Spaces:
Sleeping
Sleeping
gch0301
commited on
Commit
·
8307dc4
1
Parent(s):
a629564
- app.py +126 -0
- labels.txt +197 -0
- person-1.jpg +0 -0
- person-2.jpg +0 -0
- person-3.jpg +0 -0
- person-4.jpg +0 -0
- person-5.jpg +0 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from matplotlib import gridspec
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
|
| 8 |
+
|
| 9 |
+
MODEL_ID = "ZhengPeng7/BiRefNet"
|
| 10 |
+
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
|
| 11 |
+
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)
|
| 12 |
+
|
| 13 |
+
def ade_palette():
|
| 14 |
+
"""ADE20K palette that maps each class to RGB values."""
|
| 15 |
+
return [
|
| 16 |
+
[204, 87, 92], [112, 185, 212], [45, 189, 106], [234, 123, 67], [78, 56, 123], [210, 32, 89],
|
| 17 |
+
[90, 180, 56], [155, 102, 200], [33, 147, 176], [255, 183, 76], [67, 123, 89], [190, 60, 45],
|
| 18 |
+
[134, 112, 200], [56, 45, 189], [200, 56, 123], [87, 92, 204], [120, 56, 123], [45, 78, 123],
|
| 19 |
+
[156, 200, 56], [32, 90, 210], [56, 123, 67], [180, 56, 123], [123, 67, 45], [45, 134, 200],
|
| 20 |
+
[67, 56, 123], [78, 123, 67], [32, 210, 90], [45, 56, 189], [123, 56, 123], [56, 156, 200],
|
| 21 |
+
[189, 56, 45], [112, 200, 56], [56, 123, 45], [200, 32, 90], [123, 45, 78], [200, 156, 56],
|
| 22 |
+
[45, 67, 123], [56, 45, 78], [45, 56, 123], [123, 67, 56], [56, 78, 123], [210, 90, 32],
|
| 23 |
+
[123, 56, 189], [45, 200, 134], [67, 123, 56], [123, 45, 67], [90, 32, 210], [200, 45, 78],
|
| 24 |
+
[32, 210, 90], [45, 123, 67], [165, 42, 87], [72, 145, 167], [15, 158, 75], [209, 89, 40],
|
| 25 |
+
[32, 21, 121], [184, 20, 100], [56, 135, 15], [128, 92, 176], [1, 119, 140], [220, 151, 43],
|
| 26 |
+
[41, 97, 72], [148, 38, 27], [107, 86, 176], [21, 26, 136], [174, 27, 90], [91, 96, 204],
|
| 27 |
+
[108, 50, 107], [27, 45, 136], [168, 200, 52], [7, 102, 27], [42, 93, 56], [140, 52, 112],
|
| 28 |
+
[92, 107, 168], [17, 118, 176], [59, 50, 174], [206, 40, 143], [44, 19, 142], [23, 168, 75],
|
| 29 |
+
[54, 57, 189], [144, 21, 15], [15, 176, 35], [107, 19, 79], [204, 52, 114], [48, 173, 83],
|
| 30 |
+
[11, 120, 53], [206, 104, 28], [20, 31, 153], [27, 21, 93], [11, 206, 138], [112, 30, 83],
|
| 31 |
+
[68, 91, 152], [153, 13, 43], [25, 114, 54], [92, 27, 150], [108, 42, 59], [194, 77, 5],
|
| 32 |
+
[145, 48, 83], [7, 113, 19], [25, 92, 113], [60, 168, 79], [78, 33, 120], [89, 176, 205],
|
| 33 |
+
[27, 200, 94], [210, 67, 23], [123, 89, 189], [225, 56, 112], [75, 156, 45], [172, 104, 200],
|
| 34 |
+
[15, 170, 197], [240, 133, 65], [89, 156, 112], [214, 88, 57], [156, 134, 200], [78, 57, 189],
|
| 35 |
+
[200, 78, 123], [106, 120, 210], [145, 56, 112], [89, 120, 189], [185, 206, 56], [47, 99, 28],
|
| 36 |
+
[112, 189, 78], [200, 112, 89], [89, 145, 112], [78, 106, 189], [112, 78, 189], [156, 112, 78],
|
| 37 |
+
