Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import login
|
| 3 |
import os
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
is_shared_ui = True if "fffiloni/sdxl-control-loras" in os.environ['SPACE_ID'] else False
|
|
@@ -8,6 +10,9 @@ is_shared_ui = True if "fffiloni/sdxl-control-loras" in os.environ['SPACE_ID'] e
|
|
| 8 |
hf_token = os.environ.get("HF_TOKEN")
|
| 9 |
login(token=hf_token)
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
| 13 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
|
@@ -24,22 +29,57 @@ controlnet = ControlNetModel.from_pretrained(
|
|
| 24 |
torch_dtype=torch.float16
|
| 25 |
)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
|
|
|
|
| 38 |
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
#
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
def resize_image(input_path, output_path, target_height):
|
| 45 |
# Open the input image
|
|
@@ -61,8 +101,24 @@ def resize_image(input_path, output_path, target_height):
|
|
| 61 |
return output_path
|
| 62 |
|
| 63 |
def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
prompt = prompt
|
| 65 |
negative_prompt = negative_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 67 |
|
| 68 |
if image_in == None:
|
|
@@ -88,7 +144,20 @@ def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_i
|
|
| 88 |
custom_model = model_name
|
| 89 |
|
| 90 |
# This is where you load your trained weights
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
lora_scale=custom_lora_weight
|
| 94 |
|
|
@@ -115,7 +184,7 @@ def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_i
|
|
| 115 |
|
| 116 |
images[0].save(f"result.png")
|
| 117 |
|
| 118 |
-
return f"result.png"
|
| 119 |
|
| 120 |
css="""
|
| 121 |
#col-container{
|
|
@@ -143,6 +212,12 @@ div#warning-duplicate .actions a {
|
|
| 143 |
display: inline-block;
|
| 144 |
margin-right: 10px;
|
| 145 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
"""
|
| 147 |
|
| 148 |
with gr.Blocks(css=css) as demo:
|
|
@@ -170,28 +245,100 @@ with gr.Blocks(css=css) as demo:
|
|
| 170 |
""")
|
| 171 |
|
| 172 |
image_in = gr.Image(source="upload", type="filepath")
|
|
|
|
| 173 |
with gr.Row():
|
|
|
|
| 174 |
with gr.Column():
|
| 175 |
prompt = gr.Textbox(label="Prompt")
|
| 176 |
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
|
| 177 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
|
| 178 |
inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25)
|
|
|
|
| 179 |
with gr.Column():
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
submit_btn = gr.Button("Submit")
|
|
|
|
| 189 |
result = gr.Image(label="Result")
|
| 190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
submit_btn.click(
|
| 192 |
fn = infer,
|
| 193 |
-
inputs = [use_custom_model,
|
| 194 |
-
outputs = [result]
|
| 195 |
)
|
| 196 |
|
| 197 |
demo.queue(max_size=12).launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard
|
| 3 |
import os
|
| 4 |
+
import spaces
|
| 5 |
+
import random
|
| 6 |
import torch
|
| 7 |
|
| 8 |
is_shared_ui = True if "fffiloni/sdxl-control-loras" in os.environ['SPACE_ID'] else False
|
|
|
|
| 10 |
hf_token = os.environ.get("HF_TOKEN")
|
| 11 |
login(token=hf_token)
|
| 12 |
|
| 13 |
+
fs = HfFileSystem(token=hf_token)
|
| 14 |
+
api = HfApi()
|
| 15 |
+
|
| 16 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
|
| 18 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
|
|
|
| 29 |
torch_dtype=torch.float16
|
| 30 |
)
|
| 31 |
|
| 32 |
+
def get_files(file_paths):
|
| 33 |
+
last_files = {} # Dictionary to store the last file for each path
|
| 34 |
+
|
| 35 |
+
for file_path in file_paths:
|
| 36 |
+
# Split the file path into directory and file components
|
| 37 |
+
directory, file_name = file_path.rsplit('/', 1)
|
| 38 |
+
|
| 39 |
+
# Update the last file for the current path
|
| 40 |
+
last_files[directory] = file_name
|
| 41 |
+
|
| 42 |
+
# Extract the last files from the dictionary
|
| 43 |
+
result = list(last_files.values())
|
| 44 |
|
| 45 |
+
return result
|
| 46 |
|
| 47 |
+
def load_model(model_name):
|
| 48 |
|
| 49 |
+
if model_name == "":
|
| 50 |
+
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
|
| 51 |
+
raise gr.Error("You forgot to define Model ID.")
