File size: 23,538 Bytes
75d7142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# agent.py
import os
import json
import logging
from typing import Dict, Any, List, Optional

from langgraph.graph import StateGraph, END
# from langgraph.checkpoint.memory import MemorySaver # Keep commented unless needed

# Import the specific Tavily tool function
from tools import search_with_tavily
import prompts # Keep prompts for analysis, evaluation, synthesis
from state import AgentState # Keep state definition

# --- LLM and Logging Setup ---
import google.generativeai as genai
from dotenv import load_dotenv

load_dotenv()
API_KEY = os.getenv("GOOGLE_API_KEY")
if not API_KEY:
    raise ValueError("GOOGLE_API_KEY not found in environment variables.")

genai.configure(api_key=API_KEY)
# Use Gemini 1.5 Flash - check model availability and naming conventions
# Consider error handling for model creation if needed
try:
    llm = genai.GenerativeModel('gemini-1.5-flash')
except Exception as e:
    logging.critical(f"Failed to initialize Gemini Model: {e}")
    raise  # Re-raise the exception to stop execution if LLM fails

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - [%(funcName)s] - %(message)s')

# --- Helper Function for LLM Calls ---
# agent.py

# ... (imports and setup) ...

# ... (logging) ...

# --- Helper Function for LLM Calls ---
# agent.py

# ... (imports and setup) ...

# --- Helper Function for LLM Calls ---
def call_llm(prompt: str) -> Optional[str]:
    """ Helper function to call the Gemini LLM and handle potential errors. """
    try:
        logging.debug(f"Calling LLM. Prompt length: {len(prompt)}")

        generation_config = genai.types.GenerationConfig(
            max_output_tokens=4096,
            temperature=0.7
        )
        # safety_settings = [...] # Optional

        response = llm.generate_content(
            prompt,
            generation_config=generation_config,
            # safety_settings=safety_settings
            )

        # Enhanced response checking
        if not response.candidates:
             if response.prompt_feedback and response.prompt_feedback.block_reason:
                  reason = response.prompt_feedback.block_reason
                  logging.error(f"LLM call blocked by API. Reason: {reason}")
                  return f"Error: LLM call blocked due to {reason}"
             else:
                  logging.warning("LLM returned no candidates and no blocking reason.")
                  return None # Or return an empty string "" ?

        # *** CORE FIX: Check the NAME of the finish reason ***
        finish_reason_enum = response.candidates[0].finish_reason
        if finish_reason_enum.name != 'STOP':
             # Log details if it's not STOP
             finish_reason_val = finish_reason_enum.value
             logging.warning(f"LLM response finished with non-STOP reason: {finish_reason_enum.name} (Value: {finish_reason_val})")

             # Check safety ratings if finish reason wasn't STOP
             safety_reason = "Unknown"
             # Basic check for safety ratings presence
             if hasattr(response.candidates[0], 'safety_ratings') and response.candidates[0].safety_ratings:
                 for rating in response.candidates[0].safety_ratings:
                     # Check for a 'blocked' attribute, common in newer APIs
                     if hasattr(rating, 'blocked') and rating.blocked:
                         safety_reason = rating.category.name
                         break
                     # Add other safety check logic if needed based on API specifics
             return f"Error: LLM response ended unexpectedly (Reason: {finish_reason_enum.name}, Safety Block Detected: {safety_reason})"

        # --- If reason IS 'STOP', proceed to text extraction ---
        # Access text via the 'parts' list
        if response.candidates[0].content and response.candidates[0].content.parts:
            if response.candidates[0].content.parts:
                 result = response.candidates[0].content.parts[0].text
                 logging.debug(f"LLM response received. Length: {len(result)}")
                 return result
            else:
                 logging.warning("LLM response has content object but parts list is empty.")
                 return "" # Return empty string for valid empty responses
        else:
             logging.warning("LLM returned no content parts but finished normally (STOP reason).")
             return "" # Return empty string for valid empty responses

    except AttributeError as e:
        logging.error(f"AttributeError processing LLM response: {e}. Response structure might have changed.", exc_info=True)
        return f"Error: Failed to process LLM response structure - {e}"
    except Exception as e:
        logging.error(f"Error calling LLM: {e}", exc_info=True) # Log traceback
        return f"Error: LLM API call failed - {e}"

