File size: 12,352 Bytes
87c83ab 75d3e9f cb63bef 9856d69 889ab6a 87c83ab 889ab6a cb63bef 889ab6a c38363b 889ab6a cb63bef 889ab6a 87c83ab 889ab6a 87c83ab cb63bef 87c83ab 889ab6a 87c83ab 889ab6a 87c83ab 889ab6a 87c83ab c38363b 87c83ab 889ab6a 87c83ab cb63bef 621a5a4 cb63bef 621a5a4 cb63bef 87c83ab 889ab6a 87c83ab 889ab6a 87c83ab 889ab6a 87c83ab 889ab6a 87c83ab 889ab6a cb63bef 87c83ab cb63bef 87c83ab 889ab6a 87c83ab cb63bef 87c83ab 889ab6a cb63bef 889ab6a 87c83ab 889ab6a 87c83ab 889ab6a 87c83ab cb63bef f8cfd7b 9856d69 87c83ab 073e2cd 5424f55 8dd9b7b ed3da92 8dd9b7b ed3da92 8dd9b7b 846ae7b 8dd9b7b 889ab6a c38363b 889ab6a cb63bef 3de6a56 cb63bef f8cfd7b 073e2cd f8cfd7b cb63bef f8cfd7b cb63bef 5424f55 cb63bef f8cfd7b 889ab6a f8cfd7b 889ab6a cb63bef 889ab6a 621a5a4 e29363a 621a5a4 889ab6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
#!/usr/bin/env Rscript
library(optparse)
suppressWarnings(suppressMessages(library(cvms)))
suppressWarnings(suppressMessages(library(dplyr)))
suppressWarnings(suppressMessages(library(ggplot2)))
suppressWarnings(suppressMessages(library(jsonlite)))
dev_mode <- FALSE
option_list <- list(
make_option(c("--data_path"),
type = "character",
help = "Path to data file (.csv)."
),
make_option(c("--out_path"),
type = "character",
help = "Path to save confusion matrix plot at."
),
make_option(c("--settings_path"),
type = "character",
help = "Path to get design settings from. Should be a .json file."
),
make_option(c("--data_are_counts"),
action = "store_true", default = FALSE,
help = "Indicates that `--data_path` contains counts, not predictions."
),
make_option(c("--target_col"),
type = "character",
help = "Target column"
),
make_option(c("--prediction_col"),
type = "character",
help = "Prediction column"
),
make_option(c("--n_col"),
type = "character",
help = "Count column (when `--data_are_counts`)."
),
make_option(c("--sub_col"),
type = "character",
help = "Sub column (when `--data_are_counts`)."
),
make_option(c("--classes"),
type = "character",
help = paste0(
"Comma-separated class names. ",
"Only these classes will be used - in the specified order."
)
)
)
opt_parser <- OptionParser(option_list = option_list)
opt <- parse_args(opt_parser)
design_settings <- tryCatch(
{
read_json(path = opt$settings_path)
},
error = function(e) {
print(paste0(
"Failed to read design settings as a json file ",
opt$settings_path
))
print(e)
stop(e)
}
)
if (isTRUE(dev_mode)) {
print("Arguments:")
print(opt)
print(design_settings)
}
data_are_counts <- opt$data_are_counts
# read.csv turns white space into dots
target_col <- stringr::str_squish(opt$target_col)
target_col <- stringr::str_replace_all(target_col, " ", ".")
prediction_col <- stringr::str_squish(opt$prediction_col)
prediction_col <- stringr::str_replace_all(prediction_col, " ", ".")
n_col <- NULL
if (!is.null(opt$n_col)) {
n_col <- stringr::str_squish(opt$n_col)
n_col <- stringr::str_replace_all(n_col, " ", ".")
}
sub_col <- NULL
if (!is.null(opt$sub_col)) {
if (!data_are_counts) {
stop("`sub_col` can only be specified when data are counts.")
}
sub_col <- stringr::str_squish(opt$sub_col)
sub_col <- stringr::str_replace_all(sub_col, " ", ".")
}
# Read and prepare data frame
df <- tryCatch(
{
read.csv(opt$data_path)
},
error = function(e) {
print(paste0("Failed to read data from ", opt$data_path))
print(e)
stop(e)
}
)
df <- dplyr::as_tibble(df)
if (isTRUE(dev_mode)) {
print(df)
}
if (!target_col %in% colnames(df)) {
stop("Specified `target_col` not a column in the data.")
