_proc:
|
| 102 |
-
print(f"ERROR processing item '{tag_item}' (type: {type(tag_item)}) within a NumPy array for row {i}. Error: {e_inner_array_proc}. Original array: {current_value_for_error_msg}")
|
| 103 |
-
temp_processed_list_for_row = current_tags_in_list
|
| 104 |
-
|
| 105 |
-
# 3. Handle simple None or pd.NA after lists and arrays (which might contain pd.NA elements handled above)
|
| 106 |
-
elif tags_value_from_series is None or pd.isna(tags_value_from_series): # Now pd.isna is safe for scalars
|
| 107 |
-
temp_processed_list_for_row = []
|
| 108 |
-
|
| 109 |
-
# 4. Handle strings (could be JSON-like, list-like, or comma-separated)
|
| 110 |
-
elif isinstance(tags_value_from_series, str):
|
| 111 |
-
processed_str_tags = []
|
| 112 |
-
# Attempt ast.literal_eval for strings that look like lists/tuples
|
| 113 |
-
if (tags_value_from_series.startswith('[') and tags_value_from_series.endswith(']')) or \
|
| 114 |
-
(tags_value_from_series.startswith('(') and tags_value_from_series.endswith(')')):
|
| 115 |
-
try:
|
| 116 |
-
evaluated_tags = ast.literal_eval(tags_value_from_series)
|
| 117 |
-
if isinstance(evaluated_tags, (list, tuple)): # Check if eval result is a list/tuple
|
| 118 |
-
# Recursively process this evaluated list/tuple, as its elements could be complex
|
| 119 |
-
# For simplicity here, assume elements are simple strings after eval
|
| 120 |
-
current_eval_list = []
|
| 121 |
-
for tag_item in evaluated_tags:
|
| 122 |
-
if pd.isna(tag_item): continue
|
| 123 |
-
str_tag = str(tag_item).strip()
|
| 124 |
-
if str_tag: current_eval_list.append(str_tag)
|
| 125 |
-
processed_str_tags = current_eval_list
|
| 126 |
-
except (ValueError, SyntaxError):
|
| 127 |
-
pass # If ast.literal_eval fails, let it fall to JSON or comma split
|
| 128 |
-
|
| 129 |
-
# If ast.literal_eval didn't populate, try JSON
|
| 130 |
-
if not processed_str_tags:
|
| 131 |
-
try:
|
| 132 |
-
json_tags = json.loads(tags_value_from_series)
|
| 133 |
-
if isinstance(json_tags, list):
|
| 134 |
-
# Similar to above, assume elements are simple strings after JSON parsing
|
| 135 |
-
current_json_list = []
|
| 136 |
-
for tag_item in json_tags:
|
| 137 |
-
if pd.isna(tag_item): continue
|
| 138 |
-
str_tag = str(tag_item).strip()
|
| 139 |
-
if str_tag: current_json_list.append(str_tag)
|
| 140 |
-
processed_str_tags = current_json_list
|
| 141 |
-
except json.JSONDecodeError:
|
| 142 |
-
# If not a valid JSON list, fall back to comma splitting as the final string strategy
|
| 143 |
-
processed_str_tags = [tag.strip() for tag in tags_value_from_series.split(',') if tag.strip()]
|
| 144 |
-
except Exception as e_json_other:
|
| 145 |
-
print(f"ERROR during JSON processing for string '{current_value_for_error_msg}' for row {i}. Error: {e_json_other}")
|
| 146 |
-
processed_str_tags = [tag.strip() for tag in tags_value_from_series.split(',') if tag.strip()] # Fallback
|
| 147 |
-
|
| 148 |
-
temp_processed_list_for_row = processed_str_tags
|
| 149 |
-
|
| 150 |
-
# 5. Fallback for other scalar types (e.g., int, float that are not NaN)
|
| 151 |
-
else:
|
| 152 |
-
# This path is for non-list, non-ndarray, non-None/NaN, non-string types.
|
| 153 |
-
# Or for NaNs that slipped through if they are not None or pd.NA (e.g. float('nan'))
|
| 154 |
-
if pd.isna(tags_value_from_series): # Catch any remaining NaNs like float('nan')
|
| 155 |
-
temp_processed_list_for_row = []
|
| 156 |
-
else:
|
| 157 |
-
str_val = str(tags_value_from_series).strip()
|
| 158 |
-
temp_processed_list_for_row = [str_val] if str_val else []
|
| 159 |
-
|
| 160 |
-
processed_tags_accumulator.append(temp_processed_list_for_row)
|
| 161 |
-
|
| 162 |
-
except Exception as e_outer_tag_proc:
|
| 163 |
-
print(f"CRITICAL UNHANDLED ERROR processing row {i}: value '{current_value_for_error_msg}' (type: {type(tags_value_from_series)}). Error: {e_outer_tag_proc}. Appending [].")