# --- Rest of agent.py remains the same ---
# ... (copy the rest of your existing agent.py code here) ...

# --- Rest of agent.py remains the same ---
# ... (analyze_query_node, tavily_search_node, etc.) ...

# --- Helper Function for JSON Parsing ---
def clean_json_response(llm_output: str) -> Optional[dict]:
    """ Attempts to parse JSON from LLM output, handling markdown code blocks. """
    if not llm_output or llm_output.startswith("Error:"): # Don't try to parse error messages
        return None
    try:
        # Find the start and end of the JSON block, handling potential ```json fences
        json_start = llm_output.find('{')
        json_end = llm_output.rfind('}')

        if json_start != -1 and json_end != -1 and json_end > json_start:
            json_str = llm_output[json_start:json_end + 1]
            # Further clean potential markdown fences if they wrap the brackets
            if json_str.strip().startswith("```json"):
                 json_str = json_str.strip()[7:]
            if json_str.strip().endswith("```"):
                 json_str = json_str.strip()[:-3]

            return json.loads(json_str.strip())
        else:
            logging.error(f"Could not find valid JSON object delimiters {{}} in LLM output: {llm_output}")
            return None

    except json.JSONDecodeError as e:
        logging.error(f"Failed to decode JSON from LLM output snippet: {e}\nOutput was: {llm_output}")
        return None # Failed to parse

# --- Agent Nodes (Adapted for Tavily) ---

def analyze_query_node(state: AgentState) -> Dict[str, Any]:
    """ Analyzes the user query to plan the research. (Mostly unchanged) """
    logging.info("Node: Analyzing Query")
    query = state['original_query']
    # Use the prompt from prompts.py as before
    try:
        prompt = prompts.QUERY_ANALYZER_PROMPT.format(query=query)
    except KeyError as e:
         logging.critical(f"KeyError during prompt formatting in analyze_query_node: {e}. Check prompts.py.")
         # Cannot proceed without a valid prompt
         return {"error_log": ["Critical prompt formatting error in analyze_query_node."]}

    llm_response = call_llm(prompt)
    parsed_analysis = clean_json_response(llm_response)

    if parsed_analysis and isinstance(parsed_analysis.get('search_queries'), list):
        logging.info(f"Query Analysis successful. Initial search queries: {parsed_analysis['search_queries']}")
        # Initialize state fields needed for the Tavily flow
        initial_updates = {
            "query_analysis": parsed_analysis,
            "search_queries": parsed_analysis['search_queries'],
            "tavily_results": [], # Store results from Tavily
            "accumulated_report_notes": [], # Store formatted Tavily result content
            "error_log": [],
            "current_iteration": 0
        }
        current_state = state.copy()
        current_state.update(initial_updates)
        return current_state # Return the whole updated state dictionary
    else:
        logging.error(f"Failed to parse query analysis from LLM. Raw Response: {llm_response}")
        error_msg = f"Failed to parse LLM response for query analysis. Raw response: {llm_response}"
        error_log = state.get("error_log", []) + [error_msg]
        # Return only the fields to update, LangGraph merges them
        return {"error_log": error_log, "search_queries": []}


def tavily_search_node(state: AgentState) -> Dict[str, Any]:
    """ Performs search using Tavily API. """
    logging.info("Node: Tavily Search")
    # Use .get() with defaults for robustness
    search_queries = state.get('search_queries', [])
    tavily_results_so_far = state.get('tavily_results', [])
    accumulated_notes = state.get('accumulated_report_notes', [])
    errors_so_far = state.get('error_log', [])

    if not search_queries:
         logging.warning("No search queries available for Tavily. Skipping search node.")
         return {} # No change if no queries

    # Use the first query in the list
    query = search_queries[0]
    remaining_queries = search_queries[1:] # Prepare for update later

    # Call Tavily - use include_answer=True to get a potential synthesized answer
    tavily_response = search_with_tavily(
        query=query,
        search_depth="basic", # Start with basic, consider "advanced" later if needed
        max_results=5,
        include_answer=True # Request Tavily's synthesized answer
    )

