Hugo Farajallah
commited on
Commit
·
b6bd379
1
Parent(s):
9bc684b
feat(HF): display alignment matrix as well as two scoring systems.
Browse files- dataset_process.py +29 -12
- hf_space.py +65 -25
- vocab.json +96 -95
dataset_process.py
CHANGED
|
@@ -121,16 +121,24 @@ def solve_path(prediction, target, path_matrix):
|
|
| 121 |
return matching
|
| 122 |
|
| 123 |
|
| 124 |
-
def display_matrix_result(path_matrix, matching, prediction, target):
|
| 125 |
-
"""Display all the information resulting from a Bellman matching of matrices.
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
# Display the matrix
|
| 130 |
-
axis.matshow(path_matrix.T, aspect="auto")
|
|
|
|
| 131 |
|
| 132 |
# Set the labels for the axes
|
| 133 |
-
axis.set_xlabel('Predicted String')
|
|
|
|
|
|
|
| 134 |
# String for the x-axis
|
| 135 |
predicted_labels = tuple(map(processor.decode, torch.argmax(prediction, -1)[0]))
|
| 136 |
axis.set_xticks(
|
|
@@ -143,7 +151,7 @@ def display_matrix_result(path_matrix, matching, prediction, target):
|
|
| 143 |
minor=True
|
| 144 |
)
|
| 145 |
|
| 146 |
-
axis.set_ylabel('Target String')
|
| 147 |
target_labels = tuple(map(processor.decode, torch.argmax(target, -1)[0]))
|
| 148 |
axis.set_yticks(
|
| 149 |
[i for i, label in enumerate(target_labels) if label == ""],
|
|
@@ -154,16 +162,25 @@ def display_matrix_result(path_matrix, matching, prediction, target):
|
|
| 154 |
labels=[label for label in target_labels if label != ""],
|
| 155 |
minor=True
|
| 156 |
)
|
| 157 |
-
# axis.yaxis.grid(which="major", color='k', linestyle='--')
|
| 158 |
|
| 159 |
-
axis.grid(which="major", color="black")
|
| 160 |
-
axis.grid(which="minor", linestyle="--")
|
|
|
|
|
|
|
| 161 |
axis.plot(
|
| 162 |
[val[0] for val in matching],
|
| 163 |
[val[1] for val in matching],
|
| 164 |
-
color="red"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
)
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
|
| 169 |
def bellman_matching(prediction, target, insertion_cost=1.3, deletion_cost=3, metric=l2_logit_norm):
|
|
|
|
| 121 |
return matching
|
| 122 |
|
| 123 |
|
| 124 |
+
def display_matrix_result(path_matrix, matching, prediction, target, processor=None):
|
| 125 |
+
"""Display all the information resulting from a Bellman matching of matrices.
|
| 126 |
+
|
| 127 |
+
Returns the figure instead of showing it directly for use in Gradio.
|
| 128 |
+
"""
|
| 129 |
+
fig, axis = plt.subplots(figsize=(10, 6))
|
| 130 |
+
|
| 131 |
+
if processor is None:
|
| 132 |
+
_model, processor = common.get_model()
|
| 133 |
|
| 134 |
# Display the matrix
|
| 135 |
+
im = axis.matshow(path_matrix.T, aspect="auto", cmap='Blues')
|
| 136 |
+
plt.colorbar(im, ax=axis)
|
| 137 |
|
| 138 |
# Set the labels for the axes
|
| 139 |
+
axis.set_xlabel('Predicted String', fontsize=12)
|
| 140 |
+
axis.set_title('Alignment Matrix: Predicted vs Target Phonemes', fontsize=14, pad=20)
|
| 141 |
+
|
| 142 |
# String for the x-axis
|
| 143 |
predicted_labels = tuple(map(processor.decode, torch.argmax(prediction, -1)[0]))
|
| 144 |
axis.set_xticks(
|
|
|
|
| 151 |
minor=True
|
| 152 |
)
|
| 153 |
|
| 154 |
+
axis.set_ylabel('Target String', fontsize=12)
|
| 155 |
target_labels = tuple(map(processor.decode, torch.argmax(target, -1)[0]))
|
| 156 |
axis.set_yticks(
|
| 157 |
[i for i, label in enumerate(target_labels) if label == ""],
|
|
|
|
| 162 |
labels=[label for label in target_labels if label != ""],
|
| 163 |
minor=True
|
| 164 |
)
|
|
|
|
| 165 |
|
| 166 |
+
axis.grid(which="major", color="black", alpha=0.3)
|
| 167 |
+
axis.grid(which="minor", linestyle="--", alpha=0.2)
