khalooei
commited on
Commit
·
7d45691
1
Parent(s):
8e74c98
initial commit
Browse files- app.py +312 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torchvision
|
| 4 |
+
import torchvision.transforms as transforms
|
| 5 |
+
from torchvision.models import vgg16, vgg19, googlenet, resnet18
|
| 6 |
+
import timm
|
| 7 |
+
import numpy as np
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
from torchattacks import FGSM, PGD, APGD
|
| 10 |
+
import os
|
| 11 |
+
import time
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
import gradio as gr
|
| 14 |
+
|
| 15 |
+
class LeNet(nn.Module):
|
| 16 |
+
def __init__(self):
|
| 17 |
+
super(LeNet, self).__init__()
|
| 18 |
+
self.conv1 = nn.Conv2d(1, 6, 5)
|
| 19 |
+
self.conv2 = nn.Conv2d(6, 16, 5)
|
| 20 |
+
self.fc1 = nn.Linear(16 * 4 * 4, 120)
|
| 21 |
+
self.fc2 = nn.Linear(120, 84)
|
| 22 |
+
self.fc3 = nn.Linear(84, 10)
|
| 23 |
+
self.relu = nn.ReLU()
|
| 24 |
+
self.pool = nn.MaxPool2d(2, 2)
|
| 25 |
+
|
| 26 |
+
def forward(self, x, return_all=False):
|
| 27 |
+
outputs = []
|
| 28 |
+
x1 = self.pool(self.relu(self.conv1(x)))
|
| 29 |
+
outputs.append(x1)
|
| 30 |
+
x2 = self.pool(self.relu(self.conv2(x1)))
|
| 31 |
+
outputs.append(x2)
|
| 32 |
+
x2_flat = x2.view(-1, 16 * 4 * 4)
|
| 33 |
+
x3 = self.relu(self.fc1(x2_flat))
|
| 34 |
+
outputs.append(x3)
|
| 35 |
+
x4 = self.relu(self.fc2(x3))
|
| 36 |
+
outputs.append(x4)
|
| 37 |
+
x5 = self.fc3(x4)
|
| 38 |
+
outputs.append(x5)
|
| 39 |
+
if return_all:
|
| 40 |
+
return outputs
|
| 41 |
+
else:
|
| 42 |
+
return x5
|
| 43 |
+
|
| 44 |
+
def salt_pepper_noise(images, prob=0.01, device='cuda'):
|
| 45 |
+
batch_smap = torch.rand_like(images) < prob / 2
|
| 46 |
+
pepper = torch.rand_like(images) < prob / 2
|
| 47 |
+
noisy = images.clone()
|
| 48 |
+
noisy[batch_smap] = 1.0
|
| 49 |
+
noisy[pepper] = 0.0
|
| 50 |
+
return torch.clamp(noisy, 0, 1)
|
| 51 |
+
|
| 52 |
+
def pepper_statistical_noise(images, prob=0.01, device='cuda'):
|
| 53 |
+
pepper = torch.rand_like(images) < prob
|
| 54 |
+
noisy = images.clone()
|
| 55 |
+
noisy[pepper] = 0.0
|
| 56 |
+
return torch.clamp(noisy, 0, 1)
|
| 57 |
+
|
| 58 |
+
def get_layer_outputs(model, input_tensor):
|
| 59 |
+
outputs = []
|
| 60 |
+
def hook(module, input, output):
|
| 61 |
+
outputs.append(output)
|
| 62 |
+
hooks = []
|
| 63 |
+
for layer in model.modules():
|
| 64 |
+
if isinstance(layer, (nn.Conv2d, nn.Linear)):
|
| 65 |
+
hooks.append(layer.register_forward_hook(hook))
|
| 66 |
+
model.eval()
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
model(input_tensor)
|
| 69 |
+
for hook in hooks:
|
| 70 |
+
hook.remove()
|
| 71 |
+
return outputs
|
| 72 |
+
|
| 73 |
+
def compute_mvl(model, clean_images, adv_images, device='cuda'):
|
| 74 |
+
model.eval()
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
try:
|
| 77 |
+
clean_outputs = model(clean_images, return_all=True)
|
| 78 |
+
adv_outputs = model(adv_images, return_all=True)
|
| 79 |
+
except TypeError:
|
| 80 |
+
clean_outputs = get_layer_outputs(model, clean_images)
|
| 81 |
+
adv_outputs = get_layer_outputs(model, adv_images)
