Update app.py
Browse files
app.py
CHANGED
|
@@ -3,317 +3,102 @@ import torch
|
|
| 3 |
import numpy as np
|
| 4 |
import modin.pandas as pd
|
| 5 |
from PIL import Image
|
| 6 |
-
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
|
|
|
|
|
|
| 8 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 9 |
-
|
| 10 |
-
torch.
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
def
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
refiner.enable_xformers_memory_efficient_attention()
|
| 31 |
-
refiner = refiner.to(device)
|
| 32 |
-
torch.cuda.empty_cache()
|
| 33 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
| 34 |
-
torch.cuda.empty_cache()
|
| 35 |
-
return upscaled
|
| 36 |
-
else:
|
| 37 |
-
return image
|
| 38 |
-
else:
|
| 39 |
-
if upscale == "Yes":
|
| 40 |
-
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 41 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
| 42 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
| 43 |
-
upscaler = upscaler.to(device)
|
| 44 |
-
torch.cuda.empty_cache()
|
| 45 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
| 46 |
-
torch.cuda.empty_cache()
|
| 47 |
-
return upscaled
|
| 48 |
-
else:
|
| 49 |
-
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 50 |
-
torch.cuda.empty_cache()
|
| 51 |
-
return image
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
anime = anime.to(device)
|
| 57 |
-
torch.cuda.empty_cache()
|
| 58 |
-
if refine == "Yes":
|
| 59 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
| 60 |
-
refiner.enable_xformers_memory_efficient_attention()
|
| 61 |
-
refiner = refiner.to(device)
|
| 62 |
-
torch.cuda.empty_cache()
|
| 63 |
-
int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
| 64 |
-
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
| 65 |
-
torch.cuda.empty_cache()
|
| 66 |
-
if upscale == "Yes":
|
| 67 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
| 68 |
-
refiner.enable_xformers_memory_efficient_attention()
|
| 69 |
-
refiner = refiner.to(device)
|
| 70 |
-
torch.cuda.empty_cache()
|
| 71 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
| 72 |
-
torch.cuda.empty_cache()
|
| 73 |
-
return upscaled
|
| 74 |
-
else:
|
| 75 |
-
return image
|
| 76 |
-
else:
|
| 77 |
-
if upscale == "Yes":
|
| 78 |
-
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 79 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
| 80 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
| 81 |
-
upscaler = upscaler.to(device)
|
| 82 |
-
torch.cuda.empty_cache()
|
| 83 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
| 84 |
-
torch.cuda.empty_cache()
|
| 85 |
-
return upscaled
|
| 86 |
-
else:
|
| 87 |
-
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 88 |
-
torch.cuda.empty_cache()
|
| 89 |
-
return image
|
| 90 |
-
|
| 91 |
-
if Model == "Disney":
|
| 92 |
-
disney = DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1")
|
| 93 |
-
disney.enable_xformers_memory_efficient_attention()
|
| 94 |
-
disney = disney.to(device)
|
| 95 |
-
torch.cuda.empty_cache()
|
| 96 |
-
if refine == "Yes":
|
| 97 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
| 98 |
-
refiner.enable_xformers_memory_efficient_attention()
|
| 99 |
-
refiner = refiner.to(device)
|
| 100 |
-
torch.cuda.empty_cache()
|
| 101 |
-
int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
| 102 |
-
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
| 103 |
-
torch.cuda.empty_cache()
|
| 104 |
-
|
| 105 |
-
if upscale == "Yes":
|
| 106 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
| 107 |
-
refiner.enable_xformers_memory_efficient_attention()
|
| 108 |
-
refiner = refiner.to(device)
|
| 109 |
-
torch.cuda.empty_cache()
|
| 110 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
| 111 |
-
torch.cuda.empty_cache()
|
| 112 |
-
return upscaled
|
| 113 |
-
else:
|
| 114 |
-
return image
|
| 115 |
-
else:
|
| 116 |
-
if upscale == "Yes":
|
| 117 |
-
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 118 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
| 119 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
| 120 |
-
upscaler = upscaler.to(device)
|
| 121 |
-
torch.cuda.empty_cache()
|
| 122 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
| 123 |
-
torch.cuda.empty_cache()
|
| 124 |
-
return upscaled
|
| 125 |
-
else:
|
| 126 |
-
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 127 |
-
torch.cuda.empty_cache()
|
| 128 |
-
return image
|
| 129 |
-
|
| 130 |
-
if Model == "StoryBook":
|
| 131 |
-
story = DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1")
|
| 132 |
-
story.enable_xformers_memory_efficient_attention()
|
| 133 |
-
story = story.to(device)
|
| 134 |
-
torch.cuda.empty_cache()
|
| 135 |
-
if refine == "Yes":
|
| 136 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
| 137 |
-
refiner.enable_xformers_memory_efficient_attention()
|
| 138 |
-
refiner = refiner.to(device)
|
| 139 |
-
torch.cuda.empty_cache()
|
| 140 |
-
int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