|
| 164 |
-
processed_tags_accumulator.append([])
|
| 165 |
-
|
| 166 |
-
return processed_tags_accumulator
|
| 167 |
-
|
| 168 |
-
def load_models_data(force_refresh=False, tqdm_cls=None):
|
| 169 |
-
if tqdm_cls is None: tqdm_cls = tqdm
|
| 170 |
overall_start_time = time.time()
|
| 171 |
-
print(f"
|
| 172 |
|
| 173 |
-
|
|
|
|
| 174 |
'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params',
|
| 175 |
'size_category', 'organization', 'has_audio', 'has_speech', 'has_music',
|
| 176 |
'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image',
|
|
@@ -178,139 +51,44 @@ def load_models_data(force_refresh=False, tqdm_cls=None):
|
|
| 178 |
'data_download_timestamp'
|
| 179 |
]
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
raise ValueError(f"Pre-processed Parquet is missing columns: {missing_cols}. Please run preprocessor or refresh data in app.")
|
| 189 |
-
|
| 190 |
-
# --- Diagnostic for 'has_robot' after loading parquet ---
|
| 191 |
-
if 'has_robot' in df.columns:
|
| 192 |
-
robot_count_parquet = df['has_robot'].sum()
|
| 193 |
-
print(f"DIAGNOSTIC (App - Parquet Load): 'has_robot' column found. Number of True values: {robot_count_parquet}")
|
| 194 |
-
if 0 < robot_count_parquet < 10:
|
| 195 |
-
print(f"Sample 'has_robot' models (from parquet): {df[df['has_robot']]['id'].head().tolist()}")
|
| 196 |
-
else:
|
| 197 |
-
print("DIAGNOSTIC (App - Parquet Load): 'has_robot' column NOT FOUND.")
|
| 198 |
-
# --- End Diagnostic ---
|
| 199 |
-
|
| 200 |
-
msg = f"Successfully loaded pre-processed data in {elapsed:.2f}s. Shape: {df.shape}"
|
| 201 |
-
print(msg)
|
| 202 |
-
return df, True, msg
|
| 203 |
-
except Exception as e:
|
| 204 |
-
print(f"Could not load pre-processed Parquet: {e}. ")
|
| 205 |
-
if force_refresh: print("Proceeding to fetch fresh data as force_refresh=True.")
|
| 206 |
-
else:
|
| 207 |
-
err_msg = (f"Pre-processed data could not be loaded: {e}. "
|
| 208 |
-
"Please use 'Refresh Data from Hugging Face' button.")
|
| 209 |
-
return pd.DataFrame(), False, err_msg
|
| 210 |
-
|
| 211 |
-
df_raw = None
|
| 212 |
-
raw_data_source_msg = ""
|
| 213 |
-
if force_refresh:
|
| 214 |
-
print("force_refresh=True (Gradio). Fetching fresh data...")
|
| 215 |
-
fetch_start = time.time()
|
| 216 |
-
try:
|
| 217 |
-
query = f"SELECT * FROM read_parquet('{HF_PARQUET_URL}')" # Ensure HF_PARQUET_URL is defined
|
| 218 |
-
df_raw = duckdb.sql(query).df()
|
| 219 |
-
if df_raw is None or df_raw.empty: raise ValueError("Fetched data is empty or None.")
|
| 220 |
-
raw_data_source_msg = f"Fetched by Gradio in {time.time() - fetch_start:.2f}s. Rows: {len(df_raw)}"
|
| 221 |
-
print(raw_data_source_msg)
|
| 222 |
-
except Exception as e_hf:
|
| 223 |
-
return pd.DataFrame(), False, f"Fatal error fetching from Hugging Face (Gradio): {e_hf}"
|
| 224 |
-
else:
|
| 225 |
-
err_msg = (f"Pre-processed data '{PROCESSED_PARQUET_FILE_PATH}' not found/invalid. "
|
| 226 |
-
"Run preprocessor or use 'Refresh Data' button.")