|
| 52 |
|
| 53 |
+
# Get instance_prompt a.k.a trigger word
|
| 54 |
+
card = ModelCard.load(model_name)
|
| 55 |
+
repo_data = card.data.to_dict()
|
| 56 |
+
instance_prompt = repo_data.get("instance_prompt")
|
| 57 |
|
| 58 |
+
if instance_prompt is not None:
|
| 59 |
+
print(f"Trigger word: {instance_prompt}")
|
| 60 |
+
else:
|
| 61 |
+
instance_prompt = "no trigger word needed"
|
| 62 |
+
print(f"Trigger word: no trigger word needed")
|
| 63 |
+
|
| 64 |
+
# List all ".safetensors" files in repo
|
| 65 |
+
sfts_available_files = fs.glob(f"{model_name}/*safetensors")
|
| 66 |
+
sfts_available_files = get_files(sfts_available_files)
|
| 67 |
+
|
| 68 |
+
if sfts_available_files == []:
|
| 69 |
+
sfts_available_files = ["NO SAFETENSORS FILE"]
|
| 70 |
+
|
| 71 |
+
print(f"Safetensors available: {sfts_available_files}")
|
| 72 |
+
|
| 73 |
+
return model_name, "Model Ready", gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True)
|
| 74 |
+
|
| 75 |
+
def custom_model_changed(model_name, previous_model):
|
| 76 |
+
if model_name == "" and previous_model == "" :
|
| 77 |
+
status_message = ""
|
| 78 |
+
elif model_name != previous_model:
|
| 79 |
+
status_message = "model changed, please reload before any new run"
|
| 80 |
+
else:
|
| 81 |
+
status_message = "model ready"
|
| 82 |
+
return status_message
|
| 83 |
|
| 84 |
def resize_image(input_path, output_path, target_height):
|
| 85 |
# Open the input image
|
|
|
|
| 101 |
return output_path
|
| 102 |
|
| 103 |
def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)):
|
| 104 |
+
|
| 105 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 106 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 107 |
+
controlnet=controlnet,
|
| 108 |
+
vae=vae,
|
| 109 |
+
torch_dtype=torch.float16,
|
| 110 |
+
variant="fp16",
|
| 111 |
+
use_safetensors=True
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
pipe.to(device)
|
| 115 |
+
|
| 116 |
prompt = prompt
|
| 117 |
negative_prompt = negative_prompt
|
| 118 |
+
|
| 119 |
+
if seed < 0 :
|
| 120 |
+
seed = random.randint(0, 423538377342)
|
| 121 |
+
|
| 122 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 123 |
|
| 124 |
if image_in == None:
|
|
|
|
| 144 |
custom_model = model_name
|
| 145 |
|
| 146 |
# This is where you load your trained weights
|
| 147 |
+
if weight_name == "NO SAFETENSORS FILE":
|
| 148 |
+
pipe.load_lora_weights(
|
| 149 |
+
custom_model,
|
| 150 |
+
low_cpu_mem_usage = True,
|
| 151 |
+
use_auth_token = True
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
else:
|
| 155 |
+
pipe.load_lora_weights(
|
| 156 |
+
custom_model,
|
| 157 |
+
weight_name = weight_name,
|
| 158 |
+
low_cpu_mem_usage = True,
|
| 159 |
+
use_auth_token = True
|
| 160 |
+
)
|
| 161 |
|
| 162 |
lora_scale=custom_lora_weight
|
| 163 |
|
|
|
|
| 184 |
|
| 185 |
images[0].save(f"result.png")
|
| 186 |
|
| 187 |
+
return f"result.png", seed
|
| 188 |
|
| 189 |
css="""
|
| 190 |
#col-container{
|
|
|
|
| 212 |
display: inline-block;
|
| 213 |
margin-right: 10px;
|
| 214 |
}
|
| 215 |
+
button#load_model_btn{
|
| 216 |
+
height: 46px;
|
| 217 |
+
}
|
| 218 |
+
#status_info{
|
| 219 |
+
font-size: 0.9em;
|
| 220 |
+
}
|
| 221 |
"""
|
| 222 |
|
| 223 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 245 |
""")
|
| 246 |
|
| 247 |
image_in = gr.Image(source="upload", type="filepath")
|
| 248 |
+
|
| 249 |
with gr.Row():
|
| 250 |
+
|
| 251 |
with gr.Column():
