gch0301 commited on
Commit
8307dc4
·
1 Parent(s): a629564
Files changed (8) hide show
  1. app.py +126 -0
  2. labels.txt +197 -0
  3. person-1.jpg +0 -0
  4. person-2.jpg +0 -0
  5. person-3.jpg +0 -0
  6. person-4.jpg +0 -0
  7. person-5.jpg +0 -0
  8. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from matplotlib import gridspec
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+ from PIL import Image
6
+ import torch
7
+ from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
8
+
9
+ MODEL_ID = "ZhengPeng7/BiRefNet"
10
+ processor = AutoImageProcessor.from_pretrained(MODEL_ID)
11
+ model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)
12
+
13
+ def ade_palette():
14
+ """ADE20K palette that maps each class to RGB values."""
15
+ return [
16
+ [204, 87, 92], [112, 185, 212], [45, 189, 106], [234, 123, 67], [78, 56, 123], [210, 32, 89],
17
+ [90, 180, 56], [155, 102, 200], [33, 147, 176], [255, 183, 76], [67, 123, 89], [190, 60, 45],
18
+ [134, 112, 200], [56, 45, 189], [200, 56, 123], [87, 92, 204], [120, 56, 123], [45, 78, 123],
19
+ [156, 200, 56], [32, 90, 210], [56, 123, 67], [180, 56, 123], [123, 67, 45], [45, 134, 200],
20
+ [67, 56, 123], [78, 123, 67], [32, 210, 90], [45, 56, 189], [123, 56, 123], [56, 156, 200],
21
+ [189, 56, 45], [112, 200, 56], [56, 123, 45], [200, 32, 90], [123, 45, 78], [200, 156, 56],
22
+ [45, 67, 123], [56, 45, 78], [45, 56, 123], [123, 67, 56], [56, 78, 123], [210, 90, 32],
23
+ [123, 56, 189], [45, 200, 134], [67, 123, 56], [123, 45, 67], [90, 32, 210], [200, 45, 78],
24
+ [32, 210, 90], [45, 123, 67], [165, 42, 87], [72, 145, 167], [15, 158, 75], [209, 89, 40],
25
+ [32, 21, 121], [184, 20, 100], [56, 135, 15], [128, 92, 176], [1, 119, 140], [220, 151, 43],
26
+ [41, 97, 72], [148, 38, 27], [107, 86, 176], [21, 26, 136], [174, 27, 90], [91, 96, 204],
27
+ [108, 50, 107], [27, 45, 136], [168, 200, 52], [7, 102, 27], [42, 93, 56], [140, 52, 112],
28
+ [92, 107, 168], [17, 118, 176], [59, 50, 174], [206, 40, 143], [44, 19, 142], [23, 168, 75],
29
+ [54, 57, 189], [144, 21, 15], [15, 176, 35], [107, 19, 79], [204, 52, 114], [48, 173, 83],
30
+ [11, 120, 53], [206, 104, 28], [20, 31, 153], [27, 21, 93], [11, 206, 138], [112, 30, 83],
31
+ [68, 91, 152], [153, 13, 43], [25, 114, 54], [92, 27, 150], [108, 42, 59], [194, 77, 5],
32
+ [145, 48, 83], [7, 113, 19], [25, 92, 113], [60, 168, 79], [78, 33, 120], [89, 176, 205],
33
+ [27, 200, 94], [210, 67, 23], [123, 89, 189], [225, 56, 112], [75, 156, 45], [172, 104, 200],
34
+ [15, 170, 197], [240, 133, 65], [89, 156, 112], [214, 88, 57], [156, 134, 200], [78, 57, 189],
35
+ [200, 78, 123], [106, 120, 210], [145, 56, 112], [89, 120, 189], [185, 206, 56], [47, 99, 28],
36
+ [112, 189, 78], [200, 112, 89], [89, 145, 112], [78, 106, 189], [112, 78, 189], [156, 112, 78],
37
+ [28, 210, 99], [78, 89, 189], [189, 78, 57], [112, 200, 78], [189, 47, 78], [205, 112, 57],
38
+ [78, 145, 57], [200, 78, 112], [99, 89, 145], [200, 156, 78], [57, 78, 145], [78, 57, 99],
39
+ [57, 78, 145], [145, 112, 78], [78, 89, 145], [210, 99, 28], [145, 78, 189], [57, 200, 136],
40
+ [89, 156, 78], [145, 78, 99], [99, 28, 210], [189, 78, 47], [28, 210, 99], [78, 145, 57],[154, 87, 92], [112, 185, 212], [45, 189, 106], [234, 123, 67], [78, 56, 123], [210, 32, 89],