|
| 227 |
-
return pd.DataFrame(), False, err_msg
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
else:
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
if tqdm_cls != tqdm :
|
| 253 |
-
safetensors_iter = tqdm_cls(df['safetensors'], desc="Extracting model sizes (GB)")
|
| 254 |
-
df[output_filesize_col_name] = [extract_model_size(s) for s in safetensors_iter]
|
| 255 |
-
df[output_filesize_col_name] = pd.to_numeric(df[output_filesize_col_name], errors='coerce').fillna(0.0)
|
| 256 |
-
else:
|
| 257 |
-
df[output_filesize_col_name] = 0.0
|
| 258 |
-
|
| 259 |
-
def get_size_category_gradio(size_gb_val):
|
| 260 |
-
try: numeric_size_gb = float(size_gb_val)
|
| 261 |
-
except (ValueError, TypeError): numeric_size_gb = 0.0
|
| 262 |
-
if pd.isna(numeric_size_gb): numeric_size_gb = 0.0
|
| 263 |
-
if 0 <= numeric_size_gb < 1: return "Small (<1GB)"
|
| 264 |
-
elif 1 <= numeric_size_gb < 5: return "Medium (1-5GB)"
|
| 265 |
-
elif 5 <= numeric_size_gb < 20: return "Large (5-20GB)"
|
| 266 |
-
elif 20 <= numeric_size_gb < 50: return "X-Large (20-50GB)"
|
| 267 |
-
elif numeric_size_gb >= 50: return "XX-Large (>50GB)"
|
| 268 |
-
else: return "Small (<1GB)"
|
| 269 |
-
df['size_category'] = df[output_filesize_col_name].apply(get_size_category_gradio)
|
| 270 |
-
|
| 271 |
-
df['tags'] = process_tags_for_series(df['tags'])
|
| 272 |
-
df['temp_tags_joined'] = df['tags'].apply(
|
| 273 |
-
lambda tl: '~~~'.join(str(t).lower() for t in tl if pd.notna(t) and str(t).strip()) if isinstance(tl, list) else ''
|
| 274 |
-
)
|
| 275 |
-
tag_map = {
|
| 276 |
-
'has_audio': ['audio'], 'has_speech': ['speech'], 'has_music': ['music'],
|
| 277 |
-
'has_robot': ['robot', 'robotics'],
|
| 278 |
-
'has_bio': ['bio'], 'has_med': ['medic', 'medical'],
|
| 279 |
-
'has_series': ['series', 'time-series', 'timeseries'],
|
| 280 |
-
'has_video': ['video'], 'has_image': ['image', 'vision'],
|
| 281 |
-
'has_text': ['text', 'nlp', 'llm']
|
| 282 |
-
}
|
| 283 |
-
for col, kws in tag_map.items():
|
| 284 |
-
pattern = '|'.join(kws)
|
| 285 |
-
df[col] = df['temp_tags_joined'].str.contains(pattern, na=False, case=False, regex=True)
|
| 286 |
-
df['has_science'] = (
|
| 287 |
-
df['temp_tags_joined'].str.contains('science', na=False, case=False, regex=True) &
|
| 288 |
-
~df['temp_tags_joined'].str.contains('bigscience', na=False, case=False, regex=True)
|
| 289 |
-
)
|
| 290 |
-
del df['temp_tags_joined']
|
| 291 |
-
df['is_audio_speech'] = (df['has_audio'] | df['has_speech'] |
|
| 292 |
-
df['pipeline_tag'].str.contains('audio|speech', case=False, na=False, regex=True))
|
| 293 |
-
df['is_biomed'] = df['has_bio'] | df['has_med']
|
| 294 |
-
df['organization'] = df['id'].apply(extract_org_from_id)
|
| 295 |
-
|
| 296 |
-
if 'safetensors' in df.columns and \
|
| 297 |
-
not (output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name])):
|
| 298 |
-
df = df.drop(columns=['safetensors'], errors='ignore')
|
| 299 |
-
|
| 300 |
-
# --- Diagnostic for 'has_robot' after app-side processing (force_refresh path) ---
|
| 301 |
-
if force_refresh and 'has_robot' in df.columns:
|
| 302 |
-
robot_count_app_proc = df['has_robot'].sum()
|
| 303 |
-
print(f"DIAGNOSTIC (App - Force Refresh Processing): 'has_robot' column processed. Number of True values: {robot_count_app_proc}")
|
| 304 |
-
if 0 < robot_count_app_proc < 10:
|
| 305 |
-
print(f"Sample 'has_robot' models (App processed): {df[df['has_robot']]['id'].head().tolist()}")
|
| 306 |
-
# --- End Diagnostic ---
|
| 307 |
-
|
| 308 |
-
print(f"Data processing by Gradio completed in {time.time() - proc_start:.2f}s.")