|
| 168 |
+
|
| 169 |
+
# Plot the optimal path in red
|
| 170 |
axis.plot(
|
| 171 |
[val[0] for val in matching],
|
| 172 |
[val[1] for val in matching],
|
| 173 |
+
color="red",
|
| 174 |
+
linewidth=2,
|
| 175 |
+
marker='o',
|
| 176 |
+
markersize=3,
|
| 177 |
+
label="Optimal Alignment Path"
|
| 178 |
)
|
| 179 |
+
|
| 180 |
+
axis.legend()
|
| 181 |
+
plt.tight_layout()
|
| 182 |
+
|
| 183 |
+
return fig
|
| 184 |
|
| 185 |
|
| 186 |
def bellman_matching(prediction, target, insertion_cost=1.3, deletion_cost=3, metric=l2_logit_norm):
|
hf_space.py
CHANGED
|
@@ -21,10 +21,10 @@ def phonemize_text(text, language):
|
|
| 21 |
return " ".join([word.replace(" ", "") for word in phonemes]) if phonemes and phonemes[0] else ""
|
| 22 |
|
| 23 |
|
| 24 |
-
def process_audio_advanced(audio_data, target_word, language, advanced_mode, insertion_cost, deletion_cost, threshold, temperature):
|
| 25 |
"""Process recorded audio with advanced alignment if enabled"""
|
| 26 |
if audio_data is None:
|
| 27 |
-
return "Please record some audio first.", "", ""
|
| 28 |
|
| 29 |
# Convert target word to phonemes if provided
|
| 30 |
phonemized_target = ""
|
|
@@ -34,7 +34,7 @@ def process_audio_advanced(audio_data, target_word, language, advanced_mode, ins
|
|
| 34 |
# Preprocess audio
|
| 35 |
audio = common.preprocess_audio(audio_data)
|
| 36 |
if audio is None:
|
| 37 |
-
return "Failed to process audio.", "", ""
|
| 38 |
|
| 39 |
# Prepare model inputs with correct language
|
| 40 |
lang_enum = common.Languages.FR if language == "French" else common.Languages.IT
|
|
@@ -51,6 +51,7 @@ def process_audio_advanced(audio_data, target_word, language, advanced_mode, ins
|
|
| 51 |
result += f"**Transcription:** {transcription}\n\n"
|
| 52 |
|
| 53 |
alignment_result = ""
|
|
|
|
| 54 |
|
| 55 |
if target_word and target_word.strip():
|
| 56 |
result += f"**Target Word:** {target_word}\n"
|
|
@@ -61,7 +62,7 @@ def process_audio_advanced(audio_data, target_word, language, advanced_mode, ins
|
|
| 61 |
try:
|
| 62 |
# Encode target phonemes
|
| 63 |
target_encoded = dataset_process.encode_phonemes(
|
| 64 |
-
phonemized_target
|
| 65 |
)
|
| 66 |
|
| 67 |
# Get model logits (raw outputs before softmax)
|
|
@@ -76,26 +77,52 @@ def process_audio_advanced(audio_data, target_word, language, advanced_mode, ins
|
|
| 76 |
metric=dataset_process.l2_logit_norm
|
| 77 |
)
|
| 78 |
|
| 79 |
-
# Calculate alignment score using user-defined weights
|
| 80 |
weights = [insertion_cost, deletion_cost, threshold, temperature]
|
|
|
|
| 81 |
score = dataset_process.get_alignment_score(
|
| 82 |
prediction_logits,
|
| 83 |
target_encoded,
|
| 84 |
-
weights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
)
|
| 86 |
|
| 87 |
alignment_result = f"**🔬 Advanced Alignment Analysis:**\n\n"
|
|
|
|
| 88 |
alignment_result += f"**Settings:** Insertion={insertion_cost}, Deletion={deletion_cost}, Threshold={threshold}, Temperature={temperature}\n\n"
|
| 89 |
alignment_result += f"**Alignment Score:** {alignment_score:.3f}\n"
|
| 90 |
alignment_result += f"**Matching Points:** {len(matching)}\n"
|
| 91 |
-
alignment_result += f"**Classification Score:** {score}/2\n\n"
|
| 92 |
|
| 93 |
-
if
|
| 94 |
-
alignment_result += "
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
except Exception as e:
|
| 101 |
alignment_result = f"**⚠️ Alignment Error:** {str(e)}"
|
|
@@ -109,13 +136,13 @@ def process_audio_advanced(audio_data, target_word, language, advanced_mode, ins
|
|
| 109 |
else:
|
| 110 |
result += f"❌ **No phoneme match.** The phonemized target was not found in the transcription."
