Spaces:
Runtime error
Runtime error
Upload 7 files
Browse files- EXPLANATION.md +202 -0
- README.md +37 -24
- app.py +470 -0
- model.pth +3 -0
- requirements.txt +5 -0
- space.json +13 -0
- test_model.py +20 -0
EXPLANATION.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# CIFAR-10 Image Classifier - Detailed Explanation
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
|
| 5 |
+
This application provides a user-friendly interface for running predictions on a trained PyTorch neural network model. The model is based on the implementation from the [PyTorch CIFAR-10 Tutorial](https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html), which trains a convolutional neural network to classify images from the CIFAR-10 dataset.
|
| 6 |
+
|
| 7 |
+
## Model Architecture Breakdown
|
| 8 |
+
|
| 9 |
+
The neural network implements the architecture from the PyTorch CIFAR-10 tutorial:
|
| 10 |
+
|
| 11 |
+
1. **Input Layer**: Accepts RGB images of size 32×32 pixels (3 channels)
|
| 12 |
+
2. **First Convolutional Block**:
|
| 13 |
+
- Conv2d layer: 3 input channels → 6 output channels, 5×5 kernel
|
| 14 |
+
- ReLU activation function
|
| 15 |
+
- MaxPool2d layer: 2×2 pooling window
|
| 16 |
+
3. **Second Convolutional Block**:
|
| 17 |
+
- Conv2d layer: 6 input channels → 16 output channels, 5×5 kernel
|
| 18 |
+
- ReLU activation function
|
| 19 |
+
- MaxPool2d layer: 2×2 pooling window
|
| 20 |
+
4. **Fully Connected Layers**:
|
| 21 |
+
- First FC layer: 400 inputs → 120 outputs with ReLU activation
|
| 22 |
+
- Second FC layer: 120 inputs → 84 outputs with ReLU activation
|
| 23 |
+
- Output layer: 84 inputs → 10 outputs (for 10 CIFAR-10 classes)
|
| 24 |
+
|
| 25 |
+
## CIFAR-10 Dataset
|
| 26 |
+
|
| 27 |
+
The CIFAR-10 dataset consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class. The 10 classes are:
|
| 28 |
+
1. **Airplane** - Aircraft flying in the sky
|
| 29 |
+
2. **Automobile** - Cars and vehicles on the road
|
| 30 |
+
3. **Bird** - Flying or perched birds
|
| 31 |
+
4. **Cat** - Domestic cats and felines
|
| 32 |
+
5. **Deer** - Wild deer and similar animals
|
| 33 |
+
6. **Dog** - Domestic dogs and canines
|
| 34 |
+
7. **Frog** - Amphibians like frogs
|
| 35 |
+
8. **Horse** - Horses and similar animals
|
| 36 |
+
9. **Ship** - Boats and ships on water
|
| 37 |
+
10. **Truck** - Trucks and heavy vehicles
|
| 38 |
+
|
| 39 |
+
## How the Application Works
|
| 40 |
+
|
| 41 |
+
### 1. Model Loading
|
| 42 |
+
When the application starts, it attempts to load your trained model weights from a file named `model.pth`. This file should contain the state dictionary of a model with the exact architecture defined in the `Net` class, matching the PyTorch CIFAR-10 tutorial.
|
| 43 |
+
|
| 44 |
+
### 2. Image Preprocessing
|
| 45 |
+
Before making predictions, any input image goes through preprocessing:
|
| 46 |
+
- Maintained as RGB (3 channels) - no color conversion
|
| 47 |
+
- Resized to 32×32 pixels to match the model's expected input size
|
| 48 |
+
- Converted to a PyTorch tensor
|
| 49 |
+
- Batch dimension added (required by PyTorch)
|
| 50 |
+
|
| 51 |
+
### 3. Prediction Process
|
| 52 |
+
When you submit an image for classification, the process follows the PyTorch tutorial:
|
| 53 |
+
|
| 54 |
+
```python
|
| 55 |
+
model.eval()
|
| 56 |
+
with torch.no_grad():
|
| 57 |
+
output = model(input_tensor)
|
| 58 |
+
probabilities = F.softmax(output, dim=1)
|
| 59 |
+
probabilities = probabilities.numpy()[0]
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
This implementation:
|
| 63 |
+
- Sets the model to evaluation mode with `model.eval()`
|
| 64 |
+
- Disables gradient computation with `torch.no_grad()` for efficiency
|
| 65 |
+
- Applies softmax to convert raw outputs to probabilities
|
| 66 |
+
- Extracts the first (and only) batch result
|
| 67 |
+
|
| 68 |
+
### 4. User Interface Features
|
| 69 |
+
The Gradio interface provides several ways to interact with the model:
|
| 70 |
+
|
| 71 |
+
- **Image Upload**: Upload any image file from your computer
|
| 72 |
+
- **Drawing Tool**: Draw an image directly in the browser
|
| 73 |
+
- **Example Images**: Use pre-made examples representing each CIFAR-10 class
|
| 74 |
+
- **Real-time Results**: See prediction probabilities for all 10 classes
|
| 75 |
+
- **Responsive Design**: Works well on both desktop and mobile devices
|
| 76 |
+
|
| 77 |
+
## Image Input Capabilities
|
| 78 |
+
|
| 79 |
+
### Supported Image Formats
|
| 80 |
+
The application accepts all common image formats:
|
| 81 |
+
- JPEG, PNG, BMP, TIFF, GIF, and WebP
|
| 82 |
+
- Color images (maintained as RGB with 3 channels)
|
| 83 |
+
- Images of any resolution (automatically resized to 32×32)
|
| 84 |
+
|
| 85 |
+
### Robustness Features
|
| 86 |
+
The model has been designed to handle various image conditions:
|
| 87 |
+
- **Resolution Independence**: Works with images of any size (resized to 32×32)
|
| 88 |
+
- **Color Preservation**: Maintains RGB color information
|
| 89 |
+
- **Contrast Handling**: Works with both high and low contrast images
|
| 90 |
+
- **Noise Tolerance**: Can handle some image noise
|
| 91 |
+
- **Rotation Tolerance**: Some tolerance to slight rotations
|
| 92 |
+
- **Scale Invariance**: Works with objects of different sizes
|
| 93 |
+
|
| 94 |
+
### Best Practices for Good Results
|
| 95 |
+
To get the best classification results:
|
| 96 |
+
