Spaces:
Runtime error
Runtime error
Commit
·
324f080
1
Parent(s):
c2067d8
Init basic app
Browse files
app.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from io import BytesIO
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import json
|
| 5 |
+
import os
|
| 6 |
+
import numpy as np
|
| 7 |
+
from streamlit.elements import markdown
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from model.flax_clip_vision_mbart.modeling_clip_vision_mbart import (
|
| 10 |
+
FlaxCLIPVisionMBartForConditionalGeneration,
|
| 11 |
+
)
|
| 12 |
+
from transformers import MBart50TokenizerFast
|
| 13 |
+
from utils import (
|
| 14 |
+
get_transformed_image,
|
| 15 |
+
)
|
| 16 |
+
import matplotlib.pyplot as plt
|
| 17 |
+
from mtranslate import translate
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
from session import _get_state
|
| 21 |
+
|
| 22 |
+
state = _get_state()
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@st.cache
|
| 26 |
+
def load_model(ckpt):
|
| 27 |
+
return FlaxCLIPVisionMBartForConditionalGeneration.from_pretrained(ckpt)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50")
|
| 31 |
+
|
| 32 |
+
language_mapping = {
|
| 33 |
+
"en": "en_XX",
|
| 34 |
+
"de": "de_DE",
|
| 35 |
+
"fr": "fr_XX",
|
| 36 |
+
"es": "es_XX"
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
code_to_name = {
|
| 40 |
+
"en": "English",
|
| 41 |
+
"fr": "French",
|
| 42 |
+
"de": "German",
|
| 43 |
+
"es": "Spanish",
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
@st.cache(persist=True)
|
| 47 |
+
def generate_sequence(pixel_values, lang_code, num_beams):
|
| 48 |
+
lang_code = language_mapping[lang_code]
|
| 49 |
+
output_ids = model.generate(input_ids=pixel_values, forced_bos_token_id=tokenizer.lang_code_to_id[lang_code], max_length=64, num_beams=num_beams)
|
| 50 |
+
print(output_ids)
|
| 51 |
+
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=64)
|
| 52 |
+
return output_sequence
|
| 53 |
+
|
| 54 |
+
def read_markdown(path, parent="./sections/"):
|
| 55 |
+
with open(os.path.join(parent, path)) as f:
|
| 56 |
+
return f.read()
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
checkpoints = ["./ckpt/ckpt-22499"] # TODO: Maybe add more checkpoints?
|
| 60 |
+
dummy_data = pd.read_csv("reference.tsv", sep="\t")
|
| 61 |
+
|
| 62 |
+
st.set_page_config(
|
| 63 |
+
page_title="Multilingual Image Captioning",
|
| 64 |
+
layout="wide",
|
| 65 |
+
initial_sidebar_state="collapsed",
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
st.title("Multilingual Image Captioning")
|
| 69 |
+
st.write(
|
| 70 |
+
"[Bhavitvya Malik](https://huggingface.co/bhavitvyamalik), [Gunjan Chhablani](https://huggingface.co/gchhablani)"
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
st.sidebar.title("Settings")
|
| 74 |
+
num_beams = st.sidebar.number_input(label="Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.")
