Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -30,52 +30,61 @@ config = DEFAULT_CONFIG.copy()
|
|
| 30 |
config.update(cli_args)
|
| 31 |
config['vector_size'] = int(config['vector_size'])
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
#
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
| 47 |
df2 = ds.to_pandas()
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
|
|
|
| 51 |
@st.cache_resource
|
| 52 |
def get_model(model_path: str = config['model_path']):
|
| 53 |
return SentenceModel(model_path)
|
| 54 |
|
|
|
|
| 55 |
@st.cache_resource
|
| 56 |
def create_retriever(vector_sz: int, dataset_path: str, embedding_field: str, id_field: str, _model):
|
| 57 |
retriever = JSONLIndexer(vector_sz=vector_sz, model=_model)
|
| 58 |
retriever.load_jsonl(dataset_path, embedding_field=embedding_field, id_field=id_field)
|
| 59 |
return retriever
|
| 60 |
|
| 61 |
-
#
|
|
|
|
|
|
|
| 62 |
st.sidebar.markdown("<div style='text-align: center;'><h3>📄 Model Configuration</h3></div>", unsafe_allow_html=True)
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
# 添加模型选项下拉框,目前只有一个模型可选
|
| 66 |
model_options = ["BAAI/bge-base-en-v1.5"]
|
| 67 |
selected_model = st.sidebar.selectbox("Select Model", model_options)
|
| 68 |
st.sidebar.write("Selected model:", selected_model)
|
| 69 |
st.sidebar.write("Embedding length: 768")
|
| 70 |
|
| 71 |
-
#
|
| 72 |
model = get_model(selected_model)
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
st.markdown("""
|
| 80 |
<style>
|
| 81 |
.search-container {
|
|
@@ -102,7 +111,9 @@ st.markdown("""
|
|
| 102 |
|
| 103 |
st.markdown("<h1 style='text-align: center;'>🔍 Tool Retrieval</h1>", unsafe_allow_html=True)
|
| 104 |
|
| 105 |
-
|
|
|
|
|
|
|
| 106 |
col1, col2 = st.columns([4, 1])
|
| 107 |
with col1:
|
| 108 |
query = st.text_input("", placeholder="Enter your search query...", key="search_query", label_visibility="collapsed")
|
|
@@ -111,15 +122,13 @@ with col2:
|
|
| 111 |
|
| 112 |
top_k = st.slider("Top-K tools", 1, 100, 50, help="Choose the number of results to display")
|
| 113 |
|
| 114 |
-
styled_results = None
|
| 115 |
if search_clicked and query:
|
| 116 |
rec_ids, scores = retriever.search_return_id(query, top_k)
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
#
|
| 120 |
-
results_df =
|
| 121 |
-
|
| 122 |
-
# results_df["interface"] = "asdasdadasdasdasdasdasdasdasasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdasdassdasdasdasdasdasabababbabasdbabsdbasbdadabdbasdbasbdbasdbasdbasdb"
|
| 123 |
st.subheader("🗂️ Retrieval results")
|
| 124 |
|
| 125 |
styled_results = results_df.style.apply(
|
|
@@ -129,7 +138,7 @@ if search_clicked and query:
|
|
| 129 |
],
|
| 130 |
axis=0,
|
| 131 |
).format({"relevance": "{:.4f}"})
|
| 132 |
-
|
| 133 |
st.dataframe(
|
| 134 |
styled_results,
|
| 135 |
column_config={
|
|
|
|
| 30 |
config.update(cli_args)
|
| 31 |
config['vector_size'] = int(config['vector_size'])
|
| 32 |
|
| 33 |
+
# ---------------------------
|
| 34 |
+
# 缓存数据集加载函数(避免每次运行时重复下载数据)
|
| 35 |
+
# ---------------------------
|
| 36 |
+
@st.cache_data
|
| 37 |
+
def load_tools_datasets():
|
| 38 |
+
from datasets import load_dataset, concatenate_datasets
|
| 39 |
+
ds1 = load_dataset("mangopy/ToolRet-Tools", "code")
|
| 40 |
+