|
| 82 |
+
|
| 83 |
+
mvl_list = []
|
| 84 |
+
for clean_out, adv_out in zip(clean_outputs, adv_outputs):
|
| 85 |
+
if clean_out.ndim == 4:
|
| 86 |
+
diff = torch.norm(clean_out - adv_out, p=2, dim=(1,2,3))
|
| 87 |
+
clean_norm = torch.norm(clean_out, p=2, dim=(1,2,3))
|
| 88 |
+
else:
|
| 89 |
+
diff = torch.norm(clean_out - adv_out, p=2, dim=1)
|
| 90 |
+
clean_norm = torch.norm(clean_out, p=2, dim=1)
|
| 91 |
+
mvl = diff / (clean_norm + 1e-8)
|
| 92 |
+
mvl_list.append(mvl.mean().item())
|
| 93 |
+
return mvl_list
|
| 94 |
+
|
| 95 |
+
def get_model_stats(model):
|
| 96 |
+
param_count = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 97 |
+
layer_count = len([m for m in model.modules() if isinstance(m, (nn.Conv2d, nn.Linear))])
|
| 98 |
+
return param_count, layer_count
|
| 99 |
+
|
| 100 |
+
def modify_model(model, model_name):
|
| 101 |
+
if model_name.startswith('VGG'):
|
| 102 |
+
model.classifier[6] = nn.Linear(4096, 10)
|
| 103 |
+
elif model_name == 'GoogLeNet':
|
| 104 |
+
model.fc = nn.Linear(1024, 10)
|
| 105 |
+
elif model_name == 'ResNet18':
|
| 106 |
+
model.fc = nn.Linear(512, 10)
|
| 107 |
+
elif model_name == 'WideResNet':
|
| 108 |
+
model.fc = nn.Linear(2048, 10)
|
| 109 |
+
elif model_name == 'DenseNet121':
|
| 110 |
+
model.classifier = nn.Linear(model.classifier.in_features, 10)
|
| 111 |
+
elif model_name == 'MobileNetV2':
|
| 112 |
+
if isinstance(model.classifier, nn.Sequential):
|
| 113 |
+
model.classifier[1] = nn.Linear(model.classifier[1].in_features, 10)
|
| 114 |
+
else:
|
| 115 |
+
model.classifier = nn.Linear(model.classifier.in_features, 10)
|
| 116 |
+
elif model_name == 'EfficientNet-B0':
|
| 117 |
+
model.classifier = nn.Linear(model.classifier.in_features, 10)
|
| 118 |
+
return model
|
| 119 |
+
|
| 120 |
+
def get_models_for_dataset(dataset_name):
|
| 121 |
+
if dataset_name == 'MNIST':
|
| 122 |
+
return ['LeNet']
|
| 123 |
+
elif dataset_name == 'CIFAR-10':
|
| 124 |
+
return [
|
| 125 |
+
'VGG16', 'VGG19', 'GoogLeNet', 'ResNet18', 'WideResNet',
|
| 126 |
+
'DenseNet121', 'MobileNetV2', 'EfficientNet-B0'
|
| 127 |
+
]
|
| 128 |
+
else:
|
| 129 |
+
return []
|
| 130 |
+
|
| 131 |
+
def get_dataset_and_transform(dataset_name):
|
| 132 |
+
if dataset_name == 'MNIST':
|
| 133 |
+
transform = transforms.Compose([
|
| 134 |
+
transforms.Resize((28, 28)),
|
| 135 |
+
transforms.Grayscale(num_output_channels=1),
|
| 136 |
+
transforms.ToTensor(),
|
| 137 |
+
transforms.Normalize((0.1307,), (0.3081,))
|
| 138 |
+
])
|
| 139 |
+
dataset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
|
| 140 |
+
else: # CIFAR-10
|
| 141 |
+
transform = transforms.Compose([
|
| 142 |
+
transforms.Resize((224, 224)),
|
| 143 |
+
transforms.ToTensor(),
|
| 144 |
+
transforms.Normalize((0.485, 0.456, 0.406),
|
| 145 |
+
(0.229, 0.224, 0.225))
|
| 146 |
+
])
|
| 147 |
+
dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
|
| 148 |
+
return dataset, transform
|
| 149 |
+
|
| 150 |
+
def initialize_model(model_name, device):
|
| 151 |
+
if model_name == 'LeNet':
|
| 152 |
+
model = LeNet()
|
| 153 |