|
| 111 |
|
| 112 |
-
return result, phonemized_target, alignment_result
|
| 113 |
|
| 114 |
|
| 115 |
# Keep the simple function for backward compatibility
|
| 116 |
def process_audio(audio_data, target_word, language):
|
| 117 |
"""Simple audio processing without advanced features"""
|
| 118 |
-
result, phonemes, _ = process_audio_advanced(audio_data, target_word, language, False, 1.3, 3.0, 0.7, 1.0)
|
| 119 |
return result, phonemes
|
| 120 |
|
| 121 |
|
|
@@ -181,6 +208,13 @@ def create_interface():
|
|
| 181 |
info="Softmax temperature for prediction confidence (1.0 = normal)"
|
| 182 |
)
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
target_word_input = gr.Textbox(
|
| 185 |
label="Target Word (optional)",
|
| 186 |
placeholder="Enter a word you expect to say...",
|
|
@@ -213,6 +247,11 @@ def create_interface():
|
|
| 213 |
label="Alignment Analysis"
|
| 214 |
)
|
| 215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
# Update phonemes when target word or language changes
|
| 217 |
def update_phonemes(text, language):
|
| 218 |
if text and text.strip():
|
|
@@ -223,7 +262,8 @@ def create_interface():
|
|
| 223 |
def toggle_advanced_features(advanced):
|
| 224 |
return (
|
| 225 |
gr.update(visible=advanced), # alignment_output
|
| 226 |
-
gr.update(visible=advanced)
|
|
|
|
| 227 |
)
|
| 228 |
|
| 229 |
target_word_input.change(
|
|
@@ -241,29 +281,29 @@ def create_interface():
|
|
| 241 |
advanced_mode.change(
|
| 242 |
fn=toggle_advanced_features,
|
| 243 |
inputs=advanced_mode,
|
| 244 |
-
outputs=[alignment_output, weight_controls]
|
| 245 |
)
|
| 246 |
|
| 247 |
# Main processing function
|
| 248 |
-
def process_with_mode(audio_data, target_word, language, advanced, ins_cost, del_cost, thresh, temp):
|
| 249 |
-
result, phonemes, alignment = process_audio_advanced(
|
| 250 |
-
audio_data, target_word, language, advanced, ins_cost, del_cost, thresh, temp
|
| 251 |
)
|
| 252 |
-
return result, phonemes, alignment
|
| 253 |
|
| 254 |
process_btn.click(
|
| 255 |
fn=process_with_mode,
|
| 256 |
inputs=[audio_input, target_word_input, language_radio, advanced_mode,
|
| 257 |
-
insertion_cost, deletion_cost, threshold, temperature],
|
| 258 |
-
outputs=[output_text, phonemes_display, alignment_output]
|
| 259 |
)
|
| 260 |
|
| 261 |
# Auto-process when audio is recorded
|
| 262 |
audio_input.change(
|
| 263 |
fn=process_with_mode,
|
| 264 |
inputs=[audio_input, target_word_input, language_radio, advanced_mode,
|
| 265 |
-
insertion_cost, deletion_cost, threshold, temperature],
|
| 266 |
-
outputs=[output_text, phonemes_display, alignment_output]
|
| 267 |
)
|
| 268 |
|
| 269 |
return demo
|
|
|
|
| 21 |
return " ".join([word.replace(" ", "") for word in phonemes]) if phonemes and phonemes[0] else ""
|
| 22 |
|
| 23 |
|
| 24 |
+
def process_audio_advanced(audio_data, target_word, language, advanced_mode, insertion_cost, deletion_cost, threshold, temperature, scoring_method):
|
| 25 |
"""Process recorded audio with advanced alignment if enabled"""
