Spaces:
Sleeping
Sleeping
File size: 18,457 Bytes
67fb03c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
"""
DrivAerML Dataset with Memory-Efficient Presampling Support
This dataset implements presampling functionality for training, validation and test data.
The presampling feature ensures consistent results across different runs, with memory-efficient
on-demand loading.
Presampling Workflow:
1. Set presampled=False in config to create presampled training, validation and test data
2. The system creates fixed samples for all splits
3. Each run's presampled data is saved as individual files in a directory structure
4. Set presampled=True in config to use the saved presampled data for future runs
Directory Structure:
presampled_data_path/
βββ train/
β βββ run_1.npy
β βββ run_2.npy
β βββ ...
βββ validation/
β βββ run_1.npy
β βββ run_2.npy
β βββ ...
βββ test/
βββ run_1.npy
βββ run_2.npy
βββ ...
Configuration Parameters:
- presampled: Boolean flag to control whether to use presampled data
- presampled_data_path: Base path where presampled data directory is created
Usage:
- First run: Set presampled=False to create presampled data
- Subsequent runs: Set presampled=True to use existing presampled data
"""
import os
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from torch.utils.data import default_collate
import json
import re
from sklearn.cluster import KMeans
from sklearn.neighbors import NearestNeighbors
def create_presampled_data(cfg, splits, save_path):
"""
Create presampled training, validation and test data with fixed random sampling.
Saves individual files for each run to enable on-demand loading.
Args:
cfg: Configuration object
splits: Dictionary containing train/validation/test splits
save_path: Base path for saving presampled data (directory will be created)
"""
print("Creating presampled training, validation and test data...")
# Create directory structure for presampled data
base_dir = os.path.splitext(save_path)[0] # Remove .npy extension if present
os.makedirs(base_dir, exist_ok=True)
# Set seed for reproducible sampling
np.random.seed(0)
for split_type in ['train', 'validation', 'test']:
print(f"Processing {split_type} split...")
split_runs = splits[split_type]
# Create subdirectory for this split
split_dir = os.path.join(base_dir, split_type)
os.makedirs(split_dir, exist_ok=True)
for run_number in split_runs:
# Find the corresponding .npy file
for f in os.listdir(cfg.data_dir):
if f.endswith('.npy'):
match = re.search(r'run_(\d+)', f) ## Very inefficient?
if match and int(match.group(1)) == run_number:
npy_file_path = os.path.join(cfg.data_dir, f)
# Load the original data
data = np.load(npy_file_path, allow_pickle=True).item()
coordinates = data['surface_mesh_centers']
field = data['surface_fields']
# Sample points with fixed seed for reproducibility
sample_indices = np.random.choice(coordinates.shape[0], cfg.num_points, replace=False)
sampled_coordinates = coordinates[sample_indices, :]
sampled_field = field[sample_indices, :]
# Save individual presampled file for this run
presampled_run_data = {
'surface_mesh_centers': sampled_coordinates,
'surface_fields': sampled_field
}
run_file_path = os.path.join(split_dir, f'run_{run_number}.npy')
np.save(run_file_path, presampled_run_data)
break
print(f"Presampled data saved to directory: {base_dir}")
print(f"Structure: {base_dir}/{{train,validation,test}}/run_{{number}}.npy")
return base_dir
class DrivAerMLDataset(Dataset):
def __init__(self, cfg, splits = None, split_type = 'train', presampled = False, save_presampled_data_path = None):
"""
Initializes the DrivAerMLDataset instance.
Args:
cfg: Configuration object containing data directory and number of points
splits: List of run numbers to include, if None includes all files
split_type: Type of split ('train', 'validation', 'test')
presampled: Whether to use presampled data
save_presampled_data_path: Base path to the presampled data directory
"""
self.data_dir = cfg.data_dir
self.chunked_eval = cfg.chunked_eval
self.splits = splits
# Store only run numbers and create filename mapping for efficiency
self.run_numbers = []
self.original_filenames = {} # run_number -> original filename
for f in os.listdir(cfg.data_dir):
if f.endswith('.npy'):
match = re.search(r'run_(\d+)', f)
if match:
run_number = int(match.group(1))
if run_number in splits:
self.run_numbers.append(run_number)
self.original_filenames[run_number] = f
if len(self.run_numbers) == 0:
raise ValueError(f"No .npy files found in directory: {cfg.data_dir}")
self.num_points = cfg.num_points
self.split_type = split_type
self.presampled = presampled # Is there a script for non presampled dataloader?