|
| 309 |
-
|
| 310 |
-
total_elapsed = time.time() - overall_start_time
|
| 311 |
-
final_msg = f"{raw_data_source_msg}. Processing by Gradio took {time.time() - proc_start:.2f}s. Total: {total_elapsed:.2f}s. Shape: {df.shape}"
|
| 312 |
-
print(final_msg)
|
| 313 |
-
return df, True, final_msg
|
| 314 |
|
| 315 |
|
| 316 |
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None, skip_orgs=None):
|
|
@@ -320,49 +98,48 @@ def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=N
|
|
| 320 |
"Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science",
|
| 321 |
"Video": "has_video", "Images": "has_image", "Text": "has_text"}
|
| 322 |
|
| 323 |
-
# --- Diagnostic within make_treemap_data ---
|
| 324 |
-
if 'has_robot' in filtered_df.columns:
|
| 325 |
-
initial_robot_count = filtered_df['has_robot'].sum()
|
| 326 |
-
print(f"DIAGNOSTIC (make_treemap_data entry): Input df has {initial_robot_count} 'has_robot' models.")
|
| 327 |
-
else:
|
| 328 |
-
print("DIAGNOSTIC (make_treemap_data entry): 'has_robot' column NOT in input df.")
|
| 329 |
-
# --- End Diagnostic ---
|
| 330 |
-
|
| 331 |
if tag_filter and tag_filter in col_map:
|
| 332 |
target_col = col_map[tag_filter]
|
| 333 |
if target_col in filtered_df.columns:
|
| 334 |
-
# --- Diagnostic for specific 'Robotics' filter application ---
|
| 335 |
-
if tag_filter == "Robotics":
|
| 336 |
-
count_before_robot_filter = filtered_df[target_col].sum()
|
| 337 |
-
print(f"DIAGNOSTIC (make_treemap_data): Applying 'Robotics' filter. Models with '{target_col}'=True before this filter step: {count_before_robot_filter}")
|
| 338 |
-
# --- End Diagnostic ---
|
| 339 |
filtered_df = filtered_df[filtered_df[target_col]]
|
| 340 |
-
if tag_filter == "Robotics":
|
| 341 |
-
print(f"DIAGNOSTIC (make_treemap_data): After 'Robotics' filter ({target_col}), df rows: {len(filtered_df)}")
|
| 342 |
else:
|
| 343 |
print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")
|
|
|
|
| 344 |
if pipeline_filter:
|
| 345 |
if "pipeline_tag" in filtered_df.columns:
|
| 346 |
-
|
|
|
|
| 347 |
else:
|
| 348 |
print(f"Warning: 'pipeline_tag' column not found for filtering.")
|
|
|
|
| 349 |
if size_filter and size_filter != "None" and size_filter in MODEL_SIZE_RANGES.keys():
|
| 350 |
if 'size_category' in filtered_df.columns:
|
| 351 |
filtered_df = filtered_df[filtered_df['size_category'] == size_filter]
|
| 352 |
else:
|
| 353 |
print("Warning: 'size_category' column not found for filtering.")
|
|
|
|
| 354 |
if skip_orgs and len(skip_orgs) > 0:
|
| 355 |
if "organization" in filtered_df.columns:
|
| 356 |
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
|
| 357 |
else:
|
| 358 |
print("Warning: 'organization' column not found for filtering.")
|
|
|
|
| 359 |
if filtered_df.empty: return pd.DataFrame()
|
| 360 |
-
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
|
| 363 |
top_orgs_list = org_totals.index.tolist()
|
|
|
|
|
|
|
| 364 |
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
|
| 365 |
treemap_data["root"] = "models"
|
|
|
|
| 366 |
treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0)
|
| 367 |
return treemap_data
|
| 368 |
|
|
@@ -395,7 +172,7 @@ with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
|
|
| 395 |
top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
|
| 396 |
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
|
| 397 |
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
|
| 398 |
-
|
| 399 |
with gr.Column(scale=3):
|
| 400 |
plot_output = gr.Plot()
|
| 401 |
status_message_md = gr.Markdown("Initializing...")
