Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Union, Optional, List, Dict, Any | |
| import numpy as np | |
| import torch | |
| from diffusers import FluxPipeline | |
| from diffusers.pipelines.flux import FluxPipelineOutput | |
| from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps | |
| from diffusers.utils import is_torch_xla_available | |
| from utils.image_utils import resize_image, resize_image_first | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| class Lotus2Pipeline(FluxPipeline): | |
| def __call__( | |
| self, | |
| rgb_in: Optional[torch.FloatTensor] = None, | |
| prompt: Union[str, List[str]] = None, | |
| num_inference_steps: int = 10, | |
| output_type: Optional[str] = "pil", | |
| process_res: Optional[int] = None, | |
| timestep_core_predictor: int = 1, | |
| guidance_scale: float = 3.5, | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| rgb_in (`torch.FloatTensor`, *optional*): | |
| The input image to be used for generation. | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the prediction. Default is ''. | |
| num_inference_steps (`int`, *optional*, defaults to 10): | |
| The number of denoising steps. More denoising steps usually lead to a sharper prediction at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| Examples: | |
| Returns: | |
| [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
| is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
| images. | |
| """ | |
| # 1. prepare | |
| batch_size = rgb_in.shape[0] | |
| input_size = rgb_in.shape[2:] | |
| rgb_in = resize_image_first(rgb_in, process_res) | |
| height, width = rgb_in.shape[2:] | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| device = self._execution_device | |
| # 2. encode prompt | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=None, | |
| device=device, | |
| ) | |
| # 3. prepare latent variables | |
| rgb_in = rgb_in.to(device=device, dtype=self.dtype) | |
| rgb_latents = self.vae.encode(rgb_in).latent_dist.sample() | |
| rgb_latents = (rgb_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| packed_rgb_latents = self._pack_latents( | |
| rgb_latents, | |
| batch_size=rgb_latents.shape[0], | |
| num_channels_latents=rgb_latents.shape[1], | |
| height=rgb_latents.shape[2], | |
| width=rgb_latents.shape[3], | |
| ) | |
| latent_image_ids_core_predictor = self._prepare_latent_image_ids(batch_size, rgb_latents.shape[2]//2, rgb_latents.shape[3]//2, device, rgb_latents.dtype) | |
| latent_image_ids = self._prepare_latent_image_ids(batch_size, rgb_latents.shape[2]//2, rgb_latents.shape[3]//2, device, rgb_latents.dtype) | |
| # 4. prepare timesteps | |
| timestep_core_predictor = torch.tensor(timestep_core_predictor).expand(batch_size).to(device=rgb_in.device, dtype=rgb_in.dtype) | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = packed_rgb_latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) # 0 | |
| self._num_timesteps = len(timesteps) | |
| # 5. handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(packed_rgb_latents.shape[0]) | |
| else: | |
| guidance = None | |
| if self.joint_attention_kwargs is None: | |
| self._joint_attention_kwargs = {} | |
| # 6. core predictor | |
| self.transformer.set_adapter("core_predictor") | |
| latents = self.transformer( | |
| hidden_states=packed_rgb_latents, | |
| timestep=timestep_core_predictor / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids_core_predictor, | |
| joint_attention_kwargs=self.joint_attention_kwargs, # {} | |
| return_dict=False, | |
| )[0] | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = self.local_continuity_module(latents) | |
| # 7. Denoising loop for detail sharpener | |
| self.transformer.set_adapter("detail_sharpener") | |
| latents = self._pack_latents( | |
| latents, | |
| batch_size=latents.shape[0], | |
| num_channels_latents=latents.shape[1], | |
| height=latents.shape[2], | |
| width=latents.shape[3], | |
| ) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| latents = latents.to(dtype=self.dtype) | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Resize output image to match input size | |
| image = resize_image(image, input_size) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) |