Spaces:
Sleeping
Sleeping
File size: 18,597 Bytes
d71c6e7 6462db2 d71c6e7 6462db2 ff0ca65 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 ff0ca65 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 6462db2 d71c6e7 af1eb11 d71c6e7 911a8a7 d71c6e7 af1eb11 ff0ca65 af1eb11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import langextract as lx
import json
import re
from typing import List, Dict, Any, Tuple, Optional
import pandas as pd
import requests
import time
import os
from pathlib import Path
import tempfile
import torch
import spaces
# Global variables to store the loaded model and tokenizer
dental_model = None
dental_tokenizer = None
current_token = None
output_directory = Path(".")
def load_dental_transformers_model():
"""Load the dental model using transformers"""
global dental_model, dental_tokenizer
if dental_model is None or dental_tokenizer is None:
try:
print("Loading transformers model... This may take a moment on first run.")
# Load tokenizer and model
dental_tokenizer = AutoTokenizer.from_pretrained("yasserrmd/DentaInstruct-1.2B")
dental_model = AutoModelForCausalLM.from_pretrained(
"yasserrmd/DentaInstruct-1.2B",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None
)
# Set pad token if not set
if dental_tokenizer.pad_token is None:
dental_tokenizer.pad_token = dental_tokenizer.eos_token
print("Model loaded successfully!")
return dental_model, dental_tokenizer
except Exception as e:
print(f"Error loading transformers model: {str(e)}")
return None, None
return dental_model, dental_tokenizer
@spaces.GPU(duration=120)
def generate_dental_response(
question: str,
max_tokens: int = 2048,
temperature: float = 0.7
) -> str:
"""Generate response using transformers model"""
# Load model and tokenizer
model, tokenizer = load_dental_transformers_model()
if not model or not tokenizer:
return "β Transformers model not available."
try:
system_prompt = """You are a dental AI assistant. When providing medication recommendations, you must:
1. Always provide a complete 3-day medication regimen
2. Include detailed descriptions for each medication including exact dosage amounts, frequency, duration, mechanism of action
3. Organize the response clearly with medication names, dosages, and instructions
4. Always include a disclaimer about professional medical consultation"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": question}
]
# Apply chat template
try:
# Try with chat template first
input_text = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=False
)
except:
# Fallback to simple concatenation if chat template fails
input_text = f"{system_prompt}\n\nUser: {question}\n\nAssistant:"
# Tokenize the input
inputs = tokenizer(
input_text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=2048
)
# Remove token_type_ids if present (not needed for most models)
if 'token_type_ids' in inputs:
del inputs['token_type_ids']
# Move to device
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# Generate response
with torch.no_grad():
outputs = model.generate(
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_new_tokens=max_tokens,
temperature=temperature,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
# Decode only the new tokens (response)
response = tokenizer.decode(
outputs[0][inputs['input_ids'].shape[-1]:],
skip_special_tokens=True
)
return response.strip()
except Exception as e:
return f"β Error generating response with transformers model: {str(e)}"
def extract_medications(text: str, gemini_api_key: str = "") -> Tuple[str, str, str]:
"""Extract medication information from text"""
try:
# Check if API key is provided
if not gemini_api_key or not gemini_api_key.strip():
return "β Please provide a valid Gemini API key for medication extraction.", text, ""
model_api_key = gemini_api_key.strip()
prompt_description = "Extract medication information including medication name, dosage, route, frequency, and duration in the order they appear in the text."
