import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import langextract as lx import json import re from typing import List, Dict, Any, Tuple, Optional import pandas as pd import requests import time import os from pathlib import Path import tempfile import torch import spaces # Global variables to store the loaded model and tokenizer dental_model = None dental_tokenizer = None current_token = None output_directory = Path(".") def load_dental_transformers_model(): """Load the dental model using transformers""" global dental_model, dental_tokenizer if dental_model is None or dental_tokenizer is None: try: print("Loading transformers model... This may take a moment on first run.") # Load tokenizer and model dental_tokenizer = AutoTokenizer.from_pretrained("yasserrmd/DentaInstruct-1.2B") dental_model = AutoModelForCausalLM.from_pretrained( "yasserrmd/DentaInstruct-1.2B", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto" if torch.cuda.is_available() else None ) # Set pad token if not set if dental_tokenizer.pad_token is None: dental_tokenizer.pad_token = dental_tokenizer.eos_token print("Model loaded successfully!") return dental_model, dental_tokenizer except Exception as e: print(f"Error loading transformers model: {str(e)}") return None, None return dental_model, dental_tokenizer @spaces.GPU(duration=120) def generate_dental_response( question: str, max_tokens: int = 2048, temperature: float = 0.7 ) -> str: """Generate response using transformers model""" # Load model and tokenizer model, tokenizer = load_dental_transformers_model() if not model or not tokenizer: return "❌ Transformers model not available." try: system_prompt = """You are a dental AI assistant. When providing medication recommendations, you must: 1. Always provide a complete 3-day medication regimen 2. Include detailed descriptions for each medication including exact dosage amounts, frequency, duration, mechanism of action 3. Organize the response clearly with medication names, dosages, and instructions 4. Always include a disclaimer about professional medical consultation""" messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": question} ] # Apply chat template try: # Try with chat template first input_text = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=False ) except: # Fallback to simple concatenation if chat template fails input_text = f"{system_prompt}\n\nUser: {question}\n\nAssistant:" # Tokenize the input inputs = tokenizer( input_text, return_tensors="pt", padding=True, truncation=True, max_length=2048 ) # Remove token_type_ids if present (not needed for most models) if 'token_type_ids' in inputs: del inputs['token_type_ids'] # Move to device inputs = {k: v.to(model.device) for k, v in inputs.items()} # Generate response with torch.no_grad(): outputs = model.generate( input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], max_new_tokens=max_tokens, temperature=temperature, top_p=0.9, do_sample=True, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id ) # Decode only the new tokens (response) response = tokenizer.decode( outputs[0][inputs['input_ids'].shape[-1]:], skip_special_tokens=True ) return response.strip() except Exception as e: return f"❌ Error generating response with transformers model: {str(e)}" def extract_medications(text: str, gemini_api_key: str = "") -> Tuple[str, str, str]: """Extract medication information from text""" try: # Check if API key is provided if not gemini_api_key or not gemini_api_key.strip(): return "❌ Please provide a valid Gemini API key for medication extraction.", text, "" model_api_key = gemini_api_key.strip() prompt_description = "Extract medication information including medication name, dosage, route, frequency, and duration in the order they appear in the text." examples = [ lx.data.ExampleData( text="Patient was given 250 mg IV Cefazolin TID for one week.", extractions=[ lx.data.Extraction(extraction_class="dosage", extraction_text="250 mg"), lx.data.Extraction(extraction_class="route", extraction_text="IV"), lx.data.Extraction(extraction_class="medication", extraction_text="Cefazolin"), lx.data.Extraction(extraction_class="frequency", extraction_text="TID"), lx.data.Extraction(extraction_class="duration", extraction_text="for one week") ] ) ] result = lx.extract( text_or_documents=text, prompt_description=prompt_description, examples=examples, model_id="gemini-2.0-flash-exp", api_key=model_api_key ) if result and result.extractions: # Create DataFrame for display extraction_data = [] for entity in result.extractions: position_info = "" if entity.char_interval: start, end = entity.char_interval.start_pos, entity.char_interval.end_pos position_info = f"{start}-{end}" extraction_data.append({ "Type": entity.extraction_class.capitalize(), "Text": entity.extraction_text, "Position": position_info }) df = pd.DataFrame(extraction_data) # Create highlighted text highlighted_text = highlight_text_with_extractions(text, result.extractions) # Save and visualize the results try: lx.io.save_annotated_documents([result], output_name="medical_ner_extraction.jsonl", output_dir=output_directory) # Generate the interactive visualization html_content = lx.visualize("medical_ner_extraction.jsonl") return df.to_string(index=False), highlighted_text, html_content except Exception as viz_error: # If visualization fails, still return the other results return df.to_string(index=False), highlighted_text, f"⚠️ Visualization generation failed: {str(viz_error)}" else: return "ℹ️ No medications found in the text.", text, "" except Exception as e: return f"❌ Error extracting medications: {str(e)}", text, "" def highlight_text_with_extractions(text: str, extractions: List[Any]) -> str: """Highlight extracted entities in the original text""" if not extractions: return text # Sort extractions by position to avoid overlap issues sorted_extractions = sorted( [e for e in extractions if e.char_interval], key=lambda x: x.char_interval.start_pos ) highlighted_text = text offset = 0 for extraction in sorted_extractions: start = extraction.char_interval.start_pos + offset end = extraction.char_interval.end_pos + offset original = highlighted_text[start:end] highlighted = f'**[{extraction.extraction_class.upper()}]** {original} **[/{extraction.extraction_class.upper()}]**' highlighted_text = highlighted_text[:start] + highlighted + highlighted_text[end:] offset += len(highlighted) - len(original) return highlighted_text def dental_consultation_interface( question: str, max_tokens: int, temperature: float ) -> str: """Main interface for dental consultation""" if not question.strip(): return "Please enter a question first." response = generate_dental_response( question=question, max_tokens=max_tokens, temperature=temperature ) token_count = len(response.split()) return f"{response}\n\n---\n📊 Response length: ~{token_count} words" def medication_extraction_interface(text: str, gemini_api_key: str) -> Tuple[str, str, str]: """Interface for medication extraction""" if not text.strip(): return "Please enter text for medication extraction.", "", "" return extract_medications(text, gemini_api_key) # Quick question options QUICK_QUESTIONS = [ "I have a toothache with throbbing pain, provide 3-day medication", "What causes tooth pain and how to treat it?", "How to prevent cavities?", "What are the signs of gum disease?", "Emergency dental care advice", "Post-extraction care instructions with medications", "Wisdom tooth pain relief medication regimen" ] def create_gradio_interface(): """Create the main Gradio interface""" # Custom CSS css = """ .gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } .main-header { text-align: center; background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); color: white; padding: 2rem; border-radius: 10px; margin-bottom: 2rem; } .disclaimer { background-color: #fff3cd; border: 1px solid #ffeaa7; border-radius: 5px; padding: 1rem; margin: 1rem 0; color: #856404; } """ with gr.Blocks(css=css, title="🦷 Dental AI Assistant") as demo: # Header gr.HTML("""