# Set up presampled data directory path (but don't load data yet)
if self.presampled and save_presampled_data_path:
self.presampled_base_dir = os.path.splitext(save_presampled_data_path)[0]
self.presampled_split_dir = os.path.join(self.presampled_base_dir, self.split_type)
if not os.path.exists(self.presampled_split_dir):
raise FileNotFoundError(f"Presampled data directory not found: {self.presampled_split_dir}")
def __len__(self):
return len(self.run_numbers)
def __getitem__(self, idx):
run_number = self.run_numbers[idx]
if self.presampled:
# Load presampled data on-demand
presampled_file_path = os.path.join(self.presampled_split_dir, f'run_{run_number}.npy')
if os.path.exists(presampled_file_path):
data_dict = np.load(presampled_file_path, allow_pickle=True).item()
coordinates = data_dict['surface_mesh_centers']
field = data_dict['surface_fields'][:,0:1]
else:
raise FileNotFoundError(f"Presampled file not found: {presampled_file_path}")
else:
# Load original data
original_filename = self.original_filenames[run_number]
original_file_path = os.path.join(self.data_dir, original_filename)
data = np.load(original_file_path, allow_pickle=True).item()
coordinates = data['surface_mesh_centers']
field = data['surface_fields'][:,0:1]
# Random sampling
sample_indices = np.random.choice(coordinates.shape[0], self.num_points, replace=False)
coordinates = coordinates[sample_indices,:]
field = field[sample_indices,0:1]
if self.split_type == 'test' and self.chunked_eval:
# Load original data
original_filename = self.original_filenames[run_number]
original_file_path = os.path.join(self.data_dir, original_filename)
data = np.load(original_file_path, allow_pickle=True).item()
coordinates = data['surface_mesh_centers']
field = data['surface_fields'][:,0:1]
num_chunks = coordinates.shape[0]//self.num_points
indices = torch.randperm(coordinates.shape[0])[:self.num_points*num_chunks]
# indices = torch.randperm(coordinates.shape[0])
coordinates = coordinates[indices,:]
field = field[indices,0:1]
coordinates_tensor = torch.tensor(coordinates, dtype=torch.float32)
field_tensor = torch.tensor(field, dtype=torch.float32)
# Use mean-std normalization for coordinates
coordinates_tensor = (coordinates_tensor - INPUT_POS_MEAN) / INPUT_POS_STD
field_tensor = (field_tensor - PRESSURE_MEAN) / PRESSURE_STD
data = {'input_pos': coordinates_tensor, 'output_feat': field_tensor, 'output_pos': coordinates_tensor}
return data
def calculate_normalization_constants(dataloader):
"""
Calculate normalization constants for both pressure values and coordinate ranges
across the entire training dataset.
Args:
dataloader: Training DataLoader
Returns:
tuple: (pressure_mean, pressure_std, coord_ranges, coord_mean, coord_std)
where coord_ranges = {'min_x', 'max_x', 'min_y', 'max_y', 'min_z', 'max_z'}
coord_mean = [mean_x, mean_y, mean_z]
coord_std = [std_x, std_y, std_z]
"""
all_pressures = []
all_coordinates = [] # Store all coordinate points for mean/std calculation
# Initialize coordinate extremes
max_x = float('-inf')
max_y = float('-inf')
max_z = float('-inf')
min_x = float('inf')
min_y = float('inf')
min_z = float('inf')
print("Calculating normalization constants...")
for batch_idx, batch in enumerate(dataloader):
# Process pressure values
output_feat = batch['output_feat']
pressures = output_feat.flatten().numpy()
all_pressures.extend(pressures)
# Process coordinate ranges and collect all coordinates
input_pos = batch['input_pos']
# Convert tensor to numpy for coordinate calculations
input_pos_np = input_pos.numpy()
# Collect all coordinate points for mean/std calculation
# Reshape from (batch_size, num_points, 3) to (batch_size * num_points, 3)
coords_reshaped = input_pos_np.reshape(-1, 3)
all_coordinates.extend(coords_reshaped)
# Calculate coordinate ranges
max_x = max(max_x, np.max(input_pos_np[:,:,0]))
max_y = max(max_y, np.max(input_pos_np[:,:,1]))
max_z = max(max_z, np.max(input_pos_np[:,:,2]))
min_x = min(min_x, np.min(input_pos_np[:,:,0]))
min_y = min(min_y, np.min(input_pos_np[:,:,1]))
min_z = min(min_z, np.min(input_pos_np[:,:,2]))
if batch_idx % 10 == 0: # Print progress every 10 batches
print(f"Processed {batch_idx + 1} batches...")
