import gradio as gr from huggingface_hub import InferenceClient # Connect to your model on Hugging Face Hub client = InferenceClient("JK-TK/bible2") # Define the response function def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Construct a flat prompt: system + history + current message prompt = system_message.strip() + "\n\n" for user, assistant in history: prompt += f"User: {user}\nAssistant: {assistant}\n" prompt += f"User: {message}\nAssistant:" # Generate response from model using text-generation response = "" for token in client.text_generation( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ): response += token yield response # Create the chat interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a biblical AI assistant.", label="System message"), gr.Slider(minimum=1, maximum=1024, value=300, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], ) if __name__ == "__main__": demo.launch()