}
if (!prediction_col %in% colnames(df)) {
stop("Specified `target_col` not a column in the data.")
}
df[[target_col]] <- as.character(df[[target_col]])
if (isTRUE(data_are_counts)) {
df[[prediction_col]] <- as.character(df[[prediction_col]])
}
# Predictions can be either probabilities or
# hard class predictions
if (is.integer(df[[prediction_col]]) || !is.numeric(df[[prediction_col]])) {
all_present_classes <- sort(
c(
unique(df[[target_col]]),
unique(df[[prediction_col]])
)
)
} else {
all_present_classes <- sort(
unique(df[[target_col]])
)
}
if (!is.null(opt$classes)) {
classes <- as.character(
unlist(strsplit(opt$classes, "[,:]")),
recursive = TRUE
)
if (length(setdiff(classes, all_present_classes)) > 0) {
stop("One or more specified classes are not in the data set.")
}
} else {
classes <- all_present_classes
}
if (isTRUE(dev_mode)) {
print(paste0("Selected Classes: ", paste0(classes, collapse = ", ")))
}
if (!isTRUE(data_are_counts)) {
# We remove the unwanted classes from the confusion matrix
# (easier - possibly slower in edge cases)
family <- ifelse(
length(all_present_classes) == 2,
"binomial",
"multinomial"
)
evaluation <- tryCatch(
{
cvms::evaluate(
data = df,
target_col = target_col,
prediction_cols = prediction_col,
type = family
)
},
error = function(e) {
print("Failed to evaluate data.")
print(head(df, 5))
print(e)
stop(e)
}
)
confusion_matrix <- evaluation[["Confusion Matrix"]][[1]]
} else {
confusion_matrix <- dplyr::rename(
df,
Target = !!target_col,
Prediction = !!prediction_col,
N = !!n_col
)
}
confusion_matrix <- dplyr::filter(
confusion_matrix,
Prediction %in% classes,
Target %in% classes
)
# Plotting settings
build_fontface <- function(bold, italic) {
dplyr::case_when(
isTRUE(bold) && isTRUE(italic) ~ "bold.italic",
isTRUE(bold) ~ "bold",
isTRUE(italic) ~ "italic",
TRUE ~ "plain"
)
}
top_font_args <- list(
"size" = design_settings$font_top_size,
"color" = design_settings$font_top_color,
"fontface" = build_fontface(
design_settings$font_top_bold,
design_settings$font_top_italic
),
"alpha" = design_settings$font_top_alpha
)
bottom_font_args <- list(
"size" = design_settings$font_bottom_size,
"color" = design_settings$font_bottom_color,
"fontface" = build_fontface(
design_settings$font_bottom_bold,
design_settings$font_bottom_italic
),
"alpha" = design_settings$font_bottom_alpha
)
percentages_font_args <- list(
"size" = design_settings$font_percentage_size,
"color" = design_settings$font_percentage_color,
"fontface" = build_fontface(
design_settings$font_percentage_bold,
design_settings$font_percentage_italic
),
"alpha" = design_settings$font_percentage_alpha,
"prefix" = design_settings$font_percentage_prefix,
"suffix" = design_settings$font_percentage_suffix
)
normalized_font_args <- list(
"prefix" = design_settings$font_normalized_prefix,
"suffix" = design_settings$font_normalized_suffix
)
counts_font_args <- list(
"prefix" = design_settings$font_counts_prefix,
"suffix" = design_settings$font_counts_suffix
)