|
| 75 |
+
|
| 76 |
+
with st.beta_expander("Usage"):
|
| 77 |
+
st.markdown(read_markdown("usage.md"))
|
| 78 |
+
|
| 79 |
+
first_index = 20
|
| 80 |
+
# Init Session State
|
| 81 |
+
if state.image_file is None:
|
| 82 |
+
state.image_file = dummy_data.loc[first_index, "image_file"]
|
| 83 |
+
state.caption = dummy_data.loc[first_index, "caption"].strip("- ")
|
| 84 |
+
state.lang_id = dummy_data.loc[first_index, "lang_id"]
|
| 85 |
+
|
| 86 |
+
image_path = os.path.join("images", state.image_file)
|
| 87 |
+
image = plt.imread(image_path)
|
| 88 |
+
state.image = image
|
| 89 |
+
|
| 90 |
+
col1, col2 = st.beta_columns([6, 4])
|
| 91 |
+
|
| 92 |
+
if col2.button("Get a random example"):
|
| 93 |
+
sample = dummy_data.sample(1).reset_index()
|
| 94 |
+
state.image_file = sample.loc[0, "image_file"]
|
| 95 |
+
state.caption = sample.loc[0, "caption"].strip("- ")
|
| 96 |
+
state.lang_id = sample.loc[0, "lang_id"]
|
| 97 |
+
|
| 98 |
+
image_path = os.path.join("images", state.image_file)
|
| 99 |
+
image = plt.imread(image_path)
|
| 100 |
+
state.image = image
|
| 101 |
+
|
| 102 |
+
col2.write("OR")
|
| 103 |
+
|
| 104 |
+
uploaded_file = col2.file_uploader("Upload your image", type=["png", "jpg", "jpeg"])
|
| 105 |
+
if uploaded_file is not None:
|
| 106 |
+
state.image_file = os.path.join("images", uploaded_file.name)
|
| 107 |
+
state.image = np.array(Image.open(uploaded_file))
|
| 108 |
+
|
| 109 |
+
transformed_image = get_transformed_image(state.image)
|
| 110 |
+
|
| 111 |
+
# Display Image
|
| 112 |
+
col1.image(state.image, use_column_width="auto")
|
| 113 |
+
|
| 114 |
+
# Display Reference Caption
|
| 115 |
+
col2.write("**Reference Caption**: " + state.caption)
|
| 116 |
+
col2.markdown(
|
| 117 |
+
f"""**English Translation**: {state.caption if state.lang_id == "en" else translate(state.caption, 'en')}"""
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Select Language
|
| 121 |
+
options = list(code_to_name.keys())
|
| 122 |
+
lang_id = col2.selectbox(
|
| 123 |
+
"Language",
|
| 124 |
+
index=options.index(state.lang_id),
|
| 125 |
+
options=options,
|
| 126 |
+
format_func=lambda x: code_to_name[x],
|
| 127 |
+
)
|
| 128 |
+
# Display Top-5 Predictions
|
| 129 |
+
with st.spinner("Loading model..."):
|
| 130 |
+
model = load_model(checkpoints[0])
|
| 131 |
+
|
| 132 |
+
sequence = ['']
|
| 133 |
+
if col2.button("Generate Caption"):
|
| 134 |
+
with st.spinner("Generating Sequence..."):
|
| 135 |
+
sequence = generate_sequence(transformed_image, lang_id, num_beams)
|
| 136 |
+
# print(sequence)
|
| 137 |
+
|
| 138 |
+
if sequence!=['']:
|
| 139 |
+
st.write(
|
| 140 |
+
"**Generated Caption**: "+sequence[0]
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
st.write(
|
| 144 |
+
"**English Translation**: "+ sequence[0] if lang_id=="en" else translate(sequence[0])
|
| 145 |
+
)
|
| 146 |
+
st.write(read_markdown("abstract.md"))
|
| 147 |
+
st.write(read_markdown("caveats.md"))
|
| 148 |
+
# st.write("# Methodology")
|
| 149 |
+
# st.image(
|
| 150 |
+
# "./misc/Multilingual-IC.png", caption="Seq2Seq model for Image-text Captioning."
|
| 151 |
+
# )
|
| 152 |
+
st.markdown(read_markdown("pretraining.md"))
|
| 153 |
+
st.write(read_markdown("challenges.md"))
|
| 154 |
+
st.write(read_markdown("social_impact.md"))
|
| 155 |
+
st.write(read_markdown("references.md"))
|
| 156 |
+
# st.write(read_markdown("checkpoints.md"))
|
| 157 |
+
st.write(read_markdown("acknowledgements.md"))
|