|
|
@@ -409,28 +186,30 @@ with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
|
|
| 409 |
return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
|
| 410 |
filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
|
| 411 |
|
| 412 |
-
def ui_load_data_controller(
|
| 413 |
-
|
|
|
|
| 414 |
status_msg_ui = "Loading data..."
|
| 415 |
data_info_text = ""
|
| 416 |
current_df = pd.DataFrame()
|
| 417 |
load_success_flag = False
|
| 418 |
data_as_of_date_display = "N/A"
|
| 419 |
try:
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
)
|
| 423 |
if load_success_flag:
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
timestamp_from_parquet = pd.to_datetime(current_df['data_download_timestamp'].iloc[0])
|
|
|
|
| 428 |
if timestamp_from_parquet.tzinfo is None:
|
| 429 |
timestamp_from_parquet = timestamp_from_parquet.tz_localize('UTC')
|
| 430 |
data_as_of_date_display = timestamp_from_parquet.strftime('%B %d, %Y, %H:%M:%S %Z')
|
| 431 |
else:
|
| 432 |
data_as_of_date_display = "Pre-processed (date unavailable)"
|
| 433 |
|
|
|
|
| 434 |
size_dist_lines = []
|
| 435 |
if 'size_category' in current_df.columns:
|
| 436 |
for cat in MODEL_SIZE_RANGES.keys():
|
|
@@ -440,22 +219,12 @@ with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
|
|
| 440 |
size_dist = "\n".join(size_dist_lines)
|
| 441 |
|
| 442 |
data_info_text = (f"### Data Information\n"
|
|
|
|
| 443 |
f"- Overall Status: {status_msg_from_load}\n"
|
| 444 |
f"- Total models loaded: {len(current_df):,}\n"
|
| 445 |
f"- Data as of: {data_as_of_date_display}\n"
|
| 446 |
f"- Size categories:\n{size_dist}")
|
| 447 |
|
| 448 |
-
# # --- MODIFICATION: Add 'has_robot' count to UI data_info_text ---
|
| 449 |
-
# if not current_df.empty and 'has_robot' in current_df.columns:
|
| 450 |
-
# robot_true_count = current_df['has_robot'].sum()
|
| 451 |
-
# data_info_text += f"\n- **Models flagged 'has_robot'**: {robot_true_count}"
|
| 452 |
-
# if 0 < robot_true_count <= 10: # If a few are found, list some IDs
|
| 453 |
-
# sample_robot_ids = current_df[current_df['has_robot']]['id'].head(5).tolist()
|
| 454 |
-
# data_info_text += f"\n - Sample 'has_robot' model IDs: `{', '.join(sample_robot_ids)}`"
|
| 455 |
-
# elif not current_df.empty:
|
| 456 |
-
# data_info_text += "\n- **Models flagged 'has_robot'**: 'has_robot' column not found in loaded data."
|
| 457 |
-
# # --- END MODIFICATION ---
|
| 458 |
-
|
| 459 |
status_msg_ui = "Data loaded successfully. Ready to generate plot."
|
| 460 |
else:
|
| 461 |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
|
|
@@ -468,46 +237,45 @@ with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
|
|
| 468 |
return current_df, load_success_flag, data_info_text, status_msg_ui
|
| 469 |
|
| 470 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
| 471 |
-
size_choice, k_orgs, skip_orgs_input, df_current_models):
|
| 472 |
if df_current_models is None or df_current_models.empty:
|
| 473 |
empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
|
| 474 |
-
error_msg = "Model data is not loaded or is empty. Please
|
| 475 |
gr.Warning(error_msg)
|
| 476 |
return empty_fig, error_msg
|
|
|
|
|
|
|
|
|
|
| 477 |
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
|
| 478 |
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
|
| 479 |
size_to_use = size_choice if size_choice != "None" else None
|
| 480 |
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
|
| 481 |
|
| 482 |
-
# --- Diagnostic before calling make_treemap_data ---
|
| 483 |
-
if 'has_robot' in df_current_models.columns:
|
| 484 |
-
robot_count_before_treemap = df_current_models['has_robot'].sum()
|
| 485 |
-
print(f"DIAGNOSTIC (ui_generate_plot_controller): df_current_models entering make_treemap_data has {robot_count_before_treemap} 'has_robot' models.")