    # Initialize updates, default to no change
    current_errors = errors_so_far
    new_results = tavily_results_so_far
    new_notes = accumulated_notes

    # Process response
    if tavily_response and "error" not in tavily_response:
        # Get results safely using .get()
        results_list = tavily_response.get('results', [])
        tavily_answer = tavily_response.get('answer') # Can be None

        # Append raw results (optional, good for debugging)
        new_results.extend(results_list)

        # Add Tavily's answer to notes if present and not empty
        if tavily_answer:
             note = f"Tavily Answer (for query: '{query}'):\n{tavily_answer}\n---\n"
             new_notes.append(note)
             logging.info("Added Tavily's synthesized answer to notes.")

        # Add summaries from individual results to notes
        if results_list:
            for result in results_list:
                 # Safely get attributes from each result dictionary
                 url = result.get('url', 'N/A')
                 title = result.get('title', 'No Title')
                 content_summary = result.get('content', 'No Summary Provided')
                 note = f"Source: {url}\nTitle: {title}\nContent Summary: {content_summary}\n---\n"
                 new_notes.append(note)
            logging.info(f"Added {len(results_list)} result summaries to notes.")
        else:
             logging.info("Tavily returned no individual results for this query.")

    else:
        # Log Tavily API errors
        error_msg = tavily_response.get("error", f"Unknown error during Tavily search for '{query}'") if isinstance(tavily_response, dict) else f"Invalid Tavily response format for '{query}'"
        logging.error(error_msg)
        current_errors.append(error_msg)

    # Return the dictionary of fields to update
    return {
        "tavily_results": new_results,
        "accumulated_report_notes": new_notes,
        "search_queries": remaining_queries, # Update the list
        "error_log": current_errors
    }


# Removed: filter_select_urls_node, scrape_websites_node, analyze_content_node

def evaluate_progress_node(state: AgentState) -> Dict[str, Any]:
    """ Evaluates progress based on Tavily results and decides next step. """
    logging.info("Node: Evaluate Progress (Tavily Flow)")
    query = state['original_query']
    analysis = state.get('query_analysis', {}) # Get safely
    # Use notes accumulated from Tavily's answers and summaries
    notes = "\n".join(state.get('accumulated_report_notes', ["No information gathered yet."]))
    current_iter = state.get('current_iteration', 0)
    max_iter = state['max_iterations']

    # Prepare analysis JSON safely
    try:
        analysis_json = json.dumps(analysis, indent=2) if analysis else "{}"
    except TypeError as e:
        logging.error(f"Could not serialize query analysis to JSON: {e}")
        analysis_json = "{}" # Fallback

    # Prompt LLM to evaluate based on Tavily results in notes
    try:
        prompt = prompts.EVALUATOR_PROMPT.format(
            query=query,
            analysis=analysis_json,
            notes=notes,
            iteration=current_iter,
            max_iterations=max_iter
        )
    except KeyError as e:
         logging.critical(f"KeyError during prompt formatting in evaluate_progress_node: {e}. Check prompts.py.")
         # Need to make a decision even if prompt fails
         error_log = state.get("error_log", []) + [f"Critical prompt formatting error in evaluate_progress_node: {e}"]
         return {"error_log": error_log, "_decision": "stop", "current_iteration": current_iter + 1}


    llm_response = call_llm(prompt)
    parsed_eval = clean_json_response(llm_response)

    decision = "stop" # Default to stopping
    next_queries = []
    if parsed_eval and isinstance(parsed_eval.get('decision'), str): # Basic validation
        decision = parsed_eval['decision'].lower()
        if decision == 'continue':
            next_queries_raw = parsed_eval.get('next_search_queries', [])
            # Ensure next_queries is a list of strings
            next_queries = [q for q in next_queries_raw if isinstance(q, str)] if isinstance(next_queries_raw, list) else []