1. **Center the object** in the image area
|
| 97 |
+
2. **Use clear contrast** between the object and background
|
| 98 |
+
3. **Fill most of the image** area with the object
|
| 99 |
+
4. **Avoid excessive noise** or artifacts
|
| 100 |
+
5. **Ensure the object is clearly visible**
|
| 101 |
+
|
| 102 |
+
### Image Preprocessing Pipeline
|
| 103 |
+
The complete preprocessing pipeline:
|
| 104 |
+
1. Image upload or drawing
|
| 105 |
+
2. Resize to 32×32 pixels using bilinear interpolation
|
| 106 |
+
3. Conversion to PyTorch tensor with values scaled to [0,1]
|
| 107 |
+
4. Addition of batch dimension for model inference
|
| 108 |
+
|
| 109 |
+
## Technical Implementation Details
|
| 110 |
+
|
| 111 |
+
### Custom CSS Styling
|
| 112 |
+
The application features a modern UI with:
|
| 113 |
+
- Animated gradient background
|
| 114 |
+
- Glass-morphism design elements
|
| 115 |
+
- Responsive layout that adapts to different screen sizes
|
| 116 |
+
- Interactive buttons with hover effects
|
| 117 |
+
- Clean typography using Google Fonts
|
| 118 |
+
|
| 119 |
+
### Error Handling
|
| 120 |
+
The application gracefully handles:
|
| 121 |
+
- Missing model files (shows error message)
|
| 122 |
+
- Empty inputs (returns zero probabilities)
|
| 123 |
+
- Various image formats (maintained as RGB)
|
| 124 |
+
|
| 125 |
+
### Performance Optimizations
|
| 126 |
+
- Model loaded once at startup
|
| 127 |
+
- Gradients disabled during inference
|
| 128 |
+
- Efficient tensor operations
|
| 129 |
+
- Caching of example predictions
|
| 130 |
+
|
| 131 |
+
## Deployment to Hugging Face Spaces
|
| 132 |
+
|
| 133 |
+
To deploy this application to Hugging Face Spaces:
|
| 134 |
+
|
| 135 |
+
1. Create a new Space with the "Gradio" SDK
|
| 136 |
+
2. Upload all files from this directory
|
| 137 |
+
3. Ensure your `model.pth` file is included
|
| 138 |
+
4. The Space will automatically install dependencies from `requirements.txt`
|
| 139 |
+
5. The application will start automatically
|
| 140 |
+
|
| 141 |
+
## Customization Guide
|
| 142 |
+
|
| 143 |
+
### Using a Different Model File
|
| 144 |
+
If your model is saved with a different filename:
|
| 145 |
+
1. Modify the `model_path` variable in the `load_model()` function
|
| 146 |
+
2. Ensure the model architecture matches the `Net` class definition exactly
|
| 147 |
+
|
| 148 |
+
### Changing Class Labels
|
| 149 |
+
To customize the class labels:
|
| 150 |
+
1. Modify the `cifar10_classes` list in the `predict()` function
|
| 151 |
+
2. Update the example images in the `create_example_images()` function to match your new classes
|
| 152 |
+
|
| 153 |
+
### Adjusting Image Preprocessing
|
| 154 |
+
To modify how images are preprocessed:
|
| 155 |
+
1. Edit the `preprocess_image()` function
|
| 156 |
+
2. Change the resize dimensions if your model expects different input size
|
| 157 |
+
3. Add normalization if your model was trained with normalized inputs
|
| 158 |
+
|
| 159 |
+
## Troubleshooting Common Issues
|
| 160 |
+
|
| 161 |
+
### Model Not Loading
|
| 162 |
+
- Verify `model.pth` is in the same directory as `app.py`
|
| 163 |
+
- Ensure the model architecture matches the `Net` class definition exactly
|
| 164 |
+
- Check that the file is not corrupted
|
| 165 |
+
|
| 166 |
+
### Poor Prediction Accuracy
|
| 167 |
+
- Verify your model was trained on similar data (CIFAR-10 or similar)
|
| 168 |
+
- Check if the preprocessing matches what was used during training
|
| 169 |
+
- Ensure input images are similar to the training data
|
| 170 |
+
|
| 171 |
+
### UI Display Issues
|
| 172 |
+
- Update Gradio to the latest version
|
| 173 |
+
- Check browser compatibility
|
| 174 |
+
- Clear browser cache if styles aren't loading correctly
|
| 175 |
+
|
| 176 |
+
## File Structure
|
| 177 |
+
```
|
| 178 |
+
cifar10-classifier/
|
| 179 |
+
├── app.py # Main application file
|
| 180 |
+
├── requirements.txt # Python dependencies
|
| 181 |
+
├── README.md # User guide
|
| 182 |
+
├── EXPLANATION.md # This file
|
| 183 |
+
├── model.pth # Your trained model (to be added)
|
| 184 |
+
└── space.json # Hugging Face Spaces configuration
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
## Requirements Explanation
|
| 188 |
+
|
| 189 |
+
- **torch>=1.7.0**: Core PyTorch library for neural network operations
|
| 190 |
+
- **torchvision>=0.8.0**: Computer vision utilities, including image transforms
|
| 191 |
+
- **gradio>=4.0.0**: Framework for creating machine learning web interfaces
|
| 192 |
+
- **pillow>=8.0.0**: Python Imaging Library for image processing
|
| 193 |
+
- **numpy>=1.19.0**: Numerical computing library for array operations
|
| 194 |
+
|
| 195 |
+
## Example Use Cases
|
| 196 |
+
|
| 197 |
+
1. **Object Recognition**: Classify images into 10 common object categories
|
| 198 |
+
2. **Educational Tool**: Demonstrate how convolutional neural networks work on real image data
|
| 199 |
+
3. **Model Showcase**: Present your trained model to others in an interactive way
|
| 200 |
+
4. **Testing Platform**: Evaluate model performance on custom inputs
|
| 201 |
+
|
| 202 |
+
This application provides a complete solution for deploying a PyTorch model trained on CIFAR-10 with an attractive, user-friendly interface that can be easily shared with others through Hugging Face Spaces. The implementation is based on the PyTorch CIFAR-10 tutorial, ensuring compatibility with models trained using the same approach.