[28, 210, 99], [78, 89, 189], [189, 78, 57], [112, 200, 78], [189, 47, 78], [205, 112, 57],
|
| 38 |
+
[78, 145, 57], [200, 78, 112], [99, 89, 145], [200, 156, 78], [57, 78, 145], [78, 57, 99],
|
| 39 |
+
[57, 78, 145], [145, 112, 78], [78, 89, 145], [210, 99, 28], [145, 78, 189], [57, 200, 136],
|
| 40 |
+
[89, 156, 78], [145, 78, 99], [99, 28, 210], [189, 78, 47], [28, 210, 99], [78, 145, 57],[154, 87, 92], [112, 185, 212], [45, 189, 106], [234, 123, 67], [78, 56, 123], [210, 32, 89],
|
| 41 |
+
[40, 180, 56], [105, 102, 200], [0, 147, 176], [205, 183, 76], [17, 123, 89], [140, 60, 45],
|
| 42 |
+
[84, 112, 200], [6, 45, 189], [150, 56, 123], [37, 92, 204], [70, 56, 123], [0, 78, 123],
|
| 43 |
+
[106, 200, 56], [0, 90, 210], [6, 123, 67], [130, 56, 123], [73, 67, 45], [0, 134, 200],
|
| 44 |
+
[17, 56, 123], [28, 123, 67], [0, 210, 90], [0, 56, 189], [73, 56, 123], [56, 106, 200],
|
| 45 |
+
[139, 56, 45], [112, 200, 6], [56, 73, 45], [150, 32, 90], [123, 45, 28], [150, 156, 56],
|
| 46 |
+
[45, 17, 123], [56, 45, 28], [45, 6, 123], [73, 67, 56], [56, 78, 73], [160, 90, 32],
|
| 47 |
+
[123, 56, 139], [45, 150, 134], [67, 73, 56], [73, 45, 67], [90, 32, 160], [150, 45, 78],
|
| 48 |
+
[32, 210, 40],
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
labels_list = []
|
| 52 |
+
with open("labels.txt", "r", encoding="utf-8") as fp:
|
| 53 |
+
for line in fp:
|
| 54 |
+
labels_list.append(line.rstrip("\n"))
|
| 55 |
+
|
| 56 |
+
colormap = np.asarray(ade_palette(), dtype=np.uint8)
|
| 57 |
+
|
| 58 |
+
def label_to_color_image(label):
|
| 59 |
+
if label.ndim != 2:
|
| 60 |
+
raise ValueError("Expect 2-D input label")
|
| 61 |
+
if np.max(label) >= len(colormap):
|
| 62 |
+
raise ValueError("label value too large.")
|
| 63 |
+
return colormap[label]
|
| 64 |
+
|
| 65 |
+
def draw_plot(pred_img, seg_np):
|
| 66 |
+
fig = plt.figure(figsize=(20, 15))
|
| 67 |
+
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
| 68 |
+
|
| 69 |
+
plt.subplot(grid_spec[0])
|
| 70 |
+
plt.imshow(pred_img)
|
| 71 |
+
plt.axis('off')
|
| 72 |
+
|
| 73 |
+
LABEL_NAMES = np.asarray(labels_list)
|
| 74 |
+
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
| 75 |
+
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
| 76 |
+
|
| 77 |
+
unique_labels = np.unique(seg_np.astype("uint8"))
|
| 78 |
+
ax = plt.subplot(grid_spec[1])
|
| 79 |
+
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
| 80 |
+
ax.yaxis.tick_right()
|
| 81 |
+
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
| 82 |
+
plt.xticks([], [])
|
| 83 |
+
ax.tick_params(width=0.0, labelsize=25)
|
| 84 |
+
return fig
|
| 85 |
+
|
| 86 |
+
def run_inference(input_img):
|
| 87 |
+
# input: numpy array from gradio -> PIL
|
| 88 |
+
img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img
|
| 89 |
+
if img.mode != "RGB":
|
| 90 |
+
img = img.convert("RGB")
|
| 91 |
+
|
| 92 |
+
inputs = processor(images=img, return_tensors="pt")