if (isTRUE(design_settings$counts_on_top) ||
!isTRUE(design_settings$show_normalized)) {
# Counts on top!
counts_font_args <- c(
counts_font_args, top_font_args
)
normalized_font_args <- c(
normalized_font_args, bottom_font_args
)
} else {
normalized_font_args <- c(
normalized_font_args, top_font_args
)
counts_font_args <- c(
counts_font_args, bottom_font_args
)
}
tile_border_color <- NA
if (isTRUE(design_settings$show_tile_border)) {
tile_border_color <- design_settings$tile_border_color
}
intensity_by <- tolower(design_settings$intensity_by)
if (grepl("normalized", intensity_by)) intensity_by <- "normalized"
intensity_lims <- NULL
if (isTRUE(design_settings$set_intensity_lims)) {
intensity_lims <- c(
design_settings$intensity_min,
design_settings$intensity_max
)
}
palette <- design_settings$palette
if (isTRUE(design_settings$palette_use_custom)) {
palette <- list(
"low" = design_settings$palette_custom_low,
"high" = design_settings$palette_custom_high
)
}
# Sum tiles
sums_settings <- sum_tile_settings()
if (isTRUE(design_settings$show_sums)) {
sum_tile_palette <- design_settings$sum_tile_palette
if (isTRUE(design_settings$sum_tile_palette_use_custom)) {
sum_tile_palette <- list(
"low" = design_settings$sum_tile_palette_custom_low,
"high" = design_settings$sum_tile_palette_custom_high
)
}
sums_settings <- sum_tile_settings(
palette = sum_tile_palette,
label = design_settings$sum_tile_label,
tile_border_color = tile_border_color,
tile_border_size = design_settings$tile_border_size,
tile_border_linetype = design_settings$tile_border_linetype,
tc_tile_border_color = tile_border_color,
tc_tile_border_size = design_settings$tile_border_size,
tc_tile_border_linetype = design_settings$tile_border_linetype
)
}
confusion_matrix_plot <- tryCatch(
{
cvms::plot_confusion_matrix(
confusion_matrix,
sub_col = sub_col,
class_order = classes,
add_sums = design_settings$show_sums,
add_counts = design_settings$show_counts,
add_normalized = design_settings$show_normalized,
add_row_percentages = design_settings$show_row_percentages,
add_col_percentages = design_settings$show_col_percentages,
rm_zero_percentages = !design_settings$show_zero_percentages,
rm_zero_text = !design_settings$show_zero_text,
add_zero_shading = design_settings$show_zero_shading,
amount_3d_effect = as.integer(design_settings$amount_3d_effect),
add_arrows = design_settings$show_arrows,
arrow_size = design_settings$arrow_size,
arrow_nudge_from_text = design_settings$arrow_nudge_from_text,
intensity_by = intensity_by,
intensity_lims = intensity_lims,
intensity_beyond_lims = design_settings$intensity_beyond_lims,
darkness = design_settings$darkness,
counts_on_top = design_settings$counts_on_top,
place_x_axis_above = design_settings$place_x_axis_above,
rotate_y_text = design_settings$rotate_y_text,
diag_percentages_only = design_settings$diag_percentages_only,
digits = as.integer(design_settings$num_digits),
palette = palette,
sums_settings = sums_settings,
font_counts = do.call("font", counts_font_args),
font_normalized = do.call("font", normalized_font_args),
font_row_percentages = do.call("font", percentages_font_args),
font_col_percentages = do.call("font", percentages_font_args),
tile_border_color = tile_border_color,
tile_border_size = design_settings$tile_border_size,
tile_border_linetype = design_settings$tile_border_linetype
)
},
error = function(e) {
print("Failed to create plot from confusion matrix.")
print(confusion_matrix)
print(e)
stop(e)
}
)
# Add labels on x and y axes
confusion_matrix_plot <- confusion_matrix_plot +
ggplot2::labs(
x = design_settings$x_label,
y = design_settings$y_label
)
# Add title
if (nchar(design_settings$title_label) > 0) {
confusion_matrix_plot <- confusion_matrix_plot +
ggplot2::labs(
title = design_settings$title_label
)
}
# Add caption
if (nchar(design_settings$caption_label) > 0) {
confusion_matrix_plot <- confusion_matrix_plot +
ggplot2::labs(
caption = design_settings$caption_label
)
}
tryCatch(
{
ggplot2::ggsave(
opt$out_path,
width = design_settings$width,
height = design_settings$height,
dpi = design_settings$dpi,
units = "px"
)
},
error = function(e) {
print(paste0("png: Failed to ggsave plot to: ", opt$out_path))
print(e)
stop(e)
}
)
# Create a jpg version as well
tryCatch(
{
ggplot2::ggsave(
paste0(substr(
opt$out_path,
start = 1,
stop = nchar(opt$out_path) - 3
), "jpg"),
width = design_settings$width,
height = design_settings$height,
dpi = design_settings$dpi,
units = "px",
bg = "white"
)
},
error = function(e) {
print(paste0("jpg: Failed to ggsave plot to: ", opt$out_path))
print(e)
stop(e)
}
)
|