+
elif model_name == 'VGG16':
|
| 154 |
+
model = modify_model(vgg16(weights='IMAGENET1K_V1'), model_name)
|
| 155 |
+
elif model_name == 'VGG19':
|
| 156 |
+
model = modify_model(vgg19(weights='IMAGENET1K_V1'), model_name)
|
| 157 |
+
elif model_name == 'GoogLeNet':
|
| 158 |
+
model = modify_model(googlenet(weights='IMAGENET1K_V1'), model_name)
|
| 159 |
+
elif model_name == 'ResNet18':
|
| 160 |
+
model = modify_model(resnet18(weights='IMAGENET1K_V1'), model_name)
|
| 161 |
+
elif model_name == 'WideResNet':
|
| 162 |
+
model = modify_model(timm.create_model('wide_resnet50_2', pretrained=True), model_name)
|
| 163 |
+
elif model_name == 'DenseNet121':
|
| 164 |
+
model = modify_model(timm.create_model('densenet121', pretrained=True), model_name)
|
| 165 |
+
elif model_name == 'MobileNetV2':
|
| 166 |
+
model = modify_model(timm.create_model('mobilenetv2_100', pretrained=True), model_name)
|
| 167 |
+
elif model_name == 'EfficientNet-B0':
|
| 168 |
+
model = modify_model(timm.create_model('efficientnet_b0', pretrained=True), model_name)
|
| 169 |
+
else:
|
| 170 |
+
raise ValueError(f"Unknown model {model_name}")
|
| 171 |
+
return model.to(device)
|
| 172 |
+
|
| 173 |
+
def layer_sustainability_analysis(dataset_name, model_name, selected_attacks, num_batches, output_dir_base='outputs'):
|
| 174 |
+
start_time = time.time()
|
| 175 |
+
logs = []
|
| 176 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 177 |
+
|
| 178 |
+
dataset, transform = get_dataset_and_transform(dataset_name)
|
| 179 |
+
testloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=False)
|
| 180 |
+
logs.append(f"{dataset_name} dataset loaded")
|
| 181 |
+
|
| 182 |
+
model = initialize_model(model_name, device)
|
| 183 |
+
logs.append(f"Model {model_name} loaded on {device}")
|
| 184 |
+
|
| 185 |
+
param_count, layer_count = get_model_stats(model)
|
| 186 |
+
logs.append(f"Model stats: {param_count} parameters, {layer_count} layers")
|
| 187 |
+
|
| 188 |
+
all_attacks = {
|
| 189 |
+
'FGSM': FGSM(model, eps=0.03),
|
| 190 |
+
'PGD': PGD(model, eps=0.03, alpha=0.01, steps=40, random_start=True),
|
| 191 |
+
'APGD': APGD(model, eps=0.03, steps=100, loss='ce'),
|
| 192 |
+
'Salt & Pepper': lambda x, y: salt_pepper_noise(x, prob=0.01, device=device),
|
| 193 |
+
'Pepper Statistical': lambda x, y: pepper_statistical_noise(x, prob=0.01, device=device)
|
| 194 |
+
}
|
| 195 |
+
attacks = {name: attack for name, attack in all_attacks.items() if name in selected_attacks}
|
| 196 |
+
if not attacks:
|
| 197 |
+
logs.append("Error: No valid attacks selected")
|
| 198 |
+
return ["No valid attacks selected", None] + [None]*6 + ["", '\n'.join(logs)]
|
| 199 |
+
logs.append(f"Selected attacks: {', '.join(attacks.keys())}")
|
| 200 |
+
|
| 201 |
+
results = {attack_name: {'cm': [], 'mvl': []} for attack_name in attacks}
|
| 202 |
+
|
| 203 |
+
for i, (images, labels) in enumerate(testloader):
|
| 204 |
+
if i >= num_batches:
|
| 205 |
+
break
|
| 206 |
+
images, labels = images.to(device), labels.to(device)
|
| 207 |
+
logs.append(f"Processing batch {i+1}/{num_batches}...")