|
| 26 |
if audio_data is None:
|
| 27 |
+
return "Please record some audio first.", "", "", None
|
| 28 |
|
| 29 |
# Convert target word to phonemes if provided
|
| 30 |
phonemized_target = ""
|
|
|
|
| 34 |
# Preprocess audio
|
| 35 |
audio = common.preprocess_audio(audio_data)
|
| 36 |
if audio is None:
|
| 37 |
+
return "Failed to process audio.", "", "", None
|
| 38 |
|
| 39 |
# Prepare model inputs with correct language
|
| 40 |
lang_enum = common.Languages.FR if language == "French" else common.Languages.IT
|
|
|
|
| 51 |
result += f"**Transcription:** {transcription}\n\n"
|
| 52 |
|
| 53 |
alignment_result = ""
|
| 54 |
+
alignment_plot_fig = None
|
| 55 |
|
| 56 |
if target_word and target_word.strip():
|
| 57 |
result += f"**Target Word:** {target_word}\n"
|
|
|
|
| 62 |
try:
|
| 63 |
# Encode target phonemes
|
| 64 |
target_encoded = dataset_process.encode_phonemes(
|
| 65 |
+
phonemized_target, processor.tokenizer
|
| 66 |
)
|
| 67 |
|
| 68 |
# Get model logits (raw outputs before softmax)
|
|
|
|
| 77 |
metric=dataset_process.l2_logit_norm
|
| 78 |
)
|
| 79 |
|
| 80 |
+
# Calculate alignment score using user-defined weights and scoring method
|
| 81 |
weights = [insertion_cost, deletion_cost, threshold, temperature]
|
| 82 |
+
scoring_enum = common.Scoring.NUMBER_CORRECT if scoring_method == "NUMBER_CORRECT" else common.Scoring.PHONEME_DELETION
|
| 83 |
score = dataset_process.get_alignment_score(
|
| 84 |
prediction_logits,
|
| 85 |
target_encoded,
|
| 86 |
+
weights,
|
| 87 |
+
94,
|
| 88 |
+
scoring=scoring_enum
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# Generate alignment plot
|
| 92 |
+
path_matrix = dataset_process.compute_path_matrix(
|
| 93 |
+
prediction_logits,
|
| 94 |
+
target_encoded,
|
| 95 |
+
dataset_process.l2_logit_norm,
|
| 96 |
+
insertion_cost,
|
| 97 |
+
deletion_cost
|
| 98 |
+
)
|
| 99 |
+
alignment_plot_fig = dataset_process.display_matrix_result(
|
| 100 |
+
path_matrix, matching, prediction_logits, target_encoded, processor
|
| 101 |
)
|
| 102 |
|
| 103 |
alignment_result = f"**🔬 Advanced Alignment Analysis:**\n\n"
|
| 104 |
+
alignment_result += f"**Scoring Method:** {scoring_method}\n"
|
| 105 |
alignment_result += f"**Settings:** Insertion={insertion_cost}, Deletion={deletion_cost}, Threshold={threshold}, Temperature={temperature}\n\n"
|
| 106 |
alignment_result += f"**Alignment Score:** {alignment_score:.3f}\n"
|
| 107 |
alignment_result += f"**Matching Points:** {len(matching)}\n"
|
|
|
|
| 108 |
|
| 109 |
+
if scoring_method == "NUMBER_CORRECT":
|
| 110 |
+
alignment_result += f"**Correct Phonemes:** {score}/{target_encoded.shape[1]}\n\n"
|
| 111 |
+
accuracy = score / target_encoded.shape[1] if target_encoded.shape[1] > 0 else 0
|
| 112 |
+
if accuracy >= 0.9:
|
| 113 |
+
alignment_result += "✅ **Excellent Match!** Most target phonemes are correctly aligned."
|
| 114 |
+
elif accuracy >= 0.7:
|
| 115 |
+
alignment_result += "⚠️ **Good Match!** Most target phonemes align well."