41
+ [40, 180, 56], [105, 102, 200], [0, 147, 176], [205, 183, 76], [17, 123, 89], [140, 60, 45],
42
+ [84, 112, 200], [6, 45, 189], [150, 56, 123], [37, 92, 204], [70, 56, 123], [0, 78, 123],
43
+ [106, 200, 56], [0, 90, 210], [6, 123, 67], [130, 56, 123], [73, 67, 45], [0, 134, 200],
44
+ [17, 56, 123], [28, 123, 67], [0, 210, 90], [0, 56, 189], [73, 56, 123], [56, 106, 200],
45
+ [139, 56, 45], [112, 200, 6], [56, 73, 45], [150, 32, 90], [123, 45, 28], [150, 156, 56],
46
+ [45, 17, 123], [56, 45, 28], [45, 6, 123], [73, 67, 56], [56, 78, 73], [160, 90, 32],
47
+ [123, 56, 139], [45, 150, 134], [67, 73, 56], [73, 45, 67], [90, 32, 160], [150, 45, 78],
48
+ [32, 210, 40],
49
+ ]
50
+
51
+ labels_list = []
52
+ with open("labels.txt", "r", encoding="utf-8") as fp:
53
+ for line in fp:
54
+ labels_list.append(line.rstrip("\n"))
55
+
56
+ colormap = np.asarray(ade_palette(), dtype=np.uint8)
57
+
58
+ def label_to_color_image(label):
59
+ if label.ndim != 2:
60
+ raise ValueError("Expect 2-D input label")
61
+ if np.max(label) >= len(colormap):
62
+ raise ValueError("label value too large.")
63
+ return colormap[label]
64
+
65
+ def draw_plot(pred_img, seg_np):
66
+ fig = plt.figure(figsize=(20, 15))
67
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
68
+
69
+ plt.subplot(grid_spec[0])
70
+ plt.imshow(pred_img)
71
+ plt.axis('off')
72
+
73
+ LABEL_NAMES = np.asarray(labels_list)
74
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
75
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
76
+
77
+ unique_labels = np.unique(seg_np.astype("uint8"))
78
+ ax = plt.subplot(grid_spec[1])
79
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
80
+ ax.yaxis.tick_right()
81
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
82
+ plt.xticks([], [])
83
+ ax.tick_params(width=0.0, labelsize=25)
84
+ return fig
85
+
86
+ def run_inference(input_img):
87
+ # input: numpy array from gradio -> PIL
88
+ img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img
89
+ if img.mode != "RGB":
90
+ img = img.convert("RGB")
91
+
92
+ inputs = processor(images=img, return_tensors="pt")
93
+ with torch.no_grad():
94
+ outputs = model(**inputs)
95
+ logits = outputs.logits # (1, C, h/4, w/4)
96
+
97
+ # resize to original
98
+ upsampled = torch.nn.functional.interpolate(
99
+ logits, size=img.size[::-1], mode="bilinear", align_corners=False
100
+ )
101
+ seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) # (H,W)
102
+
103
+ # colorize & overlay
104
+ color_seg = colormap[seg] # (H,W,3)
105
+ pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8)
106
+
107
+ fig = draw_plot(pred_img, seg)
108
+ return fig
109
+
110
+ demo = gr.Interface(
111
+ fn=run_inference,
112
+ inputs=gr.Image(type="numpy", label="Input Image"),
113
+ outputs=gr.Plot(label="Overlay + Legend"),
114
+ examples=[
115
+ "person-1.jpg",
116
+ "person-2.jpg",
117
+ "person-3.jpg",
118
+ "person-4.jpg",
119
+ "person-5.jpg"
120
+ ],
121
+ flagging_mode="never",
122
+ cache_examples=False,
123
+ )
124
+
125
+ if __name__ == "__main__":
126
+ demo.launch()
labels.txt ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Airplane,
2
+ Ant,
3
+ Antenna,
4
+ Archery,
5
+ Axe,
6
+ BabyCarriage,
7
+ Bag,
8
+ BalanceBeam,
