File size: 6,829 Bytes
b67858f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from collections.abc import AsyncIterable, Iterable
from typing import Any, Union

from datasets import load_dataset
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from torch.utils.data import Dataset

from ..config.data_args import DataArguments
from ..extras.types import DatasetInfo, HFDataset, Sample


class DataEngine(Dataset):
    """Data engine."""

    def __init__(self, data_args: DataArguments) -> None:
        self.args = data_args
        """Data arguments."""
        self.datasets: dict[str, HFDataset] = {}
        """Dict of (dataset_name, dataset)"""
        self.dataset_infos: dict[str, DatasetInfo] = {}
        """Dict of (dataset_name, dataset_info)"""
        self.data_index: list[tuple[str, int]] = []
        """List of (dataset_name, sample_index)"""
        self.streaming: bool = False
        """Whether dataset is streaming."""
        self.get_dataset_info()
        self.load_dataset()
        self.build_data_index()

    def get_dataset_info(self) -> None:
        """Get dataset info from data arguments."""
        if self.args.dataset.endswith(".yaml") and os.path.isfile(
            os.path.join(self.args.dataset_dir, self.args.dataset)
        ):  # local file
            self.dataset_infos = OmegaConf.load(os.path.join(self.args.dataset_dir, self.args.dataset))
        elif self.args.dataset.endswith(".yaml"):  # hf hub uri, e.g. llamafactory/v1-sft-demo/dataset_info.yaml
            repo_id, filename = os.path.split(self.args.dataset)
            filepath = hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset")
            self.dataset_infos = OmegaConf.load(filepath)
        elif os.path.exists(os.path.join(self.args.dataset_dir, self.args.dataset)):  # local file(s)
            self.dataset_infos = {"default": {"file_name": self.args.dataset}}
        else:  # hf hub dataset, e.g. llamafactory/v1-sft-demo
            self.dataset_infos = {"default": {"hf_hub_url": self.args.dataset}}

    def load_dataset(self) -> None:
        """Load datasets according to dataset info."""
        for key, value in self.dataset_infos.items():
            split = value.get("split", "train")
            streaming = value.get("streaming", False)
            self.streaming |= streaming
            if "hf_hub_url" in value:
                self.datasets[key] = load_dataset(value["hf_hub_url"], split=split, streaming=streaming)
            else:  # data loader plugin
                from ..plugins.data_plugins.loader import DataLoaderPlugin

                self.datasets[key] = DataLoaderPlugin(args=self.args).auto_load_data(value)

    def build_data_index(self) -> None:
        """Build dataset index."""
        for dataset_name, dataset in self.datasets.items():
            size = self.dataset_infos[dataset_name].get("size")
            weight = self.dataset_infos[dataset_name].get("weight")
            if self.streaming:
                data_index = [(dataset_name, -1) for _ in range(1000)]
            else:
                data_index = [(dataset_name, sample_index) for sample_index in range(len(dataset))]

            if size or weight:  # data index plugin
                from ..plugins.data_plugins.loader import DataIndexPlugin

                data_index = DataIndexPlugin().adjust_data_index(data_index, size, weight)

            self.data_index.extend(data_index)

    def _convert_data_sample(self, raw_sample: dict[str, Any], dataset_name: str) -> Sample:
        """Convert dataset sample.

        Args:
            raw_sample (dict[str, Any]): Raw dataset sample.
            dataset_name (str): Dataset name.

        Returns:
            Sample: Dataset sample.
        """
        converter = self.dataset_infos[dataset_name].get("converter")
        if converter is not None:
            from ..plugins.data_plugins.converter import get_converter

            return {"_dataset_name": dataset_name, **get_converter(converter)(raw_sample)}
        else:
            return {"_dataset_name": dataset_name, **raw_sample}

    def __len__(self) -> int:
        """Get dataset length.

        Returns:
            int: Dataset length.
        """
        if self.streaming:
            return -1
        else:
            return len(self.data_index)

    def __getitem__(self, index: Union[int, Any]) -> Union[Sample, list[Sample]]:
        """Get dataset item.

        Args:
            index (int): Dataset index.

        Returns:
            Sample: Dataset item.
        """
        if self.streaming:
            raise ValueError("Streaming dataset does not support index access.")

        if isinstance(index, int):
            dataset_name, sample_index = self.data_index[index]
            return self._convert_data_sample(self.datasets[dataset_name][sample_index], dataset_name)
        else:
            from ..plugins.data_plugins.loader import DataSelectorPlugin

            selected_index = DataSelectorPlugin(data_index=self.data_index).select(index)
            if isinstance(selected_index, list):
                return [
                    self._convert_data_sample(self.datasets[dataset_name][sample_index], dataset_name)
                    for dataset_name, sample_index in selected_index
                ]
            else:
                dataset_name, sample_index = selected_index
                return self._convert_data_sample(self.datasets[dataset_name][sample_index], dataset_name)

    def __iter__(self) -> Iterable:
        """Get dataset iterator.

        Returns:
            Iterable: Dataset iterator.
        """
        if self.streaming:
            pass
        else:
            # TODO: add shuffle here
            pass

        raise NotImplementedError()

    async def __aiter__(self) -> AsyncIterable:
        """Get dataset async iterator.

        Returns:
            AsyncIterable: Dataset async iterator.
        """
        if self.streaming:
            pass
        else:
            # TODO: add shuffle here
            pass

        raise NotImplementedError()


if __name__ == "__main__":
    from ..config.parser import get_args

    data_args, *_ = get_args()
    data_engine = DataEngine(data_args=data_args)
    print(data_engine[0])