|
| 486 |
-
# --- End Diagnostic ---
|
| 487 |
|
| 488 |
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, size_to_use, orgs_to_skip)
|
| 489 |
|
|
|
|
|
|
|
| 490 |
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
|
| 491 |
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
|
| 492 |
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
|
|
|
|
| 493 |
if treemap_df.empty:
|
| 494 |
plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
|
| 495 |
else:
|
| 496 |
total_items_in_plot = len(treemap_df['id'].unique())
|
| 497 |
total_value_in_plot = treemap_df[metric_choice].sum()
|
| 498 |
plot_stats_md = (f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}")
|
|
|
|
| 499 |
return plotly_fig, plot_stats_md
|
| 500 |
|
|
|
|
| 501 |
demo.load(
|
| 502 |
-
fn=
|
| 503 |
inputs=[],
|
| 504 |
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
|
| 505 |
)
|
| 506 |
-
|
| 507 |
-
fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=True, progress=progress),
|
| 508 |
-
inputs=[],
|
| 509 |
-
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
|
| 510 |
-
)
|
| 511 |
generate_plot_button.click(
|
| 512 |
fn=ui_generate_plot_controller,
|
| 513 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
|
@@ -516,11 +284,8 @@ with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
|
|
| 516 |
)
|
| 517 |
|
| 518 |
if __name__ == "__main__":
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
else:
|
| 523 |
-
print(f"Found pre-processed data file: '{PROCESSED_PARQUET_FILE_PATH}'.")
|
| 524 |
-
demo.launch()
|
| 525 |
|
| 526 |
# --- END OF FILE app.py ---
|
|
|
|
| 1 |
# --- START OF FILE app.py ---
|
| 2 |
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
import plotly.express as px
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import time
|
| 7 |
+
from datasets import load_dataset # Import the datasets library
|
| 8 |
|
| 9 |
# --- Constants ---
|
| 10 |
MODEL_SIZE_RANGES = {
|
| 11 |
"Small (<1GB)": (0, 1), "Medium (1-5GB)": (1, 5), "Large (5-20GB)": (5, 20),
|
| 12 |
"X-Large (20-50GB)": (20, 50), "XX-Large (>50GB)": (50, float('inf'))
|
| 13 |
}
|
| 14 |
+
|
| 15 |
+
# The Hugging Face dataset ID to load.
|
| 16 |
+
HF_DATASET_ID = "evijit/orgstats_daily_data"
|
| 17 |
|
| 18 |
TAG_FILTER_CHOICES = [
|
| 19 |
"Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images",
|
|
|
|
| 34 |
'table-question-answering',
|
| 35 |
]
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
def load_models_data():
|
| 39 |
+
"""
|
| 40 |
+
Loads the pre-processed models data using the HF datasets library.
|
| 41 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
overall_start_time = time.time()
|
| 43 |
+
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
|
| 44 |
|
| 45 |
+
# These are the columns expected to be in the pre-processed dataset.
|
| 46 |
+
expected_cols = [
|
| 47 |
'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params',
|
| 48 |
'size_category', 'organization', 'has_audio', 'has_speech', 'has_music',
|
| 49 |
'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image',
|
|
|
|
| 51 |
'data_download_timestamp'
|
| 52 |
]
|
| 53 |
|
| 54 |
+
try:
|
| 55 |
+
# Load the dataset using the datasets library
|
| 56 |
+
# It will be cached locally after the first run.
|
| 57 |
+
dataset_dict = load_dataset(HF_DATASET_ID)
|
| 58 |
+
|
| 59 |
+
if not dataset_dict:
|
| 60 |
+
raise ValueError(f"Dataset '{HF_DATASET_ID}' loaded but appears empty.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
# Get the name of the first split (e.g., 'train')
|
| 63 |
+
split_name = list(dataset_dict.keys())[0]
|
| 64 |
+
print(f"Using dataset split: '{split_name}'. Converting to Pandas.")
|
| 65 |
+
|
| 66 |
+
# Convert the dataset object to a Pandas DataFrame
|
| 67 |
+
df = dataset_dict[split_name].to_pandas()
|
| 68 |
+
|
| 69 |
+
elapsed = time.time() - overall_start_time
|
| 70 |
+
|
| 71 |
+
# Validate that the loaded data has the columns we expect.
|
| 72 |
+
missing_cols = [col for col in expected_cols if col not in df.columns]
|
| 73 |
+
if missing_cols:
|
| 74 |
+
raise ValueError(f"Loaded dataset is missing expected columns: {missing_cols}.")