examples = [
lx.data.ExampleData(
text="Patient was given 250 mg IV Cefazolin TID for one week.",
extractions=[
lx.data.Extraction(extraction_class="dosage", extraction_text="250 mg"),
lx.data.Extraction(extraction_class="route", extraction_text="IV"),
lx.data.Extraction(extraction_class="medication", extraction_text="Cefazolin"),
lx.data.Extraction(extraction_class="frequency", extraction_text="TID"),
lx.data.Extraction(extraction_class="duration", extraction_text="for one week")
]
)
]
result = lx.extract(
text_or_documents=text,
prompt_description=prompt_description,
examples=examples,
model_id="gemini-2.0-flash-exp",
api_key=model_api_key
)
if result and result.extractions:
# Create DataFrame for display
extraction_data = []
for entity in result.extractions:
position_info = ""
if entity.char_interval:
start, end = entity.char_interval.start_pos, entity.char_interval.end_pos
position_info = f"{start}-{end}"
extraction_data.append({
"Type": entity.extraction_class.capitalize(),
"Text": entity.extraction_text,
"Position": position_info
})
df = pd.DataFrame(extraction_data)
# Create highlighted text
highlighted_text = highlight_text_with_extractions(text, result.extractions)
# Save and visualize the results
try:
lx.io.save_annotated_documents([result], output_name="medical_ner_extraction.jsonl", output_dir=output_directory)
# Generate the interactive visualization
html_content = lx.visualize("medical_ner_extraction.jsonl")
return df.to_string(index=False), highlighted_text, html_content
except Exception as viz_error:
# If visualization fails, still return the other results
return df.to_string(index=False), highlighted_text, f"β οΈ Visualization generation failed: {str(viz_error)}"
else:
return "βΉοΈ No medications found in the text.", text, ""
except Exception as e:
return f"β Error extracting medications: {str(e)}", text, ""
def highlight_text_with_extractions(text: str, extractions: List[Any]) -> str:
"""Highlight extracted entities in the original text"""
if not extractions:
return text
# Sort extractions by position to avoid overlap issues
sorted_extractions = sorted(
[e for e in extractions if e.char_interval],
key=lambda x: x.char_interval.start_pos
)
highlighted_text = text
offset = 0
for extraction in sorted_extractions:
start = extraction.char_interval.start_pos + offset
end = extraction.char_interval.end_pos + offset
original = highlighted_text[start:end]
highlighted = f'**[{extraction.extraction_class.upper()}]** {original} **[/{extraction.extraction_class.upper()}]**'
highlighted_text = highlighted_text[:start] + highlighted + highlighted_text[end:]
offset += len(highlighted) - len(original)
return highlighted_text
def dental_consultation_interface(
question: str,
max_tokens: int,
temperature: float
) -> str:
"""Main interface for dental consultation"""
if not question.strip():
return "Please enter a question first."
response = generate_dental_response(
question=question,
max_tokens=max_tokens,
temperature=temperature
)
token_count = len(response.split())
return f"{response}\n\n---\nπ Response length: ~{token_count} words"
def medication_extraction_interface(text: str, gemini_api_key: str) -> Tuple[str, str, str]:
"""Interface for medication extraction"""
if not text.strip():
return "Please enter text for medication extraction.", "", ""
return extract_medications(text, gemini_api_key)
# Quick question options
QUICK_QUESTIONS = [
"I have a toothache with throbbing pain, provide 3-day medication",
"What causes tooth pain and how to treat it?",
"How to prevent cavities?",
"What are the signs of gum disease?",
"Emergency dental care advice",
"Post-extraction care instructions with medications",
"Wisdom tooth pain relief medication regimen"
]
def create_gradio_interface():
"""Create the main Gradio interface"""
# Custom CSS
css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.main-header {
text-align: center;
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 2rem;
border-radius: 10px;
margin-bottom: 2rem;
}
.disclaimer {
background-color: #fff3cd;
border: 1px solid #ffeaa7;
border-radius: 5px;
padding: 1rem;
margin: 1rem 0;
color: #856404;
}
"""
with gr.Blocks(css=css, title="π¦· Dental AI Assistant") as demo:
# Header
gr.HTML("""
<div class="main-header">
<h1>π¦· Dental AI Assistant</h1>
