|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from transformers import ( |
|
|
AutoTokenizer, |
|
|
CLIPTextConfig, |
|
|
CLIPTextModelWithProjection, |
|
|
CLIPTokenizer, |
|
|
LlamaForCausalLM, |
|
|
T5EncoderModel, |
|
|
) |
|
|
|
|
|
from diffusers import ( |
|
|
AutoencoderKL, |
|
|
FlowMatchEulerDiscreteScheduler, |
|
|
HiDreamImagePipeline, |
|
|
HiDreamImageTransformer2DModel, |
|
|
) |
|
|
from diffusers.utils.testing_utils import enable_full_determinism |
|
|
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
|
|
|
class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
|
pipeline_class = HiDreamImagePipeline |
|
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "prompt_embeds", "negative_prompt_embeds"} |
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
|
|
required_optional_params = PipelineTesterMixin.required_optional_params |
|
|
test_layerwise_casting = True |
|
|
supports_dduf = False |
|
|
|
|
|
def get_dummy_components(self): |
|
|
torch.manual_seed(0) |
|
|
transformer = HiDreamImageTransformer2DModel( |
|
|
patch_size=2, |
|
|
in_channels=4, |
|
|
out_channels=4, |
|
|
num_layers=1, |
|
|
num_single_layers=1, |
|
|
attention_head_dim=8, |
|
|
num_attention_heads=4, |
|
|
caption_channels=[32, 16], |
|
|
text_emb_dim=64, |
|
|
num_routed_experts=4, |
|
|
num_activated_experts=2, |
|
|
axes_dims_rope=(4, 2, 2), |
|
|
max_resolution=(32, 32), |
|
|
llama_layers=(0, 1), |
|
|
).eval() |
|
|
torch.manual_seed(0) |
|
|
vae = AutoencoderKL(scaling_factor=0.3611, shift_factor=0.1159) |
|
|
clip_text_encoder_config = CLIPTextConfig( |
|
|
bos_token_id=0, |
|
|
eos_token_id=2, |
|
|
hidden_size=32, |
|
|
intermediate_size=37, |
|
|
layer_norm_eps=1e-05, |
|
|
num_attention_heads=4, |
|
|
num_hidden_layers=5, |
|
|
pad_token_id=1, |
|
|
vocab_size=1000, |
|
|
hidden_act="gelu", |
|
|
projection_dim=32, |
|
|
max_position_embeddings=128, |
|
|
) |
|
|
|
|
|
torch.manual_seed(0) |
|
|
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) |
|
|
|
|
|
torch.manual_seed(0) |
|
|
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) |
|
|
|
|
|
torch.manual_seed(0) |
|
|
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
|
|
torch.manual_seed(0) |
|
|
text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") |
|
|
text_encoder_4.generation_config.pad_token_id = 1 |
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
tokenizer_4 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") |
|
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler() |
|
|
|
|
|
components = { |
|
|
"scheduler": scheduler, |
|
|
"vae": vae, |
|
|
"text_encoder": text_encoder, |
|
|
"tokenizer": tokenizer, |
|
|
"text_encoder_2": text_encoder_2, |
|
|
"tokenizer_2": tokenizer_2, |
|
|
"text_encoder_3": text_encoder_3, |
|
|
"tokenizer_3": tokenizer_3, |
|
|
"text_encoder_4": text_encoder_4, |
|
|
"tokenizer_4": tokenizer_4, |
|
|
"transformer": transformer, |
|
|
} |
|
|
return components |
|
|
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
|
if str(device).startswith("mps"): |
|
|
generator = torch.manual_seed(seed) |
|
|
else: |
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
inputs = { |
|
|
"prompt": "A painting of a squirrel eating a burger", |
|
|
"generator": generator, |
|
|
"num_inference_steps": 2, |
|
|
"guidance_scale": 5.0, |
|
|
"output_type": "np", |
|
|
} |
|
|
return inputs |
|
|
|
|
|
def test_inference(self): |
|
|
device = "cpu" |
|
|
|
|
|
components = self.get_dummy_components() |
|
|
pipe = self.pipeline_class(**components) |
|
|
pipe.to(device) |
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
inputs = self.get_dummy_inputs(device) |
|
|
image = pipe(**inputs)[0] |
|
|
generated_image = image[0] |
|
|
|
|
|
self.assertEqual(generated_image.shape, (128, 128, 3)) |
|
|
expected_image = torch.randn(128, 128, 3).numpy() |
|
|
max_diff = np.abs(generated_image - expected_image).max() |
|
|
self.assertLessEqual(max_diff, 1e10) |
|
|
|
|
|
def test_inference_batch_single_identical(self): |
|
|
super().test_inference_batch_single_identical(expected_max_diff=3e-4) |
|
|
|