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
outputs = model(**inputs)
|
| 95 |
+
logits = outputs.logits # (1, C, h/4, w/4)
|
| 96 |
+
|
| 97 |
+
# resize to original
|
| 98 |
+
upsampled = torch.nn.functional.interpolate(
|
| 99 |
+
logits, size=img.size[::-1], mode="bilinear", align_corners=False
|
| 100 |
+
)
|
| 101 |
+
seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) # (H,W)
|
| 102 |
+
|
| 103 |
+
# colorize & overlay
|
| 104 |
+
color_seg = colormap[seg] # (H,W,3)
|
| 105 |
+
pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8)
|
| 106 |
+
|
| 107 |
+
fig = draw_plot(pred_img, seg)
|
| 108 |
+
return fig
|
| 109 |
+
|
| 110 |
+
demo = gr.Interface(
|
| 111 |
+
fn=run_inference,
|
| 112 |
+
inputs=gr.Image(type="numpy", label="Input Image"),
|
| 113 |
+
outputs=gr.Plot(label="Overlay + Legend"),
|
| 114 |
+
examples=[
|
| 115 |
+
"person-1.jpg",
|
| 116 |
+
"person-2.jpg",
|
| 117 |
+
"person-3.jpg",
|
| 118 |
+
"person-4.jpg",
|
| 119 |
+
"person-5.jpg"
|
| 120 |
+
],
|
| 121 |
+
flagging_mode="never",
|
| 122 |
+
cache_examples=False,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
if __name__ == "__main__":
|
| 126 |
+
demo.launch()
|
labels.txt
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Airplane,
|
| 2 |
+
Ant,
|
| 3 |
+
Antenna,
|
| 4 |
+
Archery,
|
| 5 |
+
Axe,
|
| 6 |
+
BabyCarriage,
|
| 7 |
+
Bag,
|
| 8 |
+
BalanceBeam,
|
| 9 |
+
Balcony,
|
| 10 |
+
Balloon,
|
| 11 |
+
Basket,
|
| 12 |
+
BasketballHoop,
|
| 13 |
+
Beatle,
|
| 14 |
+
Bed,
|
| 15 |
+
Bee,
|
| 16 |
+
Bench,
|
| 17 |
+
Bicycle
|
| 18 |
+
BicycleFrame,
|
| 19 |
+
BicycleStand,
|
| 20 |
+
Boat,
|
| 21 |
+
Bonsai,
|
| 22 |
+
BoomLift,
|
| 23 |
+
Bridge,
|
| 24 |
+
BunkBed,
|
| 25 |
+
Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car,
|
| 26 |
+
CarParkDropArm,
|
| 27 |
+
Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
|
| 28 |
+
Cup,
|
| 29 |
+
DentalChair,
|
| 30 |
+
Desk,
|
| 31 |
+
DeskChair,
|
| 32 |
+
Diagram,
|
| 33 |
+
DishRack,
|
| 34 |
+
DoorHandle,
|
| 35 |
+
Dragonfish,
|
| 36 |
+
Dragonfly,
|
| 37 |
+
Drum,
|
| 38 |
+
Earphone,
|
| 39 |
+
Easel,
|
| 40 |
+
ElectricIron,
|
| 41 |
+
Excavator,
|
| 42 |
+
Eyeglasses, '
|
| 43 |
+
Fan,
|
| 44 |
+
Fence,
|
| 45 |
+
Fencing,
|
| 46 |
+
FerrisWheel,
|
| 47 |
+
FireExtinguisher,
|
| 48 |
+
Fishing,
|
| 49 |
+
Flag,
|
| 50 |
+
FloorLamp,
|
| 51 |
+
Forklift,
|
| 52 |
+
GasStation,
|
| 53 |
+
Gate,
|
| 54 |
+
Gear,
|
| 55 |
+
Goal,
|
| 56 |
+
Golf,
|
| 57 |
+
GymEquipment,
|
| 58 |
+
Hammock, '
|
| 59 |
+
Handcart,
|
| 60 |
+
Handcraft,
|
| 61 |
+
Handrail,
|
| 62 |
+
HangGlider,
|
| 63 |
+
Harp, Harvester,
|
| 64 |
+
Headset,
|
| 65 |
+
Helicopter,
|
| 66 |
+
Helmet,
|
| 67 |
+
Hook,
|
| 68 |
+
HorizontalBar,
|
| 69 |
+
Hydrovalve,
|
| 70 |
+
IroningTable,
|
| 71 |
+
Jewelry,
|
| 72 |
+
Key, '
|
| 73 |
+
KidsPlayground,
|
| 74 |
+
Kitchenware,
|
| 75 |
+
Kite,
|
| 76 |
+
Knife,
|
| 77 |