<p>Advanced dental consultation and medication extraction</p>
</div>
""")
with gr.Tabs():
# Tab 1: Dental Consultation
with gr.TabItem("π¬ Dental Consultation"):
with gr.Row():
with gr.Column(scale=2):
question_input = gr.Textbox(
label="Ask your dental question:",
placeholder="e.g., I have a toothache, what should I do?",
lines=3
)
quick_question = gr.Dropdown(
choices=[""] + QUICK_QUESTIONS,
label="Or select a quick question:",
value=""
)
# Update question input when quick question is selected
quick_question.change(
fn=lambda x: x if x else "",
inputs=[quick_question],
outputs=[question_input]
)
with gr.Row():
consult_btn = gr.Button("π Get Dental Advice", variant="primary")
clear_btn = gr.Button("ποΈ Clear")
with gr.Column(scale=1):
gr.Markdown("### βοΈ Settings")
max_tokens = gr.Slider(
minimum=500,
maximum=4000,
value=2048,
step=100,
label="Max Response Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="Temperature (Creativity)"
)
gr.Markdown("""
**Model Info:**
- Using Transformers Model
- Optimized for GPU/CPU
- Auto device mapping
""")
response_output = gr.Textbox(
label="π©Ί AI Response:",
lines=15,
max_lines=25
)
consult_btn.click(
fn=dental_consultation_interface,
inputs=[question_input, max_tokens, temperature],
outputs=[response_output]
)
clear_btn.click(
fn=lambda: ("", "", ""),
inputs=[],
outputs=[question_input, response_output]
)
# Tab 2: Medication Extraction
with gr.TabItem("π Medication Extraction"):
with gr.Row():
with gr.Column():
extraction_text = gr.Textbox(
label="Enter text for medication extraction:",
placeholder="Paste medical text here to extract medication information...",
lines=10
)
gemini_api_key = gr.Textbox(
label="π Gemini API Key",
placeholder="AIza...",
type="password",
info="Required for medication extraction"
)
with gr.Row():
extract_btn = gr.Button("𧬠Extract Medications", variant="primary")
copy_from_consultation = gr.Button("π Copy from Consultation")
with gr.Row():
with gr.Column():
extraction_results = gr.Textbox(
label="π Extracted Medications:",
lines=8
)
with gr.Column():
highlighted_text = gr.Textbox(
label="π― Highlighted Text:",
lines=8
)
with gr.Row():
visualization_html = gr.HTML(
label="π¨ Interactive Visualization:",
value="<p style='text-align: center; color: #666;'>Visualization will appear here after extraction</p>"
)
extract_btn.click(
fn=medication_extraction_interface,
inputs=[extraction_text, gemini_api_key],
outputs=[extraction_results, highlighted_text, visualization_html]
)
# Copy response from consultation tab to extraction
copy_from_consultation.click(
fn=lambda x: x,
inputs=[response_output],
outputs=[extraction_text]
)
# Tab 3: Help & Setup
with gr.TabItem("π Help & Setup"):
gr.Markdown("""
## π Getting Started
### Model:
**Transformers Model**: Uses HuggingFace transformers library with automatic device mapping
### π API Key Setup:
**Gemini API Key** (required for medication extraction):
1. Go to [Google AI Studio](https://aistudio.google.com)
2. Click 'Get API Key'
3. Create a new API key
### π¦ Installation Requirements:
```bash
pip install gradio transformers langextract pandas requests torch
```
### π©Ί Features:
- **Dental Consultation**: Get AI-powered dental advice with detailed medication regimens
- **Medication Extraction**: Extract and highlight medications from medical text
- **Interactive Visualization**: Visual representation of extracted medication entities
- **Quick Questions**: Pre-built common dental questions
- **Customizable Settings**: Adjust response length and creativity
- **GPU/CPU Support**: Automatic device detection and optimization
### β οΈ Important Disclaimer:
This AI assistant is for educational purposes only. Always consult with a qualified dentist for professional medical advice.
""")
# Footer
gr.HTML("""
<div class="disclaimer">
<p><strong>β οΈ Disclaimer:</strong> This AI assistant is for educational purposes only.
Always consult with a qualified dentist for professional medical advice.</p>
<p style="text-align: center; margin-top: 1rem;">
π¦· Built with Gradio | Gemini | Powered by yasserrmd/DentaInstruct-1.2B
</p>
</div>
""")
return demo
if __name__ == "__main__":
# Create and launch the interface
demo = create_gradio_interface()
demo.queue()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
ssr_mode=False # Disable SSR for Spaces compatibility
) |