|
| 116 |
+
else:
|
| 117 |
+
alignment_result += "❌ **Poor Match.** Many target phonemes don't align correctly."
|
| 118 |
+
else: # PHONEME_DELETION
|
| 119 |
+
alignment_result += f"**Classification Score:** {score}/2\n\n"
|
| 120 |
+
if score == 2:
|
| 121 |
+
alignment_result += "✅ **Perfect Match!** Target phonemes align perfectly with transcription."
|
| 122 |
+
elif score == 1:
|
| 123 |
+
alignment_result += "⚠️ **Close Match!** Target phonemes align with 1 minor error."
|
| 124 |
+
else:
|
| 125 |
+
alignment_result += "❌ **Poor Match.** Target phonemes don't align well with transcription."
|
| 126 |
|
| 127 |
except Exception as e:
|
| 128 |
alignment_result = f"**⚠️ Alignment Error:** {str(e)}"
|
|
|
|
| 136 |
else:
|
| 137 |
result += f"❌ **No phoneme match.** The phonemized target was not found in the transcription."
|
| 138 |
|
| 139 |
+
return result, phonemized_target, alignment_result, alignment_plot_fig
|
| 140 |
|
| 141 |
|
| 142 |
# Keep the simple function for backward compatibility
|
| 143 |
def process_audio(audio_data, target_word, language):
|
| 144 |
"""Simple audio processing without advanced features"""
|
| 145 |
+
result, phonemes, _, _ = process_audio_advanced(audio_data, target_word, language, False, 1.3, 3.0, 0.7, 1.0, "NUMBER_CORRECT")
|
| 146 |
return result, phonemes
|
| 147 |
|
| 148 |
|
|
|
|
| 208 |
info="Softmax temperature for prediction confidence (1.0 = normal)"
|
| 209 |
)
|
| 210 |
|
| 211 |
+
scoring_method = gr.Radio(
|
| 212 |
+
choices=["NUMBER_CORRECT", "PHONEME_DELETION"],
|
| 213 |
+
value="NUMBER_CORRECT",
|
| 214 |
+
label="Scoring Method",
|
| 215 |
+
info="Method for calculating alignment scores"
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
target_word_input = gr.Textbox(
|
| 219 |
label="Target Word (optional)",
|
| 220 |
placeholder="Enter a word you expect to say...",
|
|
|
|
| 247 |
label="Alignment Analysis"
|
| 248 |
)
|
| 249 |
|
| 250 |
+
alignment_plot = gr.Plot(
|
| 251 |
+
label="Alignment Matrix",
|
| 252 |
+
visible=False
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
# Update phonemes when target word or language changes
|
| 256 |
def update_phonemes(text, language):
|
| 257 |
if text and text.strip():
|
|
|
|
| 262 |
def toggle_advanced_features(advanced):
|
| 263 |
return (
|
| 264 |
gr.update(visible=advanced), # alignment_output
|
| 265 |
+
gr.update(visible=advanced), # weight_controls