|
| 75 |
+
|
| 76 |
+
# --- Diagnostic for 'has_robot' after loading ---
|
| 77 |
+
if 'has_robot' in df.columns:
|
| 78 |
+
robot_count = df['has_robot'].sum()
|
| 79 |
+
print(f"DIAGNOSTIC (Dataset Load): 'has_robot' column found. Number of True values: {robot_count}")
|
| 80 |
else:
|
| 81 |
+
print("DIAGNOSTIC (Dataset Load): 'has_robot' column NOT FOUND.")
|
| 82 |
+
# --- End Diagnostic ---
|
| 83 |
+
|
| 84 |
+
msg = f"Successfully loaded dataset '{HF_DATASET_ID}' (split: {split_name}) from HF Hub in {elapsed:.2f}s. Shape: {df.shape}"
|
| 85 |
+
print(msg)
|
| 86 |
+
return df, True, msg
|
| 87 |
+
|
| 88 |
+
except Exception as e:
|
| 89 |
+
err_msg = f"Failed to load dataset '{HF_DATASET_ID}' from Hugging Face Hub. Error: {e}"
|
| 90 |
+
print(err_msg)
|
| 91 |
+
return pd.DataFrame(), False, err_msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None, skip_orgs=None):
|
|
|
|
| 98 |
"Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science",
|
| 99 |
"Video": "has_video", "Images": "has_image", "Text": "has_text"}
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
if tag_filter and tag_filter in col_map:
|
| 102 |
target_col = col_map[tag_filter]
|
| 103 |
if target_col in filtered_df.columns:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
filtered_df = filtered_df[filtered_df[target_col]]
|
|
|
|
|
|
|
| 105 |
else:
|
| 106 |
print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")
|
| 107 |
+
|
| 108 |
if pipeline_filter:
|
| 109 |
if "pipeline_tag" in filtered_df.columns:
|
| 110 |
+
# Ensure the comparison works even if pipeline_tag has NaNs or mixed types
|
| 111 |
+
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
|
| 112 |
else:
|
| 113 |
print(f"Warning: 'pipeline_tag' column not found for filtering.")
|
| 114 |
+
|
| 115 |
if size_filter and size_filter != "None" and size_filter in MODEL_SIZE_RANGES.keys():
|
| 116 |
if 'size_category' in filtered_df.columns:
|
| 117 |
filtered_df = filtered_df[filtered_df['size_category'] == size_filter]
|
| 118 |
else:
|
| 119 |
print("Warning: 'size_category' column not found for filtering.")
|
| 120 |
+
|
| 121 |
if skip_orgs and len(skip_orgs) > 0:
|
| 122 |
if "organization" in filtered_df.columns:
|
| 123 |
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
|
| 124 |
else:
|
| 125 |
print("Warning: 'organization' column not found for filtering.")
|
| 126 |
+
|
| 127 |
if filtered_df.empty: return pd.DataFrame()
|
| 128 |
+
|
| 129 |
+
# Ensure the metric column is numeric and handle potential missing values
|
| 130 |
+
if count_by not in filtered_df.columns:
|
| 131 |
+
print(f"Warning: Metric column '{count_by}' not found. Using 0.")
|
| 132 |
+
filtered_df[count_by] = 0.0
|
| 133 |
+
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors="coerce").fillna(0.0)
|
| 134 |
+
|
| 135 |
+
# Group and get top organizations
|
| 136 |
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
|
| 137 |
top_orgs_list = org_totals.index.tolist()
|
| 138 |
+
|
| 139 |
+
# Prepare data for treemap
|
| 140 |
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
|
| 141 |
treemap_data["root"] = "models"
|
| 142 |
+
# Ensure numeric again for the final slice
|
| 143 |
treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0)
|
| 144 |
return treemap_data
|
| 145 |
|
|
|
|
| 172 |
top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
|
| 173 |
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
|
| 174 |
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
|
| 175 |
+
|
| 176 |
with gr.Column(scale=3):
|
| 177 |
plot_output = gr.Plot()
|
| 178 |
status_message_md = gr.Markdown("Initializing...")
|
|
|
|
| 186 |
return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
|
| 187 |
filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
|
| 188 |
|
| 189 |
+
def ui_load_data_controller(progress=gr.Progress()):
|
| 190 |
+
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}' from Hugging Face Hub...")
|
| 191 |
+
print("ui_load_data_controller called.")
|
| 192 |
status_msg_ui = "Loading data..."