|
| 252 |
prompt = gr.Textbox(label="Prompt")
|
| 253 |
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
|
| 254 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
|
| 255 |
inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25)
|
| 256 |
+
|
| 257 |
with gr.Column():
|
| 258 |
+
with gr.Group():
|
| 259 |
+
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")
|
| 260 |
+
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5)
|
| 261 |
+
with gr.Group():
|
| 262 |
+
seed = gr.Slider(
|
| 263 |
+
label="Seed",
|
| 264 |
+
info = "-1 denotes a random seed",
|
| 265 |
+
minimum=-1,
|
| 266 |
+
maximum=423538377342,
|
| 267 |
+
step=1,
|
| 268 |
+
value=-1
|
| 269 |
+
)
|
| 270 |
+
last_used_seed = gr.Number(
|
| 271 |
+
label = "Last used seed",
|
| 272 |
+
info = "the seed used in the last generation",
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
|
| 276 |
+
|
| 277 |
+
with gr.Box():
|
| 278 |
+
with gr.Row():
|
| 279 |
+
with gr.Column():
|
| 280 |
+
if not is_shared_ui:
|
| 281 |
+
your_username = api.whoami()["name"]
|
| 282 |
+
my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora'])
|
| 283 |
+
model_names = [item.modelId for item in my_models]
|
| 284 |
+
|
| 285 |
+
if not is_shared_ui:
|
| 286 |
+
custom_model = gr.Dropdown(
|
| 287 |
+
label = "Your custom model ID",
|
| 288 |
+
info="You can pick one of your private models",
|
| 289 |
+
choices = model_names,
|
| 290 |
+
allow_custom_value = True
|
| 291 |
+
#placeholder = "username/model_id"
|
| 292 |
+
)
|
| 293 |
+
else:
|
| 294 |
+
custom_model = gr.Textbox(
|
| 295 |
+
label="Your custom model ID",
|
| 296 |
+
placeholder="your_username/your_trained_model_name",
|
| 297 |
+
info="Make sure your model is set to PUBLIC"
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
weight_name = gr.Dropdown(
|
| 301 |
+
label="Safetensors file",
|
| 302 |
+
#value="pytorch_lora_weights.safetensors",
|
| 303 |
+
info="specify which one if model has several .safetensors files",
|
| 304 |
+
allow_custom_value=True,
|
| 305 |
+
visible = False
|
| 306 |
+
)
|
| 307 |
+
with gr.Column():
|
| 308 |
+
with gr.Group():
|
| 309 |
+
load_model_btn = gr.Button("Load my model", elem_id="load_model_btn")
|
| 310 |
+
previous_model = gr.Textbox(
|
| 311 |
+
visible = False
|
| 312 |
+
)
|
| 313 |
+
model_status = gr.Textbox(
|
| 314 |
+
label = "model status",
|
| 315 |
+
show_label = False,
|
| 316 |
+
elem_id = "status_info"
|
| 317 |
+
)
|
| 318 |
+
trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False)
|
| 319 |
+
|
| 320 |
+
custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.9)
|
| 321 |
+
|
| 322 |
submit_btn = gr.Button("Submit")
|
| 323 |
+
|
| 324 |
result = gr.Image(label="Result")
|
| 325 |
|
| 326 |
+
custom_model.blur(
|
| 327 |
+
fn=custom_model_changed,
|
| 328 |
+
inputs = [custom_model, previous_model],
|
| 329 |
+
outputs = [model_status],
|
| 330 |
+
queue = False
|
| 331 |
+
)
|
| 332 |
+
load_model_btn.click(
|
| 333 |
+
fn = load_model,
|
| 334 |
+
inputs=[custom_model],
|
| 335 |
+
outputs = [previous_model, model_status, weight_name, trigger_word],
|
| 336 |
+
queue = False
|
| 337 |
+
)
|
| 338 |
submit_btn.click(
|
| 339 |
fn = infer,
|
| 340 |
+
inputs = [use_custom_model, custom_model, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed],
|
| 341 |
+
outputs = [result, last_used_seed]
|
| 342 |
)
|
| 343 |
|
| 344 |
demo.queue(max_size=12).launch()
|