|
| 266 |
+
gr.update(visible=advanced) # alignment_plot
|
| 267 |
)
|
| 268 |
|
| 269 |
target_word_input.change(
|
|
|
|
| 281 |
advanced_mode.change(
|
| 282 |
fn=toggle_advanced_features,
|
| 283 |
inputs=advanced_mode,
|
| 284 |
+
outputs=[alignment_output, weight_controls, alignment_plot]
|
| 285 |
)
|
| 286 |
|
| 287 |
# Main processing function
|
| 288 |
+
def process_with_mode(audio_data, target_word, language, advanced, ins_cost, del_cost, thresh, temp, score_method):
|
| 289 |
+
result, phonemes, alignment, plot_fig = process_audio_advanced(
|
| 290 |
+
audio_data, target_word, language, advanced, ins_cost, del_cost, thresh, temp, score_method
|
| 291 |
)
|
| 292 |
+
return result, phonemes, alignment, plot_fig
|
| 293 |
|
| 294 |
process_btn.click(
|
| 295 |
fn=process_with_mode,
|
| 296 |
inputs=[audio_input, target_word_input, language_radio, advanced_mode,
|
| 297 |
+
insertion_cost, deletion_cost, threshold, temperature, scoring_method],
|
| 298 |
+
outputs=[output_text, phonemes_display, alignment_output, alignment_plot]
|
| 299 |
)
|
| 300 |
|
| 301 |
# Auto-process when audio is recorded
|
| 302 |
audio_input.change(
|
| 303 |
fn=process_with_mode,
|
| 304 |
inputs=[audio_input, target_word_input, language_radio, advanced_mode,
|
| 305 |
+
insertion_cost, deletion_cost, threshold, temperature, scoring_method],
|
| 306 |
+
outputs=[output_text, phonemes_display, alignment_output, alignment_plot]
|
| 307 |
)
|
| 308 |
|
| 309 |
return demo
|
vocab.json
CHANGED
|
@@ -1,96 +1,97 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
| 3 |
-
"
|
| 4 |
-
"a": 2,
|
| 5 |
-
"
|
| 6 |
-
"
|
| 7 |
-
"
|
| 8 |
-
"d": 6,
|
| 9 |
-
"d
|
| 10 |
-
"
|
| 11 |
-
"e": 9,
|
| 12 |
-
"
|
| 13 |
-
"
|
| 14 |
-
"
|
| 15 |
-
"
|
| 16 |
-
"
|
| 17 |
-
"
|
| 18 |
-
"
|
| 19 |
-
"
|
| 20 |
-
"
|
| 21 |
-
"
|
| 22 |
-
"
|
| 23 |
-
"
|
| 24 |
-
"
|
| 25 |
-
"
|
| 26 |
-
"
|
| 27 |
-
"
|
| 28 |
-
"
|
| 29 |
-
"
|
| 30 |
-
"
|
| 31 |
-
"
|
| 32 |
-
"
|
| 33 |
-
"t
|
| 34 |
-
"
|
| 35 |
-
"
|
| 36 |
-
"
|
| 37 |
-
"
|
| 38 |
-
"
|
| 39 |
-
"
|
| 40 |
-
"
|
| 41 |
-
"
|
| 42 |
-
"
|
| 43 |
-
"
|
| 44 |
-
"
|
| 45 |
-
"
|
| 46 |
-
"
|
| 47 |
-
"
|
| 48 |
-
"
|
| 49 |
-
"
|
| 50 |
-
"
|
| 51 |
-
"
|
| 52 |
-
"
|
| 53 |
-
"
|
| 54 |
-
"
|
| 55 |
-
"
|
| 56 |
-
"
|
| 57 |
-
"
|
| 58 |
-
"
|
| 59 |
-
"
|
| 60 |
-
"
|
| 61 |
-
"
|
| 62 |
-
"
|
| 63 |
-
"
|
| 64 |
-
"
|
| 65 |
-
"