ds2 = load_dataset("mangopy/ToolRet-Tools", "customized")
|
| 41 |
+
ds3 = load_dataset("mangopy/ToolRet-Tools", "web")
|
| 42 |
+
ds = concatenate_datasets([ds1['tools'], ds2['tools'], ds3['tools']])
|
| 43 |
+
# 重命名'id'字段为'tool'
|
| 44 |
+
ds = ds.rename_columns({'id': 'tool'})
|
| 45 |
+
return ds
|
| 46 |
+
|
| 47 |
+
ds = load_tools_datasets()
|
| 48 |
df2 = ds.to_pandas()
|
| 49 |
+
# 如果数据量较大,可以通过设置索引加速后续的合并操作
|
| 50 |
+
df2.set_index('tool', inplace=True)
|
| 51 |
|
| 52 |
+
# ---------------------------
|
| 53 |
+
# 缓存模型加载函数
|
| 54 |
+
# ---------------------------
|
| 55 |
@st.cache_resource
|
| 56 |
def get_model(model_path: str = config['model_path']):
|
| 57 |
return SentenceModel(model_path)
|
| 58 |
|
| 59 |
+
# 缓存检索器创建函数
|
| 60 |
@st.cache_resource
|
| 61 |
def create_retriever(vector_sz: int, dataset_path: str, embedding_field: str, id_field: str, _model):
|
| 62 |
retriever = JSONLIndexer(vector_sz=vector_sz, model=_model)
|
| 63 |
retriever.load_jsonl(dataset_path, embedding_field=embedding_field, id_field=id_field)
|
| 64 |
return retriever
|
| 65 |
|
| 66 |
+
# ---------------------------
|
| 67 |
+
# 侧边栏配置
|
| 68 |
+
# ---------------------------
|
| 69 |
st.sidebar.markdown("<div style='text-align: center;'><h3>📄 Model Configuration</h3></div>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
| 70 |
model_options = ["BAAI/bge-base-en-v1.5"]
|
| 71 |
selected_model = st.sidebar.selectbox("Select Model", model_options)
|
| 72 |
st.sidebar.write("Selected model:", selected_model)
|
| 73 |
st.sidebar.write("Embedding length: 768")
|
| 74 |
|
| 75 |
+
# 使用下拉框选中的模型(避免重复加载)
|
| 76 |
model = get_model(selected_model)
|
| 77 |
+
retriever = create_retriever(
|
| 78 |
+
config['vector_size'],
|
| 79 |
+
config['dataset_path'],
|
| 80 |
+
config['embedding_field'],
|
| 81 |
+
config['id_field'],
|
| 82 |
+
_model=model
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# ---------------------------
|
| 86 |
+
# 界面样式设置
|
| 87 |
+
# ---------------------------
|
| 88 |
st.markdown("""
|
| 89 |
<style>
|
| 90 |
.search-container {
|
|
|
|
| 111 |
|
| 112 |
st.markdown("<h1 style='text-align: center;'>🔍 Tool Retrieval</h1>", unsafe_allow_html=True)
|
| 113 |
|
| 114 |
+
# ---------------------------
|
| 115 |
+
# 主体检索区域
|
| 116 |
+
# ---------------------------
|
| 117 |
col1, col2 = st.columns([4, 1])
|
| 118 |
with col1:
|
| 119 |
query = st.text_input("", placeholder="Enter your search query...", key="search_query", label_visibility="collapsed")
|
|
|
|
| 122 |
|
| 123 |
top_k = st.slider("Top-K tools", 1, 100, 50, help="Choose the number of results to display")
|
| 124 |
|
|
|
|
| 125 |
if search_clicked and query:
|
| 126 |
rec_ids, scores = retriever.search_return_id(query, top_k)
|
| 127 |
+
# 构建检索结果 DataFrame
|
| 128 |
+
df1 = pd.DataFrame({"relevance": scores, "tool": rec_ids})
|
| 129 |
+
# 使用 join 加速合并(前提是 df2 已设置好索引)
|
| 130 |
+
results_df = df1.join(df2, on='tool', how='left').reset_index(drop=False)
|
| 131 |
+
|
|
|
|
| 132 |
st.subheader("🗂️ Retrieval results")
|
| 133 |
|
| 134 |
styled_results = results_df.style.apply(
|
|
|
|
| 138 |
],
|
| 139 |
axis=0,
|
| 140 |
).format({"relevance": "{:.4f}"})
|
| 141 |
+
|
| 142 |
st.dataframe(
|
| 143 |
styled_results,
|
| 144 |
column_config={
|