9
+ Balcony,
10
+ Balloon,
11
+ Basket,
12
+ BasketballHoop,
13
+ Beatle,
14
+ Bed,
15
+ Bee,
16
+ Bench,
17
+ Bicycle
18
+ BicycleFrame,
19
+ BicycleStand,
20
+ Boat,
21
+ Bonsai,
22
+ BoomLift,
23
+ Bridge,
24
+ BunkBed,
25
+ Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car,
26
+ CarParkDropArm,
27
+ Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
28
+ Cup,
29
+ DentalChair,
30
+ Desk,
31
+ DeskChair,
32
+ Diagram,
33
+ DishRack,
34
+ DoorHandle,
35
+ Dragonfish,
36
+ Dragonfly,
37
+ Drum,
38
+ Earphone,
39
+ Easel,
40
+ ElectricIron,
41
+ Excavator,
42
+ Eyeglasses, '
43
+ Fan,
44
+ Fence,
45
+ Fencing,
46
+ FerrisWheel,
47
+ FireExtinguisher,
48
+ Fishing,
49
+ Flag,
50
+ FloorLamp,
51
+ Forklift,
52
+ GasStation,
53
+ Gate,
54
+ Gear,
55
+ Goal,
56
+ Golf,
57
+ GymEquipment,
58
+ Hammock, '
59
+ Handcart,
60
+ Handcraft,
61
+ Handrail,
62
+ HangGlider,
63
+ Harp, Harvester,
64
+ Headset,
65
+ Helicopter,
66
+ Helmet,
67
+ Hook,
68
+ HorizontalBar,
69
+ Hydrovalve,
70
+ IroningTable,
71
+ Jewelry,
72
+ Key, '
73
+ KidsPlayground,
74
+ Kitchenware,
75
+ Kite,
76
+ Knife,
77
+ Ladder,
78
+ LaundryRack,
79
+ Lightning,
80
+ Lobster,
81
+ Locust,
82
+ Machine,
83
+ MachineGun,
84
+ MagazineRack,
85
+ Mantis,
86
+ Medal,
87
+ MemorialArchway, '
88
+ Microphone,
89
+ Missile,
90
+ MobileHolder,
91
+ Monitor,
92
+ Mosquito,
93
+ Motorcycle,
94
+ MovingTrolley,
95
+ Mower,
96
+ MusicPlayer,
97
+ MusicStand,
98
+ ObservationTower,
99
+ Octopus,
100
+ OilWell, '
101
+ OlympicLogo,
102
+ OperatingTable,
103
+ OutdoorFitnessEquipment,
104
+ Parachute,
105
+ Pavilion,
106
+ Piano,
107
+ Pipe,
108
+ PlowHarrow,
109
+ PoleVault,
110
+ Punchbag,
111
+ Rack,
112
+ Racket,
113
+ Rifle,
114
+ Ring,
115
+ Robot, '
116
+ RockClimbing,
117
+ Rope,
118
+ Sailboat,
119
+ Satellite,
120
+ Scaffold,
121
+ Scale,
122
+ Scissor,
123
+ Scooter,
124
+ Sculpture,
125
+ Seadragon,
126
+ Seahorse,
127
+ Seal,
128
+ SewingMachine,
129
+ Ship,
130
+ Shoe,
131
+ ShoppingCart, '
132
+ ShoppingTrolley,
133
+ Shower,
134
+ Shrimp,
135
+ Signboard,
136
+ Skateboarding,
137
+ Skeleton,
138
+ Skiing,
139
+ Spade,
140
+ SpeedBoat,
141
+ Spider,
142
+ Spoon,
143
+ Stair,
144
+ Stand,
145
+ Stationary,
146
+ SteeringWheel, '
147
+ Stethoscope,
148
+ Stool,
149
+ Stove,
150
+ StreetLamp,
151
+ SweetStand,
152
+ Swing,
153
+ Sword,
154
+ TV,
155
+ Table,
156
+ TableChair,
157
+ TableLamp,
158
+ TableTennis,
159
+ Tank,
160
+ Tapeline,
161
+ Teapot,
162
+ Telescope,
163
+ Tent, '
164
+ TobaccoPipe,
165
+ Toy,
166
+ Tractor,
167
+ TrafficLight,
168
+ TrafficSign,
169
+ Trampoline,
170
+ TransmissionTower,
171
+ Tree,
172
+ Tricycle,
173
+ TrimmerCover,
174
+ Tripod,
175
+ Trombone,
176
+ Truck,
177
+ Trumpet,
178
+ Tuba, '
179
+ UAV,
180
+ Umbrella,
181
+ UnevenBars,
182
+ UtilityPole,
183
+ VacuumCleaner,
184
+ Violin,
185
+ Wakesurfing,
186
+ Watch,
187
+ WaterTower,
188
+ WateringPot,
189
+ Well,
190
+ WellLid,
191
+ Wheel,
192
+ Wheelchair,
193
+ WindTurbine,
194
+ Windmill,
195
+ WineGlass,
196
+ WireWhisk,
197
+ Yacht'
person-1.jpg ADDED
person-2.jpg ADDED
person-3.jpg ADDED
person-4.jpg ADDED
person-5.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ transformers>=4.41.0
3
+ gradio>=4.0.0
4
+ Pillow
5
+ numpy
6
+ matplotlib