|
| 66 |
-
"
|
| 67 |
-
"
|
| 68 |
-
"
|
| 69 |
-
"
|
| 70 |
-
"
|
| 71 |
-
"
|
| 72 |
-
"
|
| 73 |
-
"
|
| 74 |
-
"
|
| 75 |
-
"
|
| 76 |
-
"
|
| 77 |
-
"
|
| 78 |
-
"
|
| 79 |
-
"
|
| 80 |
-
"
|
| 81 |
-
"
|
| 82 |
-
"
|
| 83 |
-
"
|
| 84 |
-
"
|
| 85 |
-
"
|
| 86 |
-
"
|
| 87 |
-
"
|
| 88 |
-
"
|
| 89 |
-
"
|
| 90 |
-
"
|
| 91 |
-
"
|
| 92 |
-
"
|
| 93 |
-
"
|
| 94 |
-
"
|
| 95 |
-
"
|
| 96 |
-
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"|": 0,
|
| 3 |
+
"a": 1,
|
| 4 |
+
"ã": 2,
|
| 5 |
+
"b": 3,
|
| 6 |
+
"c": 4,
|
| 7 |
+
"d": 5,
|
| 8 |
+
"d͡z": 6,
|
| 9 |
+
"d͡ʒ": 7,
|
| 10 |
+
"e": 8,
|
| 11 |
+
"ẽ": 9,
|
| 12 |
+
"f": 10,
|
| 13 |
+
"g": 11,
|
| 14 |
+
"h": 12,
|
| 15 |
+
"i": 13,
|
| 16 |
+
"j": 14,
|
| 17 |
+
"k": 15,
|
| 18 |
+
"l": 16,
|
| 19 |
+
"m": 17,
|
| 20 |
+
"mʼ": 18,
|
| 21 |
+
"n": 19,
|
| 22 |
+
"nʼ": 20,
|
| 23 |
+
"o": 21,
|
| 24 |
+
"oʼ": 22,
|
| 25 |
+
"p": 23,
|
| 26 |
+
"pʼ": 24,
|
| 27 |
+
"r": 25,
|
| 28 |
+
"s": 26,
|
| 29 |
+
"sʼ": 27,
|
| 30 |
+
"t": 28,
|
| 31 |
+
"tʼ": 29,
|
| 32 |
+
"t͡s": 30,
|
| 33 |
+
"t͡ʃ": 31,
|
| 34 |
+
"u": 32,
|
| 35 |
+
"uʼ": 33,
|
| 36 |
+
"v": 34,
|
| 37 |
+
"vʼ": 35,
|
| 38 |
+
"w": 36,
|
| 39 |
+
"y": 37,
|
| 40 |
+
"yʼ": 38,
|
| 41 |
+
"z": 39,
|
| 42 |
+
"zʼ": 40,
|
| 43 |
+
"ø": 41,
|
| 44 |
+
"øʼ": 42,
|
| 45 |
+
"ŋ": 43,
|
| 46 |
+
"ŋʼ": 44,
|
| 47 |
+
"ɲ": 45,
|
| 48 |
+
"œ": 46,
|
| 49 |
+
"œ̃": 47,
|
| 50 |
+
"ɑ̃": 48,
|
| 51 |
+
"ɑ̃ʼ": 49,
|
| 52 |
+
"ɔ": 50,
|
| 53 |
+
"ɔʼ": 51,
|
| 54 |
+
"ɔ̃": 52,
|
| 55 |
+
"ɔ̃ʼ": 53,
|
| 56 |
+
"ə": 54,
|
| 57 |
+
"əʼ": 55,
|
| 58 |
+
"ɛ": 56,
|
| 59 |
+
"ɛʼ": 57,
|
| 60 |
+
"ɛː": 58,
|
| 61 |
+
"ɛ̃": 59,
|
| 62 |
+
"ɛ̃ʼ": 60,
|
| 63 |
+
"ɥ": 61,
|
| 64 |
+
"ʁ": 62,
|
| 65 |
+
"ʁʼ": 63,
|
| 66 |
+
"ʃ": 64,
|
| 67 |
+
"ʈ": 65,
|
| 68 |
+
"ʒ": 66,
|
| 69 |
+
"ʒʼ": 67,
|
| 70 |
+
"ʼ": 68,
|
| 71 |
+
"ʼa": 69,
|
| 72 |
+
"ʼe": 70,
|
| 73 |
+
"ʼi": 71,
|
| 74 |
+
"ʼj": 72,
|
| 75 |
+
"ʼo": 73,
|
| 76 |
+
"ʼu": 74,
|
| 77 |
+
"ʼy": 75,
|
| 78 |
+
"ʼœ": 76,
|
| 79 |
+
"ʼœ̃": 77,
|
| 80 |
+
"ʼɑ̃": 78,
|
| 81 |
+
"ʼɔ": 79,
|
| 82 |
+
"ʼɔ̃": 80,
|
| 83 |
+
"ʼə": 81,
|
| 84 |
+
"ʼɛ": 82,
|
| 85 |
+
"ʼɛ̃": 83,
|
| 86 |
+
"ʼɥ": 84,
|
| 87 |
+
"ˈe": 85,
|
| 88 |
+
"ˈh": 86,
|
| 89 |
+
"ˈk": 87,
|
| 90 |
+
"ˈp": 88,
|
| 91 |
+
"ˈs": 89,
|
| 92 |
+
"ˈu": 90,
|
| 93 |
+
"ˈæ": 91,
|
| 94 |
+
"ˈð": 92,
|
| 95 |
+
"[UNK]": 93,
|
| 96 |
+
"[PAD]": 94
|
| 97 |
+
}
|