# Convert to numpy arrays for efficient computation
all_pressures = np.array(all_pressures)
all_coordinates = np.array(all_coordinates) # Shape: (total_points, 3)
# Calculate pressure statistics
pressure_mean = np.mean(all_pressures)
pressure_std = np.std(all_pressures)
# Calculate coordinate statistics (mean and std for each dimension)
coord_mean = np.mean(all_coordinates, axis=0) # [mean_x, mean_y, mean_z]
coord_std = np.std(all_coordinates, axis=0) # [std_x, std_y, std_z]
# Store coordinate ranges
coord_ranges = {
'min_x': min_x, 'max_x': max_x,
'min_y': min_y, 'max_y': max_y,
'min_z': min_z, 'max_z': max_z
}
# Print comprehensive statistics
print(f"\nPressure statistics from {len(all_pressures)} data points:")
print(f"Mean: {pressure_mean:.6f}")
print(f"Std: {pressure_std:.6f}")
print(f"Min: {np.min(all_pressures):.6f}")
print(f"Max: {np.max(all_pressures):.6f}")
print(f"\nCoordinate ranges:")
print(f"X: [{min_x:.6f}, {max_x:.6f}]")
print(f"Y: [{min_y:.6f}, {max_y:.6f}]")
print(f"Z: [{min_z:.6f}, {max_z:.6f}]")
print(f"\nCoordinate statistics for mean-std normalization from {len(all_coordinates)} data points:")
print(f"Mean: [{coord_mean[0]:.6f}, {coord_mean[1]:.6f}, {coord_mean[2]:.6f}]")
print(f"Std: [{coord_std[0]:.6f}, {coord_std[1]:.6f}, {coord_std[2]:.6f}]")
print(f"\nFor use in dataset file:")
print(f"INPUT_POS_MEAN = torch.tensor([{coord_mean[0]:.6f}, {coord_mean[1]:.6f}, {coord_mean[2]:.6f}])")
print(f"INPUT_POS_STD = torch.tensor([{coord_std[0]:.6f}, {coord_std[1]:.6f}, {coord_std[2]:.6f}])")
return pressure_mean, pressure_std, coord_ranges, coord_mean, coord_std
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
g = torch.Generator()
g.manual_seed(0)
def get_dataloaders(cfg):
splits = json.load(open(cfg.splits_file)) # How is train validation used in DrivAerML?
# Handle presampling logic
presampled_data_path = getattr(cfg, 'presampled_data_path', os.path.join(cfg.data_dir, 'presampled_val_test_data.npy'))
presampled_base_dir = os.path.splitext(presampled_data_path)[0]
if not cfg.presampled_exists:
# Create presampled data if it doesn't exist or if presampled=False
if not os.path.exists(presampled_base_dir):
print("=" * 60)
print("PRESAMPLING MODE: Creating presampled validation and test data...")
print(f"Presampled data will be saved to: {presampled_base_dir}")
create_presampled_data(cfg, splits, presampled_data_path)
print("Presampled data created successfully!")
print("You can now set presampled=True in config for future runs to use this presampled data.")
print("=" * 60)
else:
print(f"Presampled data directory already exists at: {presampled_base_dir}")
print("Using existing presampled data. Set presampled=True to use it in future runs.")
if not cfg.presampled_exists :
print(f"Warning: presampled=True but presampled data directory not found at {presampled_base_dir}")
print("Creating presampled data...")