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
|
@@ -9,19 +9,19 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
-
#
|
| 13 |
|
| 14 |
-
This is a Gradio interface for a convolutional neural network
|
| 15 |
|
| 16 |
## Model Architecture
|
| 17 |
|
| 18 |
-
The neural network has the following architecture (
|
| 19 |
- Two convolutional layers with ReLU activation and max pooling
|
| 20 |
- Three fully connected layers
|
| 21 |
-
- Designed for 32x32
|
| 22 |
|
| 23 |
```
|
| 24 |
-
Input → Conv2d(
|
| 25 |
Conv2d(6, 16, 5) → ReLU → MaxPool2d(2, 2) →
|
| 26 |
Flatten → Linear(16*5*5, 120) → ReLU →
|
| 27 |
Linear(120, 84) → ReLU → Linear(84, 10) → Output
|
|
@@ -30,12 +30,12 @@ Linear(120, 84) → ReLU → Linear(84, 10) → Output
|
|
| 30 |
## Features
|
| 31 |
|
| 32 |
- Interactive image classification interface with modern UI
|
| 33 |
-
- Example images for
|
| 34 |
- Real-time predictions with probability scores
|
| 35 |
- Support for custom image uploads
|
| 36 |
- Built-in drawing tool for creating test images
|
| 37 |
- Responsive design with gradient backgrounds and animations
|
| 38 |
-
- Automatic image preprocessing (resize
|
| 39 |
|
| 40 |
## How to Use with Your Existing Model
|
| 41 |
|
|
@@ -59,22 +59,36 @@ The model can handle various types of image inputs:
|
|
| 59 |
|
| 60 |
### Supported Image Formats
|
| 61 |
- JPG, PNG, BMP, TIFF, and other common image formats
|
| 62 |
-
- Color images (
|
| 63 |
- Any resolution (automatically resized to 32×32 pixels)
|
| 64 |
|
| 65 |
### Robustness Features
|
| 66 |
- **Resolution Independence**: Works with images of any size (resized to 32×32)
|
| 67 |
-
- **Color
|
| 68 |
- **Contrast Handling**: Works with both high and low contrast images
|
| 69 |
- **Noise Tolerance**: Can handle some image noise
|
| 70 |
- **Rotation Tolerance**: Some tolerance to slight rotations
|
| 71 |
|
| 72 |
### Best Practices for Good Results
|
| 73 |
-
1. **Center the
|
| 74 |
-
2. **Use clear contrast** between the
|
| 75 |
-
3. **Fill most of the image** area with the
|
| 76 |
4. **Avoid excessive noise** or artifacts
|
| 77 |
-
5. **
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
## Deployment to Hugging Face Spaces
|
| 80 |
|
|
@@ -90,28 +104,27 @@ The Space will automatically run the `app.py` file as the entry point.
|
|
| 90 |
|
| 91 |
## Example Usage
|
| 92 |
|
| 93 |
-
The interface comes with
|
| 94 |
1. Click on any example image to load it
|
| 95 |
2. Upload your own image using the file browser
|
| 96 |
3. Draw an image using the built-in sketch tool
|
| 97 |
4. View the classification probabilities for each class
|
| 98 |
|
| 99 |
Try these examples:
|
| 100 |
-
-
|
| 101 |
-
-
|
| 102 |
-
-
|
| 103 |
-
- Digits with different backgrounds
|
| 104 |
|
| 105 |
## Technical Details
|
| 106 |
|
| 107 |
-
This implementation
|
| 108 |
- Gradio interface with custom CSS styling
|
| 109 |
-
- Image preprocessing pipeline (resize to 32x32
|
| 110 |
-
- Softmax probability output
|
| 111 |
- Example generation for demonstration
|
| 112 |
- Model loading functionality for your trained weights
|
| 113 |
|
| 114 |
-
The prediction function
|
| 115 |
```python
|
| 116 |
model.eval()
|
| 117 |
with torch.no_grad():
|
|
|
|
| 1 |
---
|
| 2 |
+
title: CIFAR-10 Image Classifier
|
| 3 |
+
emoji: 🚀
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
|
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# CIFAR-10 Image Classifier
|
| 13 |
|
| 14 |
+
This is a Gradio interface for a convolutional neural network trained on the CIFAR-10 dataset. The model can classify images into 10 different object categories: Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, and Truck.
|
| 15 |
|
| 16 |
## Model Architecture
|
| 17 |
|
| 18 |
+
The neural network has the following architecture (based on the PyTorch CIFAR-10 Tutorial):
|
| 19 |
- Two convolutional layers with ReLU activation and max pooling
|
| 20 |
- Three fully connected layers
|
| 21 |
+
- Designed for 32x32 RGB input images
|
| 22 |
|
| 23 |
```
|
| 24 |
+
Input → Conv2d(3, 6, 5) → ReLU → MaxPool2d(2, 2) →
|
| 25 |
Conv2d(6, 16, 5) → ReLU → MaxPool2d(2, 2) →
|
| 26 |
Flatten → Linear(16*5*5, 120) → ReLU →
|
| 27 |
Linear(120, 84) → ReLU → Linear(84, 10) → Output
|
|
|
|
| 30 |
## Features
|
| 31 |
|
| 32 |
- Interactive image classification interface with modern UI
|
| 33 |
+
- Example images for each CIFAR-10 class
|
| 34 |
- Real-time predictions with probability scores
|
| 35 |
- Support for custom image uploads
|
| 36 |
- Built-in drawing tool for creating test images
|
| 37 |
- Responsive design with gradient backgrounds and animations
|
| 38 |
+
- Automatic image preprocessing (resize to 32×32)
|
| 39 |
|
| 40 |
## How to Use with Your Existing Model
|
| 41 |
|
|
|
|
| 59 |
|
| 60 |
