gunayk3 commited on
Commit
4eabc2c
·
verified ·
1 Parent(s): 00bb72b

Update for compatibility

Browse files
Files changed (2) hide show
  1. README.md +28 -7
  2. requirements.txt +93 -2
README.md CHANGED
@@ -1,16 +1,13 @@
1
- ---
2
- title: building_footprint_segmentation
3
- app_file: demo.py
4
- sdk: gradio
5
- sdk_version: 4.24.0
6
- ---
7
  A U-Net model for segmenting buildings from satellite imagery
8
 
9
  A binary segmentation mask (of the same height and width with the input image) should be created The segmentation mask should have a value of 1 at pixels where there is a building and 0 at other pixels.
10
 
11
  The figure below showcases the input and output image expected. In the mask pixels that correspond to pixels in the input image are white and background is black.
12
 
13
- ![Expected input and output](images/task_definition.png)
 
 
14
 
15
  # Data
16
  The data used in this project is sourced from [Road and Building Detection Datasets](https://www.cs.toronto.edu/~vmnih/data/) with the following citation:
@@ -26,3 +23,27 @@ The data used in this project is sourced from [Road and Building Detection Datas
26
  ```
27
 
28
  For the ease of use, relevant parts of this dataset was sourced from [kaggle.com](https://www.kaggle.com/datasets/balraj98/massachusetts-buildings-dataset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Building Footprint Segmentation
 
 
 
 
 
2
  A U-Net model for segmenting buildings from satellite imagery
3
 
4
  A binary segmentation mask (of the same height and width with the input image) should be created The segmentation mask should have a value of 1 at pixels where there is a building and 0 at other pixels.
5
 
6
  The figure below showcases the input and output image expected. In the mask pixels that correspond to pixels in the input image are white and background is black.
7
 
8
+ ![Expected input and output](https://raw.githubusercontent.com/gunaykrgl/buildingSegmentation/main/Notebook/task_definition.png)
9
+
10
+ The training and Machine-learning related code is found at [the Notebook](https://github.com/gunaykrgl/buildingSegmentation/blob/main/Notebook/Building_Segmentation.ipynb).
11
 
12
  # Data
13
  The data used in this project is sourced from [Road and Building Detection Datasets](https://www.cs.toronto.edu/~vmnih/data/) with the following citation:
 
23
  ```
24
 
25
  For the ease of use, relevant parts of this dataset was sourced from [kaggle.com](https://www.kaggle.com/datasets/balraj98/massachusetts-buildings-dataset)
26
+
27
+ # Remote Running
28
+ You can try the application without installation by navigating to the following link:
29
+ [Building Footprint Segmentation](https://huggingface.co/spaces/gunayk3/building_footprint_segmentation)
30
+
31
+ ## Screenshots
32
+ <img src="https://raw.githubusercontent.com/gunaykrgl/buildingSegmentation/main/screenshots/scr1.png" width="600">
33
+ <img src="https://raw.githubusercontent.com/gunaykrgl/buildingSegmentation/main/screenshots/scr2.png" width="600">
34
+ <img src="https://raw.githubusercontent.com/gunaykrgl/buildingSegmentation/main/screenshots/scr3.png" width="600">
35
+
36
+ # Local Installation
37
+ ```
38
+ gh repo clone gunaykrgl/buildingSegmentation
39
+ cd buildingSegmentation
40
+ pip install -r requirements.txt
41
+ ```
42
+
43
+ ## Running Locally
44
+ After local installation, the application can be run by the following command:
45
+ ```
46
+ gradio run demo.py
47
+ ```
48
+
49
+ After this command is run, there will be a localhost url be generated at the end of the outputs. Later, the application can be used by navigating to the url in a web browser.
requirements.txt CHANGED
@@ -1,5 +1,96 @@
1
- gradio==4.24.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  keras==2.15.0
 
 
 
 
 
3
  matplotlib==3.7.1
 
 
 
4
  numpy==1.23.5
5
- tensorflow
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==2.1.0
2
+ aiofiles==23.2.1
3
+ altair==5.5.0
4
+ annotated-types==0.7.0
5
+ anyio==4.8.0
6
+ astunparse==1.6.3
7
+ attrs==25.1.0
8
+ cachetools==5.5.2
9
+ certifi==2025.1.31
10
+ charset-normalizer==3.4.1
11
+ click==8.1.8
12
+ contourpy==1.3.0
13
+ cycler==0.12.1
14
+ exceptiongroup==1.2.2
15
+ fastapi==0.115.11
16
+ ffmpy==0.5.0
17
+ filelock==3.17.0
18
+ flatbuffers==25.2.10
19
+ fonttools==4.56.0
20
+ fsspec==2025.3.0
21
+ gast==0.6.0
22
+ google-auth==2.38.0
23
+ google-auth-oauthlib==1.2.1
24
+ google-pasta==0.2.0
25
+ gradio==4.44.1
26
+ gradio_client==1.3.0
27
+ grpcio==1.71.0
28
+ h11==0.14.0
29
+ h5py==3.13.0
30
+ httpcore==1.0.7
31
+ httpx==0.28.1
32
+ huggingface-hub==0.29.3
33
+ idna==3.10
34
+ importlib_metadata==8.6.1
35
+ importlib_resources==6.5.2
36
+ Jinja2==3.1.6
37
+ jsonschema==4.23.0
38
+ jsonschema-specifications==2024.10.1
39
  keras==2.15.0
40
+ kiwisolver==1.4.7
41
+ libclang==18.1.1
42
+ Markdown==3.7
43
+ markdown-it-py==3.0.0
44
+ MarkupSafe==2.1.5
45
  matplotlib==3.7.1
46
+ mdurl==0.1.2
47
+ ml-dtypes==0.3.2
48
+ narwhals==1.30.0
49
  numpy==1.23.5
50
+ oauthlib==3.2.2
51
+ opt_einsum==3.4.0
52
+ orjson==3.10.15
53
+ packaging==24.2
54
+ pandas==2.2.3
55
+ pillow==10.4.0
56
+ protobuf==4.25.6
57
+ pyasn1==0.6.1
58
+ pyasn1_modules==0.4.1
59
+ pydantic==2.10.6
60
+ pydantic_core==2.27.2
61
+ pydub==0.25.1
62
+ Pygments==2.19.1
63
+ pyparsing==3.2.1
64
+ python-dateutil==2.9.0.post0
65
+ python-multipart==0.0.20
66
+ pytz==2025.1
67
+ PyYAML==6.0.2
68
+ referencing==0.36.2
69
+ requests==2.32.3
70
+ requests-oauthlib==2.0.0
71
+ rich==13.9.4
72
+ rpds-py==0.23.1
73
+ rsa==4.9
74
+ ruff==0.9.10
75
+ semantic-version==2.10.0
76
+ shellingham==1.5.4
77
+ six==1.17.0
78
+ sniffio==1.3.1
79
+ starlette==0.46.1
80
+ tensorboard==2.15.2
81
+ tensorboard-data-server==0.7.2
82
+ tensorflow==2.15.1
83
+ tensorflow-estimator==2.15.0
84
+ tensorflow-io-gcs-filesystem==0.37.1
85
+ termcolor==2.5.0
86
+ tomlkit==0.12.0
87
+ tqdm==4.67.1
88
+ typer==0.15.2
89
+ typing_extensions==4.12.2
90
+ tzdata==2025.1
91
+ urllib3==2.3.0
92
+ uvicorn==0.34.0
93
+ websockets==11.0.3
94
+ Werkzeug==3.1.3
95
+ wrapt==1.14.1
96
+ zipp==3.21.0