create_presampled_data(cfg, splits, presampled_data_path)
use_presampled = True
print(f"Using presampled training, validation and test data from: {presampled_base_dir}")
train_dataset = DrivAerMLDataset(cfg, splits = splits['train'], split_type = 'train',
presampled = use_presampled, save_presampled_data_path = presampled_data_path)
val_dataset = DrivAerMLDataset(cfg, splits = splits['validation'], split_type = 'validation',
presampled = use_presampled, save_presampled_data_path = presampled_data_path)
test_dataset = DrivAerMLDataset(cfg, splits = splits['test'], split_type = 'test',
presampled = use_presampled, save_presampled_data_path = presampled_data_path)
collate_fn = None
train_dataloader = DataLoader(
train_dataset, batch_size=cfg.batch_size, shuffle=True,
drop_last=True, num_workers=cfg.num_workers, collate_fn=collate_fn,
worker_init_fn=seed_worker, generator=g
)
val_dataloader = DataLoader(
val_dataset, batch_size=cfg.batch_size, shuffle=True,
drop_last=True, num_workers=cfg.num_workers, collate_fn=collate_fn,
worker_init_fn=seed_worker, generator=g
)
test_dataloader = DataLoader(
test_dataset, batch_size=1, shuffle=False,
drop_last=False, num_workers=cfg.num_workers, collate_fn=collate_fn,
worker_init_fn=seed_worker, generator=g
)
# # Calculate normalization constants
# print('Calculating normalization constants...')
# pressure_mean, pressure_std, coord_ranges, coord_mean, coord_std = calculate_normalization_constants(train_dataloader)
# exit()
return train_dataloader, val_dataloader, test_dataloader
# Pressure statistics from openfoam surface train dataset (10k points sampled):
# Mean: -229.845718
# Std: 269.598572
# Min: -3651.057861
# Max: 859.160034
# Coordinate ranges:
# X: [-0.941836, 4.131968]
# Y: [-1.129535, 1.125530]
# Z: [-0.317549, 1.244577]
# Pressure statistics from full openfoam surface train dataset (3323811346 data points):
# Mean: -229.266983
# Std: 269.226807
# Min: -111492.804688
# Max: 6382.190918
# Coordinate ranges:
# X: [-0.942579, 4.132785]
# Y: [-1.131676, 1.131676]
# Z: [-0.317577, 1.244584]
# Coordinate statistics for mean-std normalization (computed from full dataset):
# Mean: [1.595103, 0.000000, 0.463503]
# Std: [1.434788, 0.801948, 0.440890]
# Pressure statistics from 6553600 data points:
# Mean: -0.003021
# Std: 1.002092
# Min: -14.342350
# Max: 4.157114
# Coordinate ranges:
# X: [-1.768229, 1.766621]
# Y: [-1.408318, 1.410171]
# Z: [-1.771534, 1.781146]
# Coordinate statistics for mean-std normalization from 6553600 data points:
# Mean: [-0.076668, -0.001889, -0.831090]
# Std: [0.968414, 0.882944, 0.858088]
# For use in dataset file:
# INPUT_POS_MEAN = torch.tensor([-0.076668, -0.001889, -0.831090])
# INPUT_POS_STD = torch.tensor([0.968414, 0.882944, 0.858088])
# # With full dataset - pressure normalization
# PRESSURE_MEAN = -229.266983
# PRESSURE_STD = 269.226807
# # Coordinate normalization using mean-std
# INPUT_POS_MEAN = torch.tensor([1.595103, 0.000000, 0.463503])
# INPUT_POS_STD = torch.tensor([1.434788, 0.801948, 0.440890])
# # Legacy min-max normalization (keep for reference but not used)
# input_pos_mins = torch.tensor([-0.942579, -1.131676, -0.317577])
# input_pos_maxs = torch.tensor([4.132785, 1.131676, 1.244584])
# With full dataset - pressure normalization
PRESSURE_MEAN = -229.266983
PRESSURE_STD = 269.226807
# Coordinate normalization using mean-std
INPUT_POS_MEAN = torch.tensor([1.490858, -0.001515, 0.099364])
INPUT_POS_STD = torch.tensor([1.388309, 0.706769, 0.380478])
# # Legacy min-max normalization (keep for reference but not used)
# input_pos_mins = torch.tensor([-0.942579, -1.131676, -0.317577])
# input_pos_maxs = torch.tensor([4.132785, 1.131676, 1.244584])
# Pressure normalization
# PRESSURE_MEAN = 0
# PRESSURE_STD = 1
# # Coordinate normalization using mean-std
# INPUT_POS_MEAN = torch.tensor([0, 0, 0])
# INPUT_POS_STD = torch.tensor([1, 1, 1])
|