            if not next_queries:
                logging.warning("Evaluator decided to continue but provided no valid new queries. Will stop.")
                decision = 'stop'
            else:
                logging.info(f"Evaluator decided to continue. New queries for Tavily: {next_queries}")
        elif decision == 'synthesize':
            logging.info("Evaluator decided to synthesize.")
        else: # stop or invalid decision string
            if decision != 'stop':
                logging.warning(f"Invalid decision '{decision}' received from evaluator LLM. Defaulting to stop.")
            decision = 'stop'
            logging.info(f"Evaluator decided to stop. Reason: {parsed_eval.get('assessment', 'N/A')}")
    else:
        logging.error(f"Failed to parse evaluation response or get valid decision from LLM. Stopping. Raw: {llm_response}")
        error_log = state.get("error_log", []) + [f"Failed to parse evaluation response or get valid decision. Raw: {llm_response}"]
        return {"error_log": error_log, "_decision": "stop", "current_iteration": current_iter + 1}

    # Update state for next loop or final step
    updates = {"current_iteration": current_iter + 1, "_decision": decision}
    if decision == 'continue':
        # Prepend new queries to the list to be processed next
        current_queries = state.get('search_queries', [])
        updates["search_queries"] = next_queries + current_queries # Combine lists

    return updates


def synthesize_report_node(state: AgentState) -> Dict[str, Any]:
    """ Generates the final research report based on Tavily results. """
    logging.info("Node: Synthesize Final Report (Tavily Flow)")
    query = state['original_query']
    analysis = state.get('query_analysis', {}) # Get safely
    # Notes now contain Tavily answers/summaries
    notes = "\n".join(state.get('accumulated_report_notes', ["No information gathered."]))
    errors = "\n".join(state.get('error_log', ["None"])) # Get safely

    # Prepare analysis JSON safely
    try:
        analysis_json = json.dumps(analysis, indent=2) if analysis else "{}"
    except TypeError as e:
        logging.error(f"Could not serialize query analysis to JSON for synthesis: {e}")
        analysis_json = "{}" # Fallback

    # Use the existing SYNTHESIS_PROMPT - it takes notes and should work
    try:
        prompt = prompts.SYNTHESIS_PROMPT.format(
            query=query, analysis=analysis_json, notes=notes, errors=errors
        )
    except KeyError as e:
         logging.critical(f"KeyError during prompt formatting in synthesize_report_node: {e}. Check prompts.py.")
         fallback = f"Critical prompt formatting error during synthesis. Review notes:\n{notes}\nErrors:\n{errors}"
         error_log = state.get("error_log", []) + [f"Critical prompt formatting error in synthesize_report_node: {e}"]
         return {"final_report": fallback, "error_log": error_log}

    final_report = call_llm(prompt)

    # Check if LLM call itself returned an error string
    if final_report and final_report.startswith("Error:"):
        logging.error(f"Failed to generate final report. LLM Error: {final_report}")
        fallback = f"Failed to synthesize report due to LLM error ({final_report}). Please review accumulated notes:\n{notes}\nErrors:\n{errors}"
        error_log = state.get("error_log", []) + [f"Synthesis failed. LLM Error: {final_report}"]
        return {"final_report": fallback, "error_log": error_log}
    elif not final_report: # Handle None or empty string case
        logging.error("Failed to generate final report. LLM returned empty content.")
        fallback = f"Failed to synthesize report (LLM returned empty content). Please review accumulated notes:\n{notes}\nErrors:\n{errors}"
        error_log = state.get("error_log", []) + ["Synthesis failed: LLM returned empty content."]
        return {"final_report": fallback, "error_log": error_log}
    else:
         # Success case
        logging.info("Successfully generated final report.")
        return {"final_report": final_report}


# --- Conditional Edge Logic ---

def route_after_evaluation(state: AgentState) -> str:
    """ Determines the next node based on the evaluation decision. """
    # Use .get for safety
    decision = state.get("_decision")
    current_iter = state.get("current_iteration", 0)
    max_iter = state.get("max_iterations", 3) # Default if not set
    search_queries_left = state.get("search_queries", [])

    logging.debug(f"Routing: Decision='{decision}', Iteration={current_iter}/{max_iter}, Queries Left={len(search_queries_left)}")

