matikosowy commited on
Commit
28801c1
·
1 Parent(s): dcc6440

description and title

Browse files
Files changed (2) hide show
  1. app.py +4 -2
  2. model.py +1 -2
app.py CHANGED
@@ -9,7 +9,7 @@ import kornia.color as color
9
 
10
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
11
  model = Generator()
12
- model_weights = torch.load('gen6.pth', map_location=device, weights_only=True)
13
  model.load_state_dict(model_weights)
14
  model = model.to(device)
15
  model.eval()
@@ -52,6 +52,8 @@ def predict(image):
52
 
53
  iface = gr.Interface(fn=predict,
54
  inputs=gr.Image(type="pil"),
55
- outputs=gr.Image(type="pil"))
 
 
56
 
57
  iface.launch()
 
9
 
10
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
11
  model = Generator()
12
+ model_weights = torch.load('model.pth', map_location=device, weights_only=True)
13
  model.load_state_dict(model_weights)
14
  model = model.to(device)
15
  model.eval()
 
52
 
53
  iface = gr.Interface(fn=predict,
54
  inputs=gr.Image(type="pil"),
55
+ outputs=gr.Image(type="pil"),
56
+ title="Colorize your grayscale images",
57
+ description="This model colorizes black and white images. Upload a black and white image and see the magic happen! (works best with 256x256)",)
58
 
59
  iface.launch()
model.py CHANGED
@@ -8,7 +8,6 @@ class DropoutAlways(nn.Dropout2d):
8
  def forward(self, x):
9
  return F.dropout2d(x, self.p, training=True)
10
 
11
-
12
  class DownBlock(nn.Module):
13
  def __init__(self, in_channels, out_channels, normalize=True):
14
  super().__init__()
@@ -31,7 +30,7 @@ class UpBlock(nn.Module):
31
  self.block = nn.Sequential(
32
  nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False if normalize else True),
33
  nn.InstanceNorm2d(out_channels, affine=True) if normalize else nn.Identity(),
34
- DropoutAlways(p=0.5) if dropout else nn.Identity(),
35
  nn.ReLU() if activation == 'relu' else nn.Tanh(),
36
  )
37
 
 
8
  def forward(self, x):
9
  return F.dropout2d(x, self.p, training=True)
10
 
 
11
  class DownBlock(nn.Module):
12
  def __init__(self, in_channels, out_channels, normalize=True):
13
  super().__init__()
 
30
  self.block = nn.Sequential(
31
  nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False if normalize else True),
32
  nn.InstanceNorm2d(out_channels, affine=True) if normalize else nn.Identity(),
33
+ DropoutAlways() if dropout else nn.Identity(),
34
  nn.ReLU() if activation == 'relu' else nn.Tanh(),
35
  )
36