Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,30 @@
|
|
| 1 |
# π Masked Word Predictor | CPU-only HF Space
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
-
from transformers import pipeline
|
| 5 |
|
| 6 |
# Load the fill-mask pipeline once at startup
|
| 7 |
fill_mask = pipeline("fill-mask", model="distilroberta-base", device=-1)
|
| 8 |
|
| 9 |
def predict_mask(sentence: str, top_k: int):
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
return [
|
| 14 |
{"sequence": p["sequence"], "score": round(p["score"], 3)}
|
| 15 |
for p in preds
|
|
@@ -18,20 +33,21 @@ def predict_mask(sentence: str, top_k: int):
|
|
| 18 |
with gr.Blocks(title="π Masked Word Predictor") as demo:
|
| 19 |
gr.Markdown(
|
| 20 |
"# π Masked Word Predictor\n"
|
| 21 |
-
"Enter a sentence with one `[MASK]` token and see the model
|
| 22 |
)
|
| 23 |
|
| 24 |
with gr.Row():
|
| 25 |
sentence = gr.Textbox(
|
| 26 |
lines=2,
|
| 27 |
-
placeholder="The
|
| 28 |
label="Input Sentence"
|
| 29 |
)
|
| 30 |
top_k = gr.Slider(
|
| 31 |
-
minimum=1, maximum=10,
|
| 32 |
label="Top K Predictions"
|
| 33 |
)
|
| 34 |
-
|
|
|
|
| 35 |
|
| 36 |
results = gr.Dataframe(
|
| 37 |
headers=["sequence", "score"],
|
|
|
|
| 1 |
# π Masked Word Predictor | CPU-only HF Space
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
+
from transformers import pipeline, PipelineException
|
| 5 |
|
| 6 |
# Load the fill-mask pipeline once at startup
|
| 7 |
fill_mask = pipeline("fill-mask", model="distilroberta-base", device=-1)
|
| 8 |
|
| 9 |
def predict_mask(sentence: str, top_k: int):
|
| 10 |
+
# Get the modelβs actual mask token (e.g. "<mask>")
|
| 11 |
+
mask = fill_mask.tokenizer.mask_token
|
| 12 |
+
|
| 13 |
+
# Allow users to type [MASK]; convert it under the hood
|
| 14 |
+
if "[MASK]" in sentence:
|
| 15 |
+
sentence = sentence.replace("[MASK]", mask)
|
| 16 |
+
|
| 17 |
+
# If no mask token present, show error
|
| 18 |
+
if mask not in sentence:
|
| 19 |
+
return [{"sequence": f"Error: please include `[MASK]` in your sentence.", "score": 0.0}]
|
| 20 |
+
|
| 21 |
+
# Call the pipeline and catch any unexpected exceptions
|
| 22 |
+
try:
|
| 23 |
+
preds = fill_mask(sentence, top_k=top_k)
|
| 24 |
+
except PipelineException as e:
|
| 25 |
+
return [{"sequence": f"Error: {str(e)}", "score": 0.0}]
|
| 26 |
+
|
| 27 |
+
# Format into list-of-dicts for Gradio Dataframe
|
| 28 |
return [
|
| 29 |
{"sequence": p["sequence"], "score": round(p["score"], 3)}
|
| 30 |
for p in preds
|
|
|
|
| 33 |
with gr.Blocks(title="π Masked Word Predictor") as demo:
|
| 34 |
gr.Markdown(
|
| 35 |
"# π Masked Word Predictor\n"
|
| 36 |
+
"Enter a sentence with one `[MASK]` token and see the top-K model predictions."
|
| 37 |
)
|
| 38 |
|
| 39 |
with gr.Row():
|
| 40 |
sentence = gr.Textbox(
|
| 41 |
lines=2,
|
| 42 |
+
placeholder="e.g. The salonβs new color treatment is [MASK].",
|
| 43 |
label="Input Sentence"
|
| 44 |
)
|
| 45 |
top_k = gr.Slider(
|
| 46 |
+
minimum=1, maximum=10, value=5, step=1,
|
| 47 |
label="Top K Predictions"
|
| 48 |
)
|
| 49 |
+
|
| 50 |
+
predict_btn = gr.Button("Predict π", variant="primary")
|
| 51 |
|
| 52 |
results = gr.Dataframe(
|
| 53 |
headers=["sequence", "score"],
|