| 141 |
-
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
| 142 |
-
torch.cuda.empty_cache()
|
| 143 |
-
|
| 144 |
-
if upscale == "Yes":
|
| 145 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
| 146 |
-
refiner.enable_xformers_memory_efficient_attention()
|
| 147 |
-
refiner = refiner.to(device)
|
| 148 |
-
torch.cuda.empty_cache()
|
| 149 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
| 150 |
-
torch.cuda.empty_cache()
|
| 151 |
-
return upscaled
|
| 152 |
-
else:
|
| 153 |
-
return image
|
| 154 |
-
else:
|
| 155 |
-
if upscale == "Yes":
|
| 156 |
-
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 157 |
-
|
| 158 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
| 159 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
| 160 |
-
upscaler = upscaler.to(device)
|
| 161 |
-
torch.cuda.empty_cache()
|
| 162 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
| 163 |
-
torch.cuda.empty_cache()
|
| 164 |
-
return upscaled
|
| 165 |
-
else:
|
| 166 |
-
|
| 167 |
-
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 168 |
-
torch.cuda.empty_cache()
|
| 169 |
-
return image
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
if refine == "Yes":
|
| 177 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
| 178 |
-
refiner.enable_xformers_memory_efficient_attention()
|
| 179 |
-
refiner = refiner.to(device)
|
| 180 |
-
torch.cuda.empty_cache()
|
| 181 |
-
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
| 182 |
-
image = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
| 183 |
-
torch.cuda.empty_cache()
|
| 184 |
-
|
| 185 |
-
if upscale == "Yes":
|
| 186 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
| 187 |
-
refiner.enable_xformers_memory_efficient_attention()
|
| 188 |
-
refiner = refiner.to(device)
|
| 189 |
-
torch.cuda.empty_cache()
|
| 190 |
-
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
| 191 |
-
torch.cuda.empty_cache()
|
| 192 |
-
return upscaled
|
| 193 |
-
else:
|
| 194 |
-
return image
|
| 195 |
-
else:
|
| 196 |
-
if upscale == "Yes":
|
| 197 |
-
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 198 |
-
|
| 199 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
| 200 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
| 201 |
-
upscaler = upscaler.to(device)
|
| 202 |
-
torch.cuda.empty_cache()
|
| 203 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
| 204 |
-
torch.cuda.empty_cache()
|
| 205 |
-
return upscaled
|
| 206 |
-
else:
|
| 207 |
-
|
| 208 |
-
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 209 |
-
torch.cuda.empty_cache()
|
| 210 |
-
return image
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
torch.cuda.empty_cache()
|
| 217 |
-
if refine == "Yes":
|
| 218 |
-
torch.cuda.empty_cache()
|
| 219 |
-
torch.cuda.max_memory_allocated(device=device)
|
| 220 |
-
int_image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
| 221 |
-
torch.cuda.empty_cache()
|
| 222 |
-
animagine = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
| 223 |
-
animagine.enable_xformers_memory_efficient_attention()
|
| 224 |
-
animagine = animagine.to(device)
|
| 225 |
-
torch.cuda.empty_cache()
|
| 226 |
-
image = animagine(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
| 227 |
-
torch.cuda.empty_cache()
|
| 228 |
-
|
| 229 |
-
if upscale == "Yes":
|
| 230 |
-
animagine = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
| 231 |
-
animagine.enable_xformers_memory_efficient_attention()
|
| 232 |
-
animagine = animagine.to(device)
|
| 233 |
-
torch.cuda.empty_cache()
|
| 234 |
-
upscaled = animagine(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
| 235 |
-
torch.cuda.empty_cache()
|
| 236 |
-
return upscaled
|
| 237 |
-
else:
|
| 238 |
-
return image
|
| 239 |
-
else:
|
| 240 |
-
if upscale == "Yes":
|
| 241 |
-
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 242 |
-
|
| 243 |
-
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
| 244 |
-
upscaler.enable_xformers_memory_efficient_attention()
|
| 245 |
-
upscaler = upscaler.to(device)
|
| 246 |
-
torch.cuda.empty_cache()
|
| 247 |
-
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
| 248 |
-
torch.cuda.empty_cache()
|
| 249 |
-
return upscaled
|
| 250 |
-
else:
|
| 251 |
-
|
| 252 |
-
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 253 |
-
torch.cuda.empty_cache()
|
| 254 |
-
return image
|
| 255 |
|
| 256 |
-
if
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
return image
|
| 304 |
-
|
| 305 |
-
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Anime', 'Disney', 'StoryBook', 'SemiReal', 'Animagine XL 3.0', 'SDXL 1.0'], value='PhotoReal', label='Choose Model'),
|
| 306 |
-
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
| 307 |
-
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
| 308 |
-
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
| 309 |
-
gr.Slider(512, 1024, 768, step=128, label='Width'),
|
| 310 |
-
gr.Slider(1, maximum=15, value=5, step=.25, label='Guidance Scale'),
|
| 311 |
-
gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'),
|
| 312 |
-
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
|
| 313 |
-
gr.Radio(["Yes", "No"], label='SDXL 1.0 Refiner: Use if the Image has too much Noise', value='No'),
|
| 314 |
-
gr.Slider(minimum=.9, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %'),
|
| 315 |
-
gr.Radio(["Yes", "No"], label = 'SD X2 Latent Upscaler?', value="No")],
|
| 316 |
-
outputs=gr.Image(label='Generated Image'),
|
| 317 |
-
title="Manju Dream Booth V1.7 with SDXL 1.0 Refiner and SD X2 Latent Upscaler - GPU",
|
| 318 |
-
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
|
| 319 |
-
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>BTC2: 3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import modin.pandas as pd
|
| 5 |
from PIL import Image
|
| 6 |
+
from diffusers import DiffusionPipeline
|
| 7 |
+
from huggingface_hub import login
|
| 8 |
+
import os
|
| 9 |
+
from glob import glob
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from typing import Optional
|
| 12 |
+
import uuid
|
| 13 |
+
import random
|
| 14 |
|
| 15 |
+
token = os.environ['HF_TOKEN']
|
| 16 |
+
login(token=token)
|
| 17 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 18 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt-1-1")
|
| 19 |
+
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 20 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 21 |
+
pipe = pipe.to(device)
|
| 22 |
+
max_64_bit_int = 2**63 - 1
|
| 23 |
|
| 24 |
+
def sample(
|
| 25 |
+
image: Image,
|
| 26 |
+
seed: Optional[int] = 42,
|
| 27 |
+
randomize_seed: bool = True,
|
| 28 |
+
motion_bucket_id: int = 127,
|
| 29 |
+
fps_id: int = 6,
|
| 30 |
+
version: str = "svd_xt",
|
| 31 |
+
cond_aug: float = 0.02,
|
| 32 |
+
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
| 33 |
+
device: str = "cpu",
|
| 34 |
+
output_folder: str = "outputs",):
|
| 35 |
+
|
| 36 |
+
if image.mode == "RGBA":
|
| 37 |
+
image = image.convert("RGB")
|
| 38 |
+
|
| 39 |
+
if(randomize_seed):
|
| 40 |
+
seed = random.randint(0, max_64_bit_int)
|
| 41 |
+
generator = torch.manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 44 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 45 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
| 48 |
+
export_to_video(frames, video_path, fps=fps_id)
|
| 49 |
+
torch.manual_seed(seed)
|
| 50 |
+
|
| 51 |
+
return video_path, seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
def resize_image(image, output_size=(1024, 578)):
|
| 54 |
+
# Calculate aspect ratios
|
| 55 |
+
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
| 56 |
+
image_aspect = image.width / image.height # Aspect ratio of the original image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# Resize then crop if the original image is larger
|
| 59 |
+
if image_aspect > target_aspect:
|
| 60 |
+
# Resize the image to match the target height, maintaining aspect ratio
|
| 61 |
+
new_height = output_size[1]
|
| 62 |
+
new_width = int(new_height * image_aspect)
|
| 63 |
+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 64 |
+
# Calculate coordinates for cropping
|
| 65 |
+
left = (new_width - output_size[0]) / 2
|
| 66 |
+
top = 0
|
| 67 |
+
right = (new_width + output_size[0]) / 2
|
| 68 |
+
bottom = output_size[1]
|
| 69 |
+
else:
|
| 70 |
+
# Resize the image to match the target width, maintaining aspect ratio
|
| 71 |
+
new_width = output_size[0]
|
| 72 |
+
new_height = int(new_width / image_aspect)
|
| 73 |
+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 74 |
+
# Calculate coordinates for cropping
|
| 75 |
+
left = 0
|
| 76 |
+
top = (new_height - output_size[1]) / 2
|
| 77 |
+
right = output_size[0]
|
| 78 |
+
bottom = (new_height + output_size[1]) / 2
|
| 79 |
+
|
| 80 |
+
# Crop the image
|
| 81 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
| 82 |
+
return cropped_image
|
| 83 |
+
|
| 84 |
+
with gr.Blocks() as demo:
|
| 85 |
+
#gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
|
| 86 |
+
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
|
| 87 |
+
#''')
|
| 88 |
+
with gr.Row():
|
| 89 |
+
with gr.Column():
|
| 90 |
+
image = gr.Image(label="Upload your image", type="pil")
|
| 91 |
+
generate_btn = gr.Button("Generate")
|
| 92 |
+
video = gr.Video()
|
| 93 |
+
with gr.Accordion("Advanced options", open=False):
|
| 94 |
+
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
| 95 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 96 |
+
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
| 97 |
+
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
|
| 98 |
+
|
| 99 |
+
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
| 100 |
+
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video",)# inputs=image, outputs=[video, seed], fn=sample, cache_examples=True,)
|
| 101 |
+
|
| 102 |
+
if __name__ == "__main__":
|
| 103 |
+
demo.queue(max_size=20, api_open=False)
|
| 104 |
+
demo.launch(share=True, show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|