|
| 193 |
data_info_text = ""
|
| 194 |
current_df = pd.DataFrame()
|
| 195 |
load_success_flag = False
|
| 196 |
data_as_of_date_display = "N/A"
|
| 197 |
try:
|
| 198 |
+
# Call the load function that uses the datasets library.
|
| 199 |
+
current_df, load_success_flag, status_msg_from_load = load_models_data()
|
|
|
|
| 200 |
if load_success_flag:
|
| 201 |
+
progress(0.9, desc="Processing loaded data...")
|
| 202 |
+
# Get the data timestamp from the loaded file
|
| 203 |
+
if 'data_download_timestamp' in current_df.columns and not current_df.empty and pd.notna(current_df['data_download_timestamp'].iloc[0]):
|
| 204 |
timestamp_from_parquet = pd.to_datetime(current_df['data_download_timestamp'].iloc[0])
|
| 205 |
+
# Ensure the timestamp is timezone-aware for consistent formatting
|
| 206 |
if timestamp_from_parquet.tzinfo is None:
|
| 207 |
timestamp_from_parquet = timestamp_from_parquet.tz_localize('UTC')
|
| 208 |
data_as_of_date_display = timestamp_from_parquet.strftime('%B %d, %Y, %H:%M:%S %Z')
|
| 209 |
else:
|
| 210 |
data_as_of_date_display = "Pre-processed (date unavailable)"
|
| 211 |
|
| 212 |
+
# Create summary text for the UI
|
| 213 |
size_dist_lines = []
|
| 214 |
if 'size_category' in current_df.columns:
|
| 215 |
for cat in MODEL_SIZE_RANGES.keys():
|
|
|
|
| 219 |
size_dist = "\n".join(size_dist_lines)
|
| 220 |
|
| 221 |
data_info_text = (f"### Data Information\n"
|
| 222 |
+
f"- Source: `{HF_DATASET_ID}`\n"
|
| 223 |
f"- Overall Status: {status_msg_from_load}\n"
|
| 224 |
f"- Total models loaded: {len(current_df):,}\n"
|
| 225 |
f"- Data as of: {data_as_of_date_display}\n"
|
| 226 |
f"- Size categories:\n{size_dist}")
|
| 227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
status_msg_ui = "Data loaded successfully. Ready to generate plot."
|
| 229 |
else:
|
| 230 |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
|
|
|
|
| 237 |
return current_df, load_success_flag, data_info_text, status_msg_ui
|
| 238 |
|
| 239 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
| 240 |
+
size_choice, k_orgs, skip_orgs_input, df_current_models, progress=gr.Progress()):
|
| 241 |
if df_current_models is None or df_current_models.empty:
|
| 242 |
empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
|
| 243 |
+
error_msg = "Model data is not loaded or is empty. Please wait for data to load."
|
| 244 |
gr.Warning(error_msg)
|
| 245 |
return empty_fig, error_msg
|
| 246 |
+
|
| 247 |
+
progress(0.1, desc="Preparing data for visualization...")
|
| 248 |
+
|
| 249 |
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
|
| 250 |
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
|
| 251 |
size_to_use = size_choice if size_choice != "None" else None
|
| 252 |
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, size_to_use, orgs_to_skip)
|
| 256 |
|
| 257 |
+
progress(0.7, desc="Generating Plotly visualization...")
|
| 258 |
+
|
| 259 |
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
|
| 260 |
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
|
| 261 |
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
|
| 262 |
+
|
| 263 |
if treemap_df.empty:
|
| 264 |
plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
|
| 265 |
else:
|
| 266 |
total_items_in_plot = len(treemap_df['id'].unique())
|
| 267 |
total_value_in_plot = treemap_df[metric_choice].sum()
|
| 268 |
plot_stats_md = (f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}")
|
| 269 |
+
|
| 270 |
return plotly_fig, plot_stats_md
|
| 271 |
|
| 272 |
+
# On app load, call the controller to fetch data using the datasets library.
|
| 273 |
demo.load(
|
| 274 |
+
fn=ui_load_data_controller,
|
| 275 |
inputs=[],
|
| 276 |
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
|
| 277 |
)
|
| 278 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
generate_plot_button.click(
|
| 280 |
fn=ui_generate_plot_controller,
|
| 281 |
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
|
|
|
|
| 284 |
)
|
| 285 |
|
| 286 |
if __name__ == "__main__":
|
| 287 |
+
print(f"Application starting. Data will be loaded from Hugging Face dataset: {HF_DATASET_ID}")
|
| 288 |
+
# Increase the queue size for potentially busy traffic if hosted
|
| 289 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
# --- END OF FILE app.py ---
|