|
| 208 |
+
|
| 209 |
+
for attack_name, attack in attacks.items():
|
| 210 |
+
adv_images = attack(images, labels)
|
| 211 |
+
mvl_list = compute_mvl(model, images, adv_images, device)
|
| 212 |
+
results[attack_name]['mvl'].append(mvl_list)
|
| 213 |
+
cm = np.mean(mvl_list)
|
| 214 |
+
results[attack_name]['cm'].append(cm)
|
| 215 |
+
|
| 216 |
+
# Placeholders for plots (add your plot generation here)
|
| 217 |
+
cm_plot_path = None
|
| 218 |
+
mvl_plot_paths = [None]*5
|
| 219 |
+
integrated_mvl_plot_path = None
|
| 220 |
+
|
| 221 |
+
processing_time = time.time() - start_time
|
| 222 |
+
|
| 223 |
+
stats = {
|
| 224 |
+
'Dataset': dataset_name,
|
| 225 |
+
'Model': model_name,
|
| 226 |
+
'Parameter Count': param_count,
|
| 227 |
+
'Layer Count': layer_count,
|
| 228 |
+
'Processing Time (s)': round(processing_time, 2),
|
| 229 |
+
'Number of Batches': num_batches,
|
| 230 |
+
'Attacks Used': ', '.join(attacks.keys())
|
| 231 |
+
}
|
| 232 |
+
stats_text = "## Model Statistics\n\n| Metric | Value |\n|--------|-------|\n"
|
| 233 |
+
for k,v in stats.items():
|
| 234 |
+
stats_text += f"| {k} | {v} |\n"
|
| 235 |
+
|
| 236 |
+
return [None, cm_plot_path] + mvl_plot_paths[:5] + [integrated_mvl_plot_path, stats_text, '\n'.join(logs)]
|
| 237 |
+
|
| 238 |
+
paper_info_html = """
|
| 239 |
+
<div style="border: 1px solid #ccc; padding: 15px; border-radius: 8px; margin-bottom: 15px;">
|
| 240 |
+
<h2>Layer-wise Regularized Adversarial Training Using Layers Sustainability Analysis Framework</h2>
|
| 241 |
+
<h3>Authors</h3>
|
| 242 |
+
<p>Mohammad Khalooei, Mohammad Mehdi Homaypour, Maryam Amirmazlaghani</p>
|
| 243 |
+
|
| 244 |
+
<h3>Abstract</h3>
|
| 245 |
+
<ul>
|
| 246 |
+
<li>The layer sustainability analysis (LSA) framework is introduced to evaluate the behavior of layer-level representations of DNNs in dealing with network input perturbations using Lipschitz theoretical concepts.</li>
|
| 247 |
+
<li>A layer-wise regularized adversarial training (AT-LR) approach significantly improves the generalization and robustness of different deep neural network architectures for significant perturbations while reducing layer-level vulnerabilities.</li>
|
| 248 |
+
<li>AT-LR loss landscapes for each LSA MVL proposal can interpret layer importance for different layers, which is an intriguing aspect.</li>
|
| 249 |
+
</ul>
|
| 250 |
+
|
| 251 |
+
<h3>Links</h3>
|
| 252 |
+
<ul>
|
| 253 |
+
<li><a href="https://arxiv.org/abs/2202.02626" target="_blank">ArXiv Paper</a></li>
|
| 254 |
+
<li><a href="https://github.com/khalooei/LSA" target="_blank">GitHub Repository</a></li>
|
| 255 |
+
<li><a href="https://www.sciencedirect.com/science/article/abs/pii/S0925231223002928" target="_blank">ScienceDirect Article</a></li>