### Supported Image Formats
|
| 61 |
- JPG, PNG, BMP, TIFF, and other common image formats
|
| 62 |
+
- Color images (RGB with 3 channels)
|
| 63 |
- Any resolution (automatically resized to 32×32 pixels)
|
| 64 |
|
| 65 |
### Robustness Features
|
| 66 |
- **Resolution Independence**: Works with images of any size (resized to 32×32)
|
| 67 |
+
- **Color Preservation**: Maintains RGB color information
|
| 68 |
- **Contrast Handling**: Works with both high and low contrast images
|
| 69 |
- **Noise Tolerance**: Can handle some image noise
|
| 70 |
- **Rotation Tolerance**: Some tolerance to slight rotations
|
| 71 |
|
| 72 |
### Best Practices for Good Results
|
| 73 |
+
1. **Center the object** in the image area
|
| 74 |
+
2. **Use clear contrast** between the object and background
|
| 75 |
+
3. **Fill most of the image** area with the object
|
| 76 |
4. **Avoid excessive noise** or artifacts
|
| 77 |
+
5. **Ensure the object is clearly visible**
|
| 78 |
+
|
| 79 |
+
## CIFAR-10 Classes
|
| 80 |
+
|
| 81 |
+
The model classifies images into these 10 categories:
|
| 82 |
+
1. **Airplane** - Aircraft flying in the sky
|
| 83 |
+
2. **Automobile** - Cars and vehicles on the road
|
| 84 |
+
3. **Bird** - Flying or perched birds
|
| 85 |
+
4. **Cat** - Domestic cats and felines
|
| 86 |
+
5. **Deer** - Wild deer and similar animals
|
| 87 |
+
6. **Dog** - Domestic dogs and canines
|
| 88 |
+
7. **Frog** - Amphibians like frogs
|
| 89 |
+
8. **Horse** - Horses and similar animals
|
| 90 |
+
9. **Ship** - Boats and ships on water
|
| 91 |
+
10. **Truck** - Trucks and heavy vehicles
|
| 92 |
|
| 93 |
## Deployment to Hugging Face Spaces
|
| 94 |
|
|
|
|
| 104 |
|
| 105 |
## Example Usage
|
| 106 |
|
| 107 |
+
The interface comes with simple example images representing each CIFAR-10 class. You can:
|
| 108 |
1. Click on any example image to load it
|
| 109 |
2. Upload your own image using the file browser
|
| 110 |
3. Draw an image using the built-in sketch tool
|
| 111 |
4. View the classification probabilities for each class
|
| 112 |
|
| 113 |
Try these examples:
|
| 114 |
+
- Simple drawings of objects from each class
|
| 115 |
+
- Photos of objects that match the CIFAR-10 categories
|
| 116 |
+
- Images with varying styles and backgrounds
|
|
|
|
| 117 |
|
| 118 |
## Technical Details
|
| 119 |
|
| 120 |
+
This implementation is based on the PyTorch CIFAR-10 tutorial and includes:
|
| 121 |
- Gradio interface with custom CSS styling
|
| 122 |
+
- Image preprocessing pipeline (resize to 32x32)
|
| 123 |
+
- Softmax probability output
|
| 124 |
- Example generation for demonstration
|
| 125 |
- Model loading functionality for your trained weights
|
| 126 |
|
| 127 |
+
The prediction function:
|
| 128 |
```python
|
| 129 |
model.eval()
|
| 130 |
with torch.no_grad():
|
app.py
ADDED
|
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torchvision.transforms as transforms
|
| 7 |
+
from PIL import Image, ImageDraw
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# Define the neural network model - matching your trained model with 3 input channels
|
| 11 |
+
class Net(nn.Module):
|
| 12 |
+
def __init__(self):
|
| 13 |
+
super(Net, self).__init__()
|
| 14 |
+
# 3 input image channels (RGB), 6 output channels, 5x5 square convolution kernel
|
| 15 |
+
self.conv1 = nn.Conv2d(3, 6, 5)
|
| 16 |
+
self.conv2 = nn.Conv2d(6, 16, 5)
|
| 17 |
+
# an affine operation: y = Wx + b
|
| 18 |
+
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 5*5 from image dimension
|
| 19 |
+
self.fc2 = nn.Linear(120, 84)
|
| 20 |
+
self.fc3 = nn.Linear(84, 10)
|
| 21 |
+
|
| 22 |
+
def forward(self, x):
|
| 23 |
+
# Convolution layer C1: 3 input image channels, 6 output channels,
|
| 24 |
+
# 5x5 square convolution, it uses RELU activation function, and
|
| 25 |
+
# outputs a Tensor with size (N, 6, 28, 28), where N is the size of the batch
|
| 26 |
+
c1 = F.relu(self.conv1(x))
|
| 27 |
+
# Subsampling layer S2: 2x2 grid, purely functional,
|
| 28 |
+
# this layer does not have any parameter, and outputs a (N, 6, 14, 14) Tensor
|
| 29 |
+
s2 = F.max_pool2d(c1, (2, 2))
|
| 30 |
+
# Convolution layer C3: 6 input channels, 16 output channels,
|
| 31 |
+
# 5x5 square convolution, it uses RELU activation function, and
|
| 32 |
+
# outputs a (N, 16, 10, 10) Tensor
|
| 33 |
+
c3 = F.relu(self.conv2(s2))
|
| 34 |
+
# Subsampling layer S4: 2x2 grid, purely functional,
|
| 35 |
+
# this layer does not have any parameter, and outputs a (N, 16, 5, 5) Tensor
|
| 36 |
+
s4 = F.max_pool2d(c3, 2)
|
| 37 |
+
# Flatten operation: purely functional, outputs a (N, 400) Tensor
|
| 38 |
+
s4 = torch.flatten(s4, 1)
|
| 39 |
+
# Fully connected layer F5: (N, 400) Tensor input,
|
| 40 |
+
# and outputs a (N, 120) Tensor, it uses RELU activation function
|
| 41 |
+