🦷 Dental AI Assistant

Advanced dental consultation and medication extraction

""") with gr.Tabs(): # Tab 1: Dental Consultation with gr.TabItem("💬 Dental Consultation"): with gr.Row(): with gr.Column(scale=2): question_input = gr.Textbox( label="Ask your dental question:", placeholder="e.g., I have a toothache, what should I do?", lines=3 ) quick_question = gr.Dropdown( choices=[""] + QUICK_QUESTIONS, label="Or select a quick question:", value="" ) # Update question input when quick question is selected quick_question.change( fn=lambda x: x if x else "", inputs=[quick_question], outputs=[question_input] ) with gr.Row(): consult_btn = gr.Button("🔍 Get Dental Advice", variant="primary") clear_btn = gr.Button("🗑️ Clear") with gr.Column(scale=1): gr.Markdown("### ⚙️ Settings") max_tokens = gr.Slider( minimum=500, maximum=4000, value=2048, step=100, label="Max Response Tokens" ) temperature = gr.Slider( minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature (Creativity)" ) gr.Markdown(""" **Model Info:** - Using Transformers Model - Optimized for GPU/CPU - Auto device mapping """) response_output = gr.Textbox( label="🩺 AI Response:", lines=15, max_lines=25 ) consult_btn.click( fn=dental_consultation_interface, inputs=[question_input, max_tokens, temperature], outputs=[response_output] ) clear_btn.click( fn=lambda: ("", "", ""), inputs=[], outputs=[question_input, response_output] ) # Tab 2: Medication Extraction with gr.TabItem("💊 Medication Extraction"): with gr.Row(): with gr.Column(): extraction_text = gr.Textbox( label="Enter text for medication extraction:", placeholder="Paste medical text here to extract medication information...", lines=10 ) gemini_api_key = gr.Textbox( label="🔑 Gemini API Key", placeholder="AIza...", type="password", info="Required for medication extraction" ) with gr.Row(): extract_btn = gr.Button("🧬 Extract Medications", variant="primary") copy_from_consultation = gr.Button("📋 Copy from Consultation") with gr.Row(): with gr.Column(): extraction_results = gr.Textbox( label="📋 Extracted Medications:", lines=8 ) with gr.Column(): highlighted_text = gr.Textbox( label="🎯 Highlighted Text:", lines=8 ) with gr.Row(): visualization_html = gr.HTML( label="🎨 Interactive Visualization:", value="

Visualization will appear here after extraction

" ) extract_btn.click( fn=medication_extraction_interface, inputs=[extraction_text, gemini_api_key], outputs=[extraction_results, highlighted_text, visualization_html] ) # Copy response from consultation tab to extraction copy_from_consultation.click( fn=lambda x: x, inputs=[response_output], outputs=[extraction_text] ) # Tab 3: Help & Setup with gr.TabItem("📚 Help & Setup"): gr.Markdown(""" ## 🚀 Getting Started ### Model: **Transformers Model**: Uses HuggingFace transformers library with automatic device mapping ### 🔑 API Key Setup: **Gemini API Key** (required for medication extraction): 1. Go to [Google AI Studio](https://aistudio.google.com) 2. Click 'Get API Key' 3. Create a new API key ### 📦 Installation Requirements: ```bash pip install gradio transformers langextract pandas requests torch ``` ### 🩺 Features: - **Dental Consultation**: Get AI-powered dental advice with detailed medication regimens - **Medication Extraction**: Extract and highlight medications from medical text - **Interactive Visualization**: Visual representation of extracted medication entities - **Quick Questions**: Pre-built common dental questions - **Customizable Settings**: Adjust response length and creativity - **GPU/CPU Support**: Automatic device detection and optimization ### ⚠️ Important Disclaimer: This AI assistant is for educational purposes only. Always consult with a qualified dentist for professional medical advice. """) # Footer gr.HTML("""

⚠️ Disclaimer: This AI assistant is for educational purposes only. Always consult with a qualified dentist for professional medical advice.

🦷 Built with Gradio | Gemini | Powered by yasserrmd/DentaInstruct-1.2B

""") return demo if __name__ == "__main__": # Create and launch the interface demo = create_gradio_interface() demo.queue() demo.launch( server_name="0.0.0.0", server_port=7860, share=False, show_error=True, ssr_mode=False # Disable SSR for Spaces compatibility )