|
| 256 |
+
</ul>
|
| 257 |
+
</div>
|
| 258 |
+
"""
|
| 259 |
+
|
| 260 |
+
def update_models(dataset_name):
|
| 261 |
+
models = get_models_for_dataset(dataset_name)
|
| 262 |
+
default_value = models[0] if models else None
|
| 263 |
+
return models, default_value # Return choices and default value as a tuple
|
| 264 |
+
|
| 265 |
+
def create_interface():
|
| 266 |
+
datasets = ['MNIST', 'CIFAR-10']
|
| 267 |
+
attacks = ['FGSM', 'PGD', 'APGD', 'Salt & Pepper', 'Pepper Statistical']
|
| 268 |
+
|
| 269 |
+
with gr.Blocks() as interface:
|
| 270 |
+
gr.Markdown("# Layer-wise Sustainability Analysis")
|
| 271 |
+
gr.Markdown(paper_info_html)
|
| 272 |
+
|
| 273 |
+
dataset_input = gr.Dropdown(datasets, label="Select Dataset", value='CIFAR-10')
|
| 274 |
+
model_input = gr.Dropdown(get_models_for_dataset('CIFAR-10'), label="Select Model")
|
| 275 |
+
attack_input = gr.CheckboxGroup(choices=attacks, label="Select Attacks", value=attacks)
|
| 276 |
+
batch_input = gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Number of Batches")
|
| 277 |
+
run_button = gr.Button("Run Analysis")
|
| 278 |
+
|
| 279 |
+
error_output = gr.Textbox(label="Error", visible=False)
|
| 280 |
+
cm_output = gr.Image(label="Comparative Measure (CM)")
|
| 281 |
+
|
| 282 |
+
with gr.Tabs():
|
| 283 |
+
mvl_outputs = []
|
| 284 |
+
for attack in attacks:
|
| 285 |
+
with gr.Tab(f"MVL: {attack}"):
|
| 286 |
+
mvl_output = gr.Image(label=f"MVL for {attack}")
|
| 287 |
+
mvl_outputs.append(mvl_output)
|
| 288 |
+
with gr.Tab("Integrated MVL"):
|
| 289 |
+
integrated_mvl_output = gr.Image(label="Integrated MVL for All Attacks")
|
| 290 |
+
with gr.Tab("Model Statistics"):
|
| 291 |
+
stats_output = gr.Markdown("## Model Statistics")
|
| 292 |
+
with gr.Tab("Logs"):
|
| 293 |
+
log_output = gr.Textbox(label="Processing Logs")
|
| 294 |
+
|
| 295 |
+
# Return choices and value separately for older gradio versions
|
| 296 |
+
dataset_input.change(
|
| 297 |
+
fn=update_models,
|
| 298 |
+
inputs=dataset_input,
|
| 299 |
+
outputs=[model_input, model_input]
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
run_button.click(
|
| 303 |
+
fn=layer_sustainability_analysis,
|
| 304 |
+
inputs=[dataset_input, model_input, attack_input, batch_input],
|
| 305 |
+
outputs=[error_output, cm_output] + mvl_outputs + [integrated_mvl_output, stats_output, log_output]
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
return interface
|
| 309 |
+
|
| 310 |
+
if __name__ == '__main__':
|
| 311 |
+
interface = create_interface()
|
| 312 |
+
interface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torchattacks
|
| 2 |
+
timm
|
| 3 |
+
gradio
|
| 4 |
+
datetime
|
| 5 |
+
torch
|
| 6 |
+
torchvision
|
| 7 |
+
numpy
|
| 8 |
+
matplotlib
|