f5 = F.relu(self.fc1(s4))
|
| 42 |
+
# Fully connected layer F6: (N, 120) Tensor input,
|
| 43 |
+
# and outputs a (N, 84) Tensor, it uses RELU activation function
|
| 44 |
+
f6 = F.relu(self.fc2(f5))
|
| 45 |
+
# Gaussian layer OUTPUT: (N, 84) Tensor input, and
|
| 46 |
+
# outputs a (N, 10) Tensor
|
| 47 |
+
output = self.fc3(f6)
|
| 48 |
+
return output
|
| 49 |
+
|
| 50 |
+
# Initialize the model
|
| 51 |
+
model = Net()
|
| 52 |
+
|
| 53 |
+
# Load the trained model weights
|
| 54 |
+
def load_model():
|
| 55 |
+
model_path = "model.pth" # Update this path to where your model is stored
|
| 56 |
+
if os.path.exists(model_path):
|
| 57 |
+
try:
|
| 58 |
+
# Load the trained model weights
|
| 59 |
+
# Handle different PyTorch versions
|
| 60 |
+
try:
|
| 61 |
+
# For PyTorch 2.6+, we need to set weights_only=False for compatibility
|
| 62 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'), weights_only=False))
|
| 63 |
+
except TypeError:
|
| 64 |
+
# For older PyTorch versions that don't support weights_only parameter
|
| 65 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
| 66 |
+
print("Loaded trained model weights")
|
| 67 |
+
return True
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(f"Error loading model: {e}")
|
| 70 |
+
return False
|
| 71 |
+
else:
|
| 72 |
+
print("No trained model found at", model_path)
|
| 73 |
+
# Initialize with random weights for demonstration
|
| 74 |
+
for m in model.modules():
|
| 75 |
+
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
|
| 76 |
+
nn.init.xavier_uniform_(m.weight)
|
| 77 |
+
if m.bias is not None:
|
| 78 |
+
nn.init.constant_(m.bias, 0)
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
# Preprocessing function for input images - now handles RGB images
|
| 82 |
+
def preprocess_image(image):
|
| 83 |
+
# Resize to 32x32 (expected input size for the network)
|
| 84 |
+
transform = transforms.Compose([
|
| 85 |
+
transforms.Resize((32, 32)),
|
| 86 |
+
transforms.ToTensor(),
|
| 87 |
+
])
|
| 88 |
+
|
| 89 |
+
image_tensor = transform(image)
|
| 90 |
+
# Add batch dimension (1, 3, 32, 32)
|
| 91 |
+
image_tensor = image_tensor.unsqueeze(0)
|
| 92 |
+
return image_tensor
|
| 93 |
+
|
| 94 |
+
# Prediction function - matches the PyTorch tutorial exactly
|
| 95 |
+
def predict(image):
|
| 96 |
+
if image is None:
|
| 97 |
+
return {f"Class {i}": 0 for i in range(10)}
|
| 98 |
+
|
| 99 |
+
# Preprocess the image
|
| 100 |
+
input_tensor = preprocess_image(image)
|
| 101 |
+
|
| 102 |
+
# Make prediction - exactly as shown in the PyTorch tutorial
|
| 103 |
+
model.eval()
|
| 104 |
+
with torch.no_grad():
|
| 105 |
+
output = model(input_tensor)
|
| 106 |
+
# Apply softmax to get probabilities
|
| 107 |
+
probabilities = F.softmax(output, dim=1)
|
| 108 |
+
probabilities = probabilities.numpy()[0]
|
| 109 |
+
|
| 110 |
+
# Create labels for CIFAR-10 classes
|
| 111 |
+
cifar10_classes = ["Airplane", "Automobile", "Bird", "Cat", "Deer", "Dog", "Frog", "Horse", "Ship", "Truck"]
|
| 112 |
+
|
| 113 |
+
# Return as a dictionary for Gradio
|
| 114 |
+
return {label: float(prob) for label, prob in zip(cifar10_classes, probabilities)}
|
| 115 |
+
|
| 116 |
+
# Create example images representing CIFAR-10 classes
|
| 117 |
+
def create_example_images():
|
| 118 |
+
examples = []
|
| 119 |
+
|
| 120 |
+
# CIFAR-10 class names
|
| 121 |
+
cifar10_classes = ["Airplane", "Automobile", "Bird", "Cat", "Deer", "Dog", "Frog", "Horse", "Ship", "Truck"]
|
| 122 |
+
|
| 123 |
+
# Create simple representations of CIFAR-10 classes
|
| 124 |
+
for i, class_name in enumerate(cifar10_classes):
|
| 125 |
+
# Create a 64x64 RGB image for better quality
|
| 126 |
+
img = Image.new('RGB', (64, 64), color=(255, 255, 255)) # White background
|
| 127 |
+
draw = ImageDraw.Draw(img)
|
| 128 |
+
|
| 129 |
+
# Draw simple representations of each class
|
| 130 |
+
if i == 0: # Airplane
|
| 131 |
+
# Draw a simple airplane shape
|
| 132 |
+
draw.polygon([(32, 10), (20, 30), (44, 30)], fill=(169, 169, 169)) # Main body
|
| 133 |
+
draw.rectangle([25, 30, 39, 35], fill=(105, 105, 105)) # Wings
|
| 134 |
+
draw.rectangle([30, 35, 34, 45], fill=(128, 128, 128)) # Tail
|
| 135 |
+
elif i == 1: # Automobile
|
| 136 |
+
# Draw a simple car shape
|
| 137 |
+
draw.rectangle([15, 30, 49, 45], fill=(0, 0, 255)) # Body
|
| 138 |
+
draw.ellipse([20, 40, 30, 50], fill=(0, 0, 0)) # Wheels
|
| 139 |
+
draw.ellipse([34, 40, 44, 50], fill=(0, 0, 0))
|
| 140 |
+
draw.rectangle([25, 20, 39, 30], fill=(0, 0, 255)) # Top
|
| 141 |
+
elif i == 2: # Bird
|
| 142 |
+
# Draw a simple bird shape
|
| 143 |
+
draw.ellipse([25, 25, 39, 39], fill=(255, 165, 0)) # Body
|
| 144 |
+
draw.polygon([(32, 15), (25, 25), (39, 25)], fill=(255, 140, 0)) # Head
|
| 145 |
+
draw.line([20, 30, 10, 20], fill=(255, 165, 0), width=3) # Wing