+
Ladder,
|
| 78 |
+
LaundryRack,
|
| 79 |
+
Lightning,
|
| 80 |
+
Lobster,
|
| 81 |
+
Locust,
|
| 82 |
+
Machine,
|
| 83 |
+
MachineGun,
|
| 84 |
+
MagazineRack,
|
| 85 |
+
Mantis,
|
| 86 |
+
Medal,
|
| 87 |
+
MemorialArchway, '
|
| 88 |
+
Microphone,
|
| 89 |
+
Missile,
|
| 90 |
+
MobileHolder,
|
| 91 |
+
Monitor,
|
| 92 |
+
Mosquito,
|
| 93 |
+
Motorcycle,
|
| 94 |
+
MovingTrolley,
|
| 95 |
+
Mower,
|
| 96 |
+
MusicPlayer,
|
| 97 |
+
MusicStand,
|
| 98 |
+
ObservationTower,
|
| 99 |
+
Octopus,
|
| 100 |
+
OilWell, '
|
| 101 |
+
OlympicLogo,
|
| 102 |
+
OperatingTable,
|
| 103 |
+
OutdoorFitnessEquipment,
|
| 104 |
+
Parachute,
|
| 105 |
+
Pavilion,
|
| 106 |
+
Piano,
|
| 107 |
+
Pipe,
|
| 108 |
+
PlowHarrow,
|
| 109 |
+
PoleVault,
|
| 110 |
+
Punchbag,
|
| 111 |
+
Rack,
|
| 112 |
+
Racket,
|
| 113 |
+
Rifle,
|
| 114 |
+
Ring,
|
| 115 |
+
Robot, '
|
| 116 |
+
RockClimbing,
|
| 117 |
+
Rope,
|
| 118 |
+
Sailboat,
|
| 119 |
+
Satellite,
|
| 120 |
+
Scaffold,
|
| 121 |
+
Scale,
|
| 122 |
+
Scissor,
|
| 123 |
+
Scooter,
|
| 124 |
+
Sculpture,
|
| 125 |
+
Seadragon,
|
| 126 |
+
Seahorse,
|
| 127 |
+
Seal,
|
| 128 |
+
SewingMachine,
|
| 129 |
+
Ship,
|
| 130 |
+
Shoe,
|
| 131 |
+
ShoppingCart, '
|
| 132 |
+
ShoppingTrolley,
|
| 133 |
+
Shower,
|
| 134 |
+
Shrimp,
|
| 135 |
+
Signboard,
|
| 136 |
+
Skateboarding,
|
| 137 |
+
Skeleton,
|
| 138 |
+
Skiing,
|
| 139 |
+
Spade,
|
| 140 |
+
SpeedBoat,
|
| 141 |
+
Spider,
|
| 142 |
+
Spoon,
|
| 143 |
+
Stair,
|
| 144 |
+
Stand,
|
| 145 |
+
Stationary,
|
| 146 |
+
SteeringWheel, '
|
| 147 |
+
Stethoscope,
|
| 148 |
+
Stool,
|
| 149 |
+
Stove,
|
| 150 |
+
StreetLamp,
|
| 151 |
+
SweetStand,
|
| 152 |
+
Swing,
|
| 153 |
+
Sword,
|
| 154 |
+
TV,
|
| 155 |
+
Table,
|
| 156 |
+
TableChair,
|
| 157 |
+
TableLamp,
|
| 158 |
+
TableTennis,
|
| 159 |
+
Tank,
|
| 160 |
+
Tapeline,
|
| 161 |
+
Teapot,
|
| 162 |
+
Telescope,
|
| 163 |
+
Tent, '
|
| 164 |
+
TobaccoPipe,
|
| 165 |
+
Toy,
|
| 166 |
+
Tractor,
|
| 167 |
+
TrafficLight,
|
| 168 |
+
TrafficSign,
|
| 169 |
+
Trampoline,
|
| 170 |
+
TransmissionTower,
|
| 171 |
+
Tree,
|
| 172 |
+
Tricycle,
|
| 173 |
+
TrimmerCover,
|
| 174 |
+
Tripod,
|
| 175 |
+
Trombone,
|
| 176 |
+
Truck,
|
| 177 |
+
Trumpet,
|
| 178 |
+
Tuba, '
|
| 179 |
+
UAV,
|
| 180 |
+
Umbrella,
|
| 181 |
+
UnevenBars,
|
| 182 |
+
UtilityPole,
|
| 183 |
+
VacuumCleaner,
|
| 184 |
+
Violin,
|
| 185 |
+
Wakesurfing,
|
| 186 |
+
Watch,
|
| 187 |
+
WaterTower,
|
| 188 |
+
WateringPot,
|
| 189 |
+
Well,
|
| 190 |
+
WellLid,
|
| 191 |
+
Wheel,
|
| 192 |
+
Wheelchair,
|
| 193 |
+
WindTurbine,
|
| 194 |
+
Windmill,
|
| 195 |
+
WineGlass,
|
| 196 |
+
WireWhisk,
|
| 197 |
+
Yacht'
|
person-1.jpg
ADDED
|
person-2.jpg
ADDED
|
person-3.jpg
ADDED
|
person-4.jpg
ADDED
|
person-5.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers>=4.41.0
|
| 3 |
+
gradio>=4.0.0
|
| 4 |
+
Pillow
|
| 5 |
+
numpy
|
| 6 |
+
matplotlib
|