File size: 8,014 Bytes
67fb03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

import os
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
import pyvista as pv
import json
import glob

class Data_loader(Dataset):
    def __init__(self, cfg, split, epoch_seed=None, mode='train'):
        """
        data_dir: parent directory 
        split: list of int, e.g. [0,1,2,3,4] for train, [5] for val, [6] for test
        num_points: number of points to sample per geometry
        epoch_seed: seed for random sampling (for training)
        mode: 'train', 'val', or 'test'
        """
        self.data_dir = cfg.data_dir
        self.split = split
        self.num_points = cfg.num_points
        self.epoch_seed = epoch_seed
        self.mode = mode
        self.cfg = cfg
        self.meshes = []
        self.mesh_names = []
        for idx in split:
            # Find folder matching *_{idx}
            folder = os.path.join(self.data_dir, f"{idx}")
            if not os.path.exists(folder):
                raise FileNotFoundError(f"No folder matching '{idx}' found in {self.data_dir}")

            # Find file matching *_{idx}.vtp inside the folder
            vtp_files = glob.glob(os.path.join(folder, f"{idx}.vtp"))
            if not vtp_files:
                raise FileNotFoundError(f"No file matching '{idx}.vtp' found in {folder}")
            vtp_file = vtp_files[0]
            mesh = pv.read(vtp_file)
            self.meshes.append(mesh)
            self.mesh_names.append(os.path.splitext(os.path.basename(vtp_file))[0])
        # For validation chunking
        self.val_indices = None
        self.val_chunk_ptr = 0
        with open(cfg.json_file, "r") as f:
            self.json_data = json.load(f)
     
    def set_epoch(self, epoch):
        self.epoch_seed = epoch
        self.val_indices = None
        self.val_chunk_ptr = 0

    def __len__(self):
        if self.mode == 'train':
            return len(self.meshes)
        elif self.mode == 'val':
            return len(self.meshes)
        elif self.mode == 'test':
            # Number of chunks = total points in all val meshes // num_points + remainder chunk
            total = 0
            for mesh in self.meshes:
                return len(self.meshes)
        else:
            raise ValueError(f"Unknown mode: {self.mode}")

    def __getitem__(self, idx):

        if self.mode == 'train' or self.mode == 'val':
            # Each item is a geometry, sample num_points randomly
            mesh = self.meshes[idx]
            n_pts = mesh.points.shape[0]
            rng = np.random.default_rng(self.epoch_seed+idx)
            indices = rng.choice(n_pts, self.num_points, replace=False)
            pos = mesh.points
            pos = torch.tensor(pos, dtype=torch.float32)
            pressure = torch.tensor( mesh["pressure"][indices], dtype=torch.float32).unsqueeze(-1)
            
            if self.cfg.normalization == "std_norm":
                target = (pressure - self.json_data["scalars"]["pressure"]["mean"]) / self.json_data["scalars"]["pressure"]["std"]

            if self.cfg.diff_input_velocity:
                inlet_x_vel = torch.tensor( mesh["inlet_x_velocity"], dtype=torch.float32).unsqueeze(-1)
                pos = torch.cat((pos,inlet_x_vel),dim = 1)
            
            if self.cfg.input_normalization == "shift_axis":
                coords = pos[:,:3].clone()

                # Shift x: set minimum x (front bumper) to 0
                coords[:, 0] = coords[:, 0] - coords[:, 0].min()

                # Shift z: set minimum z (ground) to 0
                coords[:, 2] = coords[:, 2] - coords[:, 2].min()

                # Shift y: center about 0 (left/right symmetry)
                y_center = (coords[:, 1].max() + coords[:, 1].min()) / 2.0
                coords[:, 1] = coords[:, 1] - y_center

                pos[:,:3] = coords
                
                
            if self.cfg.pos_embed_sincos:
                
                if self.cfg.diff_input_velocity:
                    raise Exception("pos_embed_sincos not supported with diff_input_velocity=True")
                
                input_pos_mins = torch.tensor(self.json_data["mesh_stats"]["min"])
                input_pos_maxs = torch.tensor(self.json_data["mesh_stats"]["max"])
                pos = 1000*(pos - input_pos_mins) / (input_pos_maxs - input_pos_mins)
                assert torch.all(pos >= 0) 
                assert torch.all(pos <= 1000)

            pos = pos[indices]
            
            return {"input_pos": pos, "output_feat": target ,"data_id": self.mesh_names[idx]}

        elif self.mode == 'test':
            # For each mesh in test, scramble all points and return the full mesh
            mesh = self.meshes[idx]
            n_pts = mesh.points.shape[0]
            rng = np.random.default_rng(self.epoch_seed+idx)
            indices = rng.permutation(n_pts)
            pos = mesh.points
            
            pos = torch.tensor(pos, dtype=torch.float32)
            pressure = torch.tensor( mesh["pressure"][indices], dtype=torch.float32).unsqueeze(-1)

            if self.cfg.normalization == "std_norm":
                target = (pressure - self.json_data["scalars"]["pressure"]["mean"]) / self.json_data["scalars"]["pressure"]["std"]
                
            if hasattr(self.cfg, "diff_input_velocity") and self.cfg.diff_input_velocity:
            
                inlet_x_vel = torch.tensor( mesh["inlet_x_velocity"], dtype=torch.float32).unsqueeze(-1)
                pos = torch.cat((pos,inlet_x_vel),dim = 1)
                
            if self.cfg.input_normalization == "shift_axis":
                
                coords = pos[:,:3].clone()

                # Shift x: set minimum x (front bumper) to 0
                coords[:, 0] = coords[:, 0] - coords[:, 0].min()

                # Shift z: set minimum z (ground) to 0
                coords[:, 2] = coords[:, 2] - coords[:, 2].min()

                # Shift y: center about 0 (left/right symmetry)
                y_center = (coords[:, 1].max() + coords[:, 1].min()) / 2.0
                coords[:, 1] = coords[:, 1] - y_center

                pos[:,:3] = coords
             
            if self.cfg.pos_embed_sincos:
                
                if hasattr(self.cfg, "diff_input_velocity") and self.cfg.diff_input_velocity:
                    raise Exception("pos_embed_sincos not supported with diff_input_velocity=True")
                
                input_pos_mins = torch.tensor(self.json_data["mesh_stats"]["min"])
                input_pos_maxs = torch.tensor(self.json_data["mesh_stats"]["max"])
                pos = 1000*(pos - input_pos_mins) / (input_pos_maxs - input_pos_mins)
                assert torch.all(pos >= 0) 
                assert torch.all(pos <= 1000)
            
            pos = pos[indices]
            
            return {"input_pos": pos, "output_feat": target ,"data_id": self.mesh_names[idx],"physical_coordinates":mesh.points[indices]}

        else:
            raise ValueError(f"Unknown mode: {self.mode}")

def get_dataloaders(cfg):
   

    with open(os.path.join(cfg.splits_file, "train.txt")) as f:
        train_split = [line.strip() for line in f if line.strip()]
    with open(os.path.join(cfg.splits_file, "test.txt")) as f:
        val_split = [line.strip() for line in f if line.strip()]
    with open(os.path.join(cfg.splits_file, "test.txt")) as f:
        test_split = [line.strip() for line in f if line.strip()]
    print("Indices in test_split:", test_split[:5])  # Print first 5 indices for verification


    train_dataset = Data_loader(cfg, train_split, mode='train')
    val_dataset = Data_loader(cfg, val_split, mode='val')
    test_dataset = Data_loader(cfg, test_split, mode='test')

    train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False)
    test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)

    return train_loader, val_loader, test_loader