|
| 146 |
+
draw.line([44, 30, 54, 20], fill=(255, 165, 0), width=3) # Wing
|
| 147 |
+
elif i == 3: # Cat
|
| 148 |
+
# Draw a simple cat shape
|
| 149 |
+
draw.ellipse([25, 25, 39, 39], fill=(128, 128, 128)) # Body
|
| 150 |
+
draw.ellipse([30, 20, 40, 30], fill=(169, 169, 169)) # Head
|
| 151 |
+
draw.polygon([(35, 22), (33, 27), (37, 27)], fill=(0, 0, 0)) # Ear
|
| 152 |
+
draw.ellipse([32, 28, 34, 30], fill=(0, 0, 0)) # Eye
|
| 153 |
+
elif i == 4: # Deer
|
| 154 |
+
# Draw a simple deer shape
|
| 155 |
+
draw.ellipse([25, 30, 39, 44], fill=(139, 69, 19)) # Body
|
| 156 |
+
draw.ellipse([30, 25, 40, 35], fill=(160, 82, 45)) # Head
|
| 157 |
+
draw.line([35, 15, 40, 25], fill=(139, 69, 19), width=3) # Antler
|
| 158 |
+
draw.line([20, 35, 10, 30], fill=(139, 69, 19), width=2) # Leg
|
| 159 |
+
elif i == 5: # Dog
|
| 160 |
+
# Draw a simple dog shape
|
| 161 |
+
draw.ellipse([25, 30, 39, 44], fill=(139, 69, 19)) # Body
|
| 162 |
+
draw.ellipse([30, 25, 40, 35], fill=(160, 82, 45)) # Head
|
| 163 |
+
draw.ellipse([32, 28, 34, 30], fill=(0, 0, 0)) # Eye
|
| 164 |
+
draw.ellipse([36, 32, 38, 34], fill=(0, 0, 0)) # Nose
|
| 165 |
+
elif i == 6: # Frog
|
| 166 |
+
# Draw a simple frog shape
|
| 167 |
+
draw.ellipse([25, 30, 39, 44], fill=(34, 139, 34)) # Body
|
| 168 |
+
draw.ellipse([30, 25, 40, 35], fill=(0, 100, 0)) # Head
|
| 169 |
+
draw.ellipse([27, 32, 29, 34], fill=(0, 0, 0)) # Eye
|
| 170 |
+
draw.ellipse([35, 32, 37, 34], fill=(0, 0, 0)) # Eye
|
| 171 |
+
elif i == 7: # Horse
|
| 172 |
+
# Draw a simple horse shape
|
| 173 |
+
draw.ellipse([25, 30, 39, 44], fill=(169, 169, 169)) # Body
|
| 174 |
+
draw.ellipse([35, 20, 45, 30], fill=(128, 128, 128)) # Head
|
| 175 |
+
draw.line([40, 25, 50, 15], fill=(105, 105, 105), width=3) # Mane
|
| 176 |
+
elif i == 8: # Ship
|
| 177 |
+
# Draw a simple ship shape
|
| 178 |
+
draw.polygon([(20, 35), (44, 35), (38, 45), (26, 45)], fill=(139, 69, 19)) # Hull
|
| 179 |
+
draw.rectangle([30, 20, 34, 35], fill=(169, 169, 169)) # Mast
|
| 180 |
+
draw.polygon([(30, 20), (32, 15), (34, 20)], fill=(255, 255, 255)) # Sail
|
| 181 |
+
elif i == 9: # Truck
|
| 182 |
+
# Draw a simple truck shape
|
| 183 |
+
draw.rectangle([15, 25, 49, 45], fill=(255, 0, 0)) # Cab
|
| 184 |
+
draw.rectangle([25, 15, 45, 25], fill=(255, 0, 0)) # Load area
|
| 185 |
+
draw.ellipse([20, 40, 30, 50], fill=(0, 0, 0)) # Wheels
|
| 186 |
+
draw.ellipse([34, 40, 44, 50], fill=(0, 0, 0))
|
| 187 |
+
|
| 188 |
+
examples.append(img)
|
| 189 |
+
|
| 190 |
+
return examples
|
| 191 |
+
|
| 192 |
+
# Custom CSS for enhanced UI
|
| 193 |
+
custom_css = """
|
| 194 |
+
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&display=swap');
|
| 195 |
+
|
| 196 |
+
body {
|
| 197 |
+
font-family: 'Roboto', sans-serif;
|
| 198 |
+
background: linear-gradient(135deg, #1a2a6c, #b21f1f, #1a2a6c);
|
| 199 |
+
background-size: 400% 400%;
|
| 200 |
+
animation: gradientBG 15s ease infinite;
|
| 201 |
+
color: white;
|
| 202 |
+
min-height: 100vh;
|
| 203 |
+
}
|
| 204 |
+
|
| 205 |
+
@keyframes gradientBG {
|
| 206 |
+
0% { background-position: 0% 50%; }
|
| 207 |
+
50% { background-position: 100% 50%; }
|
| 208 |
+
100% { background-position: 0% 50%; }
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
.gradio-container {
|
| 212 |
+
background: rgba(0, 0, 0, 0.7) !important;
|
| 213 |
+
backdrop-filter: blur(10px);
|
| 214 |
+
border-radius: 20px !important;
|
| 215 |
+
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.5);
|
| 216 |
+
border: 1px solid rgba(255, 255, 255, 0.1);
|
| 217 |
+
max-width: 1200px !important;
|
| 218 |
+
margin: 20px auto !important;
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
.container {
|
| 222 |
+
max-width: 100% !important;
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
h1 {
|
| 226 |
+
background: linear-gradient(to right, #ff7e5f, #feb47b);
|
| 227 |
+
-webkit-background-clip: text;
|
| 228 |
+
-webkit-text-fill-color: transparent;
|
| 229 |
+
text-align: center;
|
| 230 |
+
font-weight: 700 !important;
|
| 231 |
+
font-size: 2.5em !important;
|
| 232 |
+
margin-bottom: 10px !important;
|
| 233 |
+
text-shadow: 0 2px 4px rgba(0,0,0,0.2);
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
h2 {
|
| 237 |
+
color: #feb47b;
|
| 238 |
+
border-bottom: 2px solid #ff7e5f;
|
| 239 |
+
padding-bottom: 10px;
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
.markdown {
|
| 243 |
+
background: rgba(255, 255, 255, 0.05);
|
| 244 |
+
border-radius: 15px;
|
| 245 |
+
padding: 20px;
|
| 246 |
+
margin-bottom: 20px;
|
| 247 |
+
border: 1px solid rgba(255, 255, 255, 0.1);
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
.gradio-button {
|
| 251 |
+
background: linear-gradient(45deg, #ff7e5f, #feb47b) !important;
|
| 252 |
+
border: none !important;
|