    # Check if max iterations reached OR if decision is continue BUT no queries left
    if current_iter >= max_iter:
        logging.warning(f"Max iterations ({max_iter}) reached. Forcing synthesis.")
        return "synthesize" # Force synthesis
    elif decision == "continue" and not search_queries_left:
        logging.warning("Decision was 'continue' but no search queries remain. Forcing synthesis.")
        return "synthesize" # Force synthesis

    if decision == "continue":
        # Route back to Tavily search node
        return "continue_search"
    elif decision == "synthesize":
        return "synthesize"
    else: # stop or error or invalid decision string
        logging.info(f"Routing to synthesize based on decision '{decision}' or error.")
        return "synthesize"


# --- Build the Graph (Adapted for Tavily Flow) ---

def create_graph() -> StateGraph:
    """ Creates and configures the LangGraph agent with Tavily. """
    workflow = StateGraph(AgentState)

    # Add nodes for the new flow
    workflow.add_node("analyze_query", analyze_query_node)
    workflow.add_node("tavily_search", tavily_search_node)
    # Removed: filter_select_urls, scrape_websites, analyze_content
    workflow.add_node("evaluate_progress", evaluate_progress_node)
    workflow.add_node("synthesize_report", synthesize_report_node)

    # Define edges for the new flow
    workflow.set_entry_point("analyze_query")
    workflow.add_edge("analyze_query", "tavily_search")
    # Removed edges related to scraping/filtering/content analysis

    # Edge from search directly to evaluation
    workflow.add_edge("tavily_search", "evaluate_progress")

    # Conditional edge from evaluation
    workflow.add_conditional_edges(
        "evaluate_progress",
        route_after_evaluation,
        {
            "continue_search": "tavily_search", # Loop back to Tavily search
            "synthesize": "synthesize_report",   # Move to synthesis
        }
    )

    workflow.add_edge("synthesize_report", END)

    # Compile the graph - consider adding checkpointing for resilience
    # memory = MemorySaver()
    # app = workflow.compile(checkpointer=memory)
    app = workflow.compile()
    logging.info("LangGraph agent graph compiled for Tavily flow.")
    return app

# --- Main Agent Class (Remains the same structure) ---
class ResearchAgent:
    def __init__(self, max_iterations=3):
        self.app = create_graph()
        self.max_iterations = max_iterations
        logging.info(f"Research Agent initialized with max_iterations={max_iterations} (Tavily Flow).")

    def run(self, query: str) -> Dict[str, Any]:
        if not query or not query.strip(): # Check for empty/whitespace query
            logging.error("Query cannot be empty.")
            return {"error": "Query cannot be empty.", "final_report": "Error: Query cannot be empty."}

        initial_state = AgentState(
            original_query=query,
            max_iterations=self.max_iterations,
            # Initialize fields potentially used in the graph
            query_analysis=None,
            search_queries=[],
            tavily_results=[],
            accumulated_report_notes=[],
            final_report=None,
            error_log=[],
            current_iteration=0,
            # Include other keys defined in AgentState with default values
            # even if not directly used in the main Tavily flow,
            # to prevent potential key errors if accessed unexpectedly.
            search_results=[],
            urls_to_scrape=[],
            scraped_data={},
            analyzed_data={},
            visited_urls=set()
        )
        logging.info(f"Starting research for query: '{query}' (Tavily Flow)")
        # Increase recursion limit for potential loops
        config = {"recursion_limit": 50}
        final_state = {} # Initialize final_state
        try:
            final_state = self.app.invoke(initial_state, config=config)
            logging.info("Research process finished (Tavily Flow).")
        except Exception as e:
             logging.critical(f"LangGraph invocation failed: {e}", exc_info=True)
             # Populate final_state with error information
             final_state = initial_state # Start with initial state
             final_state['error_log'] = final_state.get('error_log', []) + [f"CRITICAL: Agent execution failed: {e}"]
             final_state['final_report'] = f"CRITICAL ERROR: Agent execution failed. Check logs. Error: {e}"


        # Clean up temporary keys before returning, using .pop with default None
        final_state.pop('_decision', None)

        # Ensure essential keys exist in the returned state, even if run failed early
        final_state.setdefault('final_report', "Processing failed before report generation.")
        final_state.setdefault('error_log', [])

        return final_state