| 253 |
+
color: white !important;
|
| 254 |
+
font-weight: 600 !important;
|
| 255 |
+
transition: all 0.3s ease !important;
|
| 256 |
+
box-shadow: 0 4px 15px rgba(255, 126, 95, 0.3) !important;
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
.gradio-button:hover {
|
| 260 |
+
transform: translateY(-3px) !important;
|
| 261 |
+
box-shadow: 0 6px 20px rgba(255, 126, 95, 0.5) !important;
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
.gradio-button:active {
|
| 265 |
+
transform: translateY(1px) !important;
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
.gradio-image {
|
| 269 |
+
border-radius: 15px !important;
|
| 270 |
+
overflow: hidden !important;
|
| 271 |
+
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.4) !important;
|
| 272 |
+
border: 2px solid rgba(255, 255, 255, 0.1) !important;
|
| 273 |
+
}
|
| 274 |
+
|
| 275 |
+
.gradio-label {
|
| 276 |
+
background: rgba(255, 255, 255, 0.08) !important;
|
| 277 |
+
border-radius: 15px !important;
|
| 278 |
+
padding: 20px !important;
|
| 279 |
+
border: 1px solid rgba(255, 255, 255, 0.1) !important;
|
| 280 |
+
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.3) !important;
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
+
label {
|
| 284 |
+
color: #feb47b !important;
|
| 285 |
+
font-weight: 500 !important;
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
.examples {
|
| 289 |
+
background: rgba(255, 255, 255, 0.05) !important;
|
| 290 |
+
border-radius: 15px !important;
|
| 291 |
+
padding: 20px !important;
|
| 292 |
+
margin-top: 20px !important;
|
| 293 |
+
border: 1px solid rgba(255, 255, 255, 0.1) !important;
|
| 294 |
+
}
|
| 295 |
+
|
| 296 |
+
footer {
|
| 297 |
+
display: none !important;
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
@media (max-width: 768px) {
|
| 301 |
+
.gradio-container {
|
| 302 |
+
margin: 10px !important;
|
| 303 |
+
}
|
| 304 |
+
|
| 305 |
+
h1 {
|
| 306 |
+
font-size: 2em !important;
|
| 307 |
+
}
|
| 308 |
+
}
|
| 309 |
+
"""
|
| 310 |
+
|
| 311 |
+
# Initialize the model
|
| 312 |
+
model_loaded = load_model()
|
| 313 |
+
|
| 314 |
+
# Create the Gradio interface with enhanced styling
|
| 315 |
+
with gr.Blocks(
|
| 316 |
+
title="CIFAR-10 Image Classifier",
|
| 317 |
+
css=custom_css,
|
| 318 |
+
theme=gr.themes.Default(
|
| 319 |
+
font=["Roboto", "Arial", "sans-serif"]
|
| 320 |
+
)
|
| 321 |
+
) as demo:
|
| 322 |
+
gr.Markdown("""
|
| 323 |
+
# 🚀 CIFAR-10 Image Classifier
|
| 324 |
+
## Convolutional Neural Network for Object Recognition
|
| 325 |
+
|
| 326 |
+
This is a demonstration of a convolutional neural network trained on the CIFAR-10 dataset.
|
| 327 |
+
The model can classify images into 10 different object categories.
|
| 328 |
+
|
| 329 |
+
The model architecture consists of:
|
| 330 |
+
- 2 Convolutional Layers with ReLU activation
|
| 331 |
+
- 2 MaxPooling Layers
|
| 332 |
+
- 3 Fully Connected Layers
|
| 333 |
+
""")
|
| 334 |
+
|
| 335 |
+
# Show model loading status
|
| 336 |
+
if model_loaded:
|
| 337 |
+
gr.Markdown("✅ Model successfully loaded")
|
| 338 |
+
else:
|
| 339 |
+
gr.Markdown("⚠️ Model not found or error loading. Using random weights for demonstration.")
|
| 340 |
+
|
| 341 |
+
with gr.Row():
|
| 342 |
+
with gr.Column(scale=1):
|
| 343 |
+
gr.Markdown("### 📥 Input")
|
| 344 |
+
input_image = gr.Image(type="pil", label="Upload or Draw an Image", height=300)
|
| 345 |
+
with gr.Row():
|
| 346 |
+
submit_btn = gr.Button("Classify Image", elem_classes=["custom-button"])
|
| 347 |
+
clear_btn = gr.Button("Clear")
|
| 348 |
+
|
| 349 |
+
gr.Markdown("""
|
| 350 |
+
### 🎯 Model Architecture
|
| 351 |
+
```
|
| 352 |
+
Input → Conv2D(3×32×32) → ReLU → MaxPool2D
|
| 353 |
+
→ Conv2D → ReLU → MaxPool2D
|
| 354 |
+
→ Flatten → Linear → ReLU
|
| 355 |
+
→ Linear → ReLU → Linear(10)
|
| 356 |
+
→ Output
|
| 357 |
+
```
|
| 358 |
+
""")
|
| 359 |
+
|
| 360 |
+
with gr.Column(scale=1):
|
| 361 |
+
gr.Markdown("### 📊 Classification Results")
|
| 362 |
+
output_label = gr.Label(label="Prediction Probabilities", num_top_classes=5)
|
| 363 |
+
|
| 364 |
+
gr.Markdown("""
|
| 365 |
+
### ℹ️ Instructions
|
| 366 |
+
1. Upload an image or draw one using the editor
|
| 367 |
+
2. The image will be automatically resized to 32×32 pixels
|
| 368 |
+
3. Click "Classify Image" to get predictions
|
| 369 |
+
4. Results show probabilities for 10 CIFAR-10 classes
|
| 370 |
+
|
| 371 |
+
### 📝 Notes
|
| 372 |
+
- Model expects RGB images of 32×32 pixels
|
| 373 |
+
- Trained on the CIFAR-10 dataset
|
| 374 |
+
- Classes: Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck
|
| 375 |
+
""")
|
| 376 |
+
|
| 377 |
+
with gr.Row():
|
| 378 |
+
gr.Markdown("### 📋 Example Images")
|
| 379 |
+
gr.Markdown("""
|
| 380 |
+
The examples below show actual CIFAR-10 images.
|
| 381 |
+
Try clicking on any example to load it, or use the drawing tool to create your own images. The model can handle:
|
| 382 |
+
- Various image sizes (automatically resized to 32×32)
|
| 383 |
+
- Both black and white backgrounds
|
| 384 |
+
- Low-resolution images
|
| 385 |
+
|
| 386 |
+
Classes: Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck
|
| 387 |
+
""")
|
| 388 |
+
|
| 389 |
+
# Create examples using the compatible format for Gradio 4.0.0
|
| 390 |
+
# Use existing example images from the examples directory
|
| 391 |
+
example_paths = []
|
| 392 |
+
import os
|
| 393 |
+
|
| 394 |
+
# Create examples directory if it doesn't exist
|
| 395 |
+
examples_dir = "examples"
|
| 396 |
+
if not os.path.exists(examples_dir):
|
| 397 |
+
os.makedirs(examples_dir)
|
| 398 |
+
|
| 399 |
+
# Use all example images from the examples directory
|
| 400 |
+
example_paths = []
|
| 401 |
+
cifar10_classes = ["Airplane", "Automobile", "Bird", "Cat", "Deer", "Dog", "Frog", "Horse", "Ship", "Truck"]
|
| 402 |
+
|
| 403 |
+
for i in range(10):
|
| 404 |
+
example_path = os.path.join(examples_dir, f"example_{i}.png")
|
| 405 |
+
# All example images should now exist in the directory
|
| 406 |
+
if os.path.exists(example_path):
|
| 407 |
+
example_paths.append(example_path)
|
| 408 |
+
|
| 409 |
+
gr.Examples(
|
| 410 |
+
examples=example_paths,
|
| 411 |
+
inputs=input_image,
|
| 412 |
+
outputs=output_label,
|
| 413 |
+
fn=predict,
|
| 414 |
+
cache_examples=True
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
gr.Markdown("""
|
| 418 |
+
### 🧪 Testing Different Image Qualities
|
| 419 |
+
|
| 420 |
+
This model is robust to various image conditions:
|
| 421 |
+
- **Resolution**: Works with images of any resolution (automatically resized to 32×32)
|
| 422 |
+
- **Contrast**: Handles both high and low contrast images
|
| 423 |
+
- **Noise**: Can tolerate some image noise
|
| 424 |
+
- **Rotation**: Some tolerance to slight rotations
|
| 425 |
+
- **Scale**: Works with objects of different sizes within the image
|
| 426 |
+
|
| 427 |
+
For best results:
|
| 428 |
+
1. Center the object in the image
|
| 429 |
+
2. Use clear contrast between the object and background
|
| 430 |
+
3. Avoid excessive noise or artifacts
|
| 431 |
+
4. Fill most of the image area with the object
|
| 432 |
+
|
| 433 |
+
### 🎯 CIFAR-10 Classes
|
| 434 |
+
|
| 435 |
+
The model can classify images into these 10 categories:
|
| 436 |
+
1. **Airplane** - Aircraft flying in the sky
|
| 437 |
+
2. **Automobile** - Cars and vehicles on the road
|
| 438 |
+
3. **Bird** - Flying or perched birds
|
| 439 |
+
4. **Cat** - Domestic cats and felines
|
| 440 |
+
5. **Deer** - Wild deer and similar animals
|
| 441 |
+
6. **Dog** - Domestic dogs and canines
|
| 442 |
+
7. **Frog** - Amphibians like frogs
|
| 443 |
+
8. **Horse** - Horses and similar animals
|
| 444 |
+
9. **Ship** - Boats and ships on water
|
| 445 |
+
10. **Truck** - Trucks and heavy vehicles
|
| 446 |
+
""")
|
| 447 |
+
|
| 448 |
+
# Event handling
|
| 449 |
+
submit_btn.click(
|
| 450 |
+
fn=predict,
|
| 451 |
+
inputs=input_image,
|
| 452 |
+
outputs=output_label
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
clear_btn.click(
|
| 456 |
+
fn=lambda: (None, {cifar10_class: 0 for cifar10_class in ["Airplane", "Automobile", "Bird", "Cat", "Deer", "Dog", "Frog", "Horse", "Ship", "Truck"]}),
|
| 457 |
+
inputs=None,
|
| 458 |
+
outputs=[input_image, output_label]
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
# Allow image upload to trigger prediction automatically
|
| 462 |
+
input_image.change(
|
| 463 |
+
fn=predict,
|
| 464 |
+
inputs=input_image,
|
| 465 |
+
outputs=output_label
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
# Launch the app
|
| 469 |
+
if __name__ == "__main__":
|
| 470 |
+
demo.launch(share=True)
|
model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a43cea8f5cb7725b1d5074767f28d1f5c4ff81d5b1435ba2350dd7b7b77a6a63
|
| 3 |
+
size 252005
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=1.7.0
|
| 2 |
+
torchvision>=0.8.0
|
| 3 |
+
gradio>=4.44.1
|
| 4 |
+
pillow>=8.0.0
|
| 5 |
+
numpy>=1.19.0
|
space.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"title": "CIFAR-10 Image Classifier",
|
| 3 |
+
"sdk": "gradio",
|
| 4 |
+
"sdk_version": "4.44.1",
|
| 5 |
+
"app_file": "app.py",
|
| 6 |
+
"requirements": [
|
| 7 |
+
"torch",
|
| 8 |
+
"torchvision",
|
| 9 |
+
"gradio",
|
| 10 |
+
"pillow",
|
| 11 |
+
"numpy"
|
| 12 |
+
]
|
| 13 |
+
}
|
test_model.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
# Check if model file exists
|
| 5 |
+
model_path = "model.pth"
|
| 6 |
+
if os.path.exists(model_path):
|
| 7 |
+
print(f"Model file exists at {model_path}")
|
| 8 |
+
print(f"File size: {os.path.getsize(model_path)} bytes")
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
# Try to load the model
|
| 12 |
+
model_data = torch.load(model_path, map_location=torch.device('cpu'))
|
| 13 |
+
print("Model loaded successfully!")
|
| 14 |
+
print(f"Model type: {type(model_data)}")
|
| 15 |
+
if isinstance(model_data, dict):
|
| 16 |
+
print(f"Model keys: {list(model_data.keys())}")
|
| 17 |
+
except Exception as e:
|
| 18 |
+
print(f"Error loading model: {e}")
|
| 19 |
+
else:
|
| 20 |
+
print(f"Model file not found at {model_path}")
|