File size: 8,259 Bytes
67fb03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This is the datapipe to read OpenFoam files (vtp/vtu/stl) and save them as point clouds 
in npy format. 

"""

import time, random
from collections import defaultdict
from pathlib import Path
from typing import Any, Iterable, List, Literal, Mapping, Optional, Union, Callable

import numpy as np
import pandas as pd
import pyvista as pv
import vtk
from torch.utils.data import Dataset
import os
from vtk.util import numpy_support

AIR_DENSITY = 1.205
STREAM_VELOCITY = 30.00


def get_filenames(filepath: str) -> List[str]:
    """Function to get filenames from a directory"""
    if os.path.exists(filepath):
        filenames = []
        for item in os.listdir(filepath):
            filenames.append(item)
        return filenames
    else:
        FileNotFoundError()

def get_node_to_elem(polydata: Any) -> Any:
    """Function to convert node to elem"""
    c2p = vtk.vtkPointDataToCellData()
    c2p.SetInputData(polydata)
    c2p.Update()
    cell_data = c2p.GetOutput()
    return cell_data

def get_fields(data, variables):
    """Function to get fields from VTP/VTU"""
    fields = []
    for array_name in variables:
        try:
            array = data.GetArray(array_name)
        except ValueError:
            raise ValueError(
                f"Failed to get array {array_name} from the unstructured grid."
            )
        array_data = numpy_support.vtk_to_numpy(array).reshape(
            array.GetNumberOfTuples(), array.GetNumberOfComponents()
        )
        fields.append(array_data)
    return fields

def get_vertices(polydata):
    """Function to get vertices"""
    points = polydata.GetPoints()
    vertices = numpy_support.vtk_to_numpy(points.GetData())
    return vertices


def get_volume_data(polydata, variables):
    """Function to get volume data"""
    vertices = get_vertices(polydata)
    point_data = polydata.GetPointData()

    fields = get_fields(point_data, variables)

    return vertices, fields



class DrivAerAwsPaths:
    @staticmethod
    def _get_index(car_dir: Path) -> str:
        return car_dir.name.removeprefix("run_")

    @staticmethod
    def geometry_path(car_dir: Path) -> Path:
        return car_dir / f"drivaer_{DrivAerAwsPaths._get_index(car_dir)}.stl"

    @staticmethod
    def volume_path(car_dir: Path) -> Path:
        return car_dir / f"volume_{DrivAerAwsPaths._get_index(car_dir)}.vtu"

    @staticmethod
    def surface_path(car_dir: Path) -> Path:
        return car_dir / f"boundary_{DrivAerAwsPaths._get_index(car_dir)}.vtp"


class OpenFoamDataset(Dataset):
    """
    Datapipe for converting openfoam dataset to npy

    """

    def __init__(
        self,
        data_path: Union[str, Path],
        surface_variables: Optional[list] = [
            "pMean",
            "wallShearStress",
        ],
        volume_variables: Optional[list] = ["UMean", "pMean"],
        model_type=None,
    ):
        if isinstance(data_path, str):
            data_path = Path(data_path)
        data_path = data_path.expanduser()

        self.data_path = data_path

        self.path_getter = DrivAerAwsPaths

        assert self.data_path.exists(), f"Path {self.data_path} does not exist"

        assert self.data_path.is_dir(), f"Path {self.data_path} is not a directory"

        self.filenames = get_filenames(self.data_path)
        random.shuffle(self.filenames)
        self.indices = np.array(len(self.filenames))

        self.surface_variables = surface_variables
        self.volume_variables = volume_variables
        self.model_type = model_type

    def __len__(self):
        return len(self.filenames)

    def __getitem__(self, idx):
        cfd_filename = self.filenames[idx]
        car_dir = self.data_path / cfd_filename
    
        stl_path = self.path_getter.geometry_path(car_dir)
        reader = pv.get_reader(stl_path)
        mesh_stl = reader.read()
        stl_vertices = mesh_stl.points
        stl_faces = np.array(mesh_stl.faces).reshape((-1, 4))[
            :, 1:
        ]  # Assuming triangular elements
        mesh_indices_flattened = stl_faces.flatten()
        stl_sizes = mesh_stl.compute_cell_sizes(length=False, area=True, volume=False)
        stl_sizes = np.array(stl_sizes.cell_data["Area"])
        stl_centers = np.array(mesh_stl.cell_centers().points)

        length_scale = np.amax(np.amax(stl_vertices, 0) - np.amin(stl_vertices, 0))

        if self.model_type == "volume" or self.model_type == "combined":
            filepath = self.path_getter.volume_path(car_dir)
            reader = vtk.vtkXMLUnstructuredGridReader()
            reader.SetFileName(filepath)
            reader.Update()

            # Get the unstructured grid data
            polydata = reader.GetOutput()
            volume_coordinates, volume_fields = get_volume_data(
                polydata, self.volume_variables
            )
            volume_fields = np.concatenate(volume_fields, axis=-1)

            # Non-dimensionalize volume fields
            volume_fields[:, :3] = volume_fields[:, :3] / STREAM_VELOCITY
            volume_fields[:, 3:4] = volume_fields[:, 3:4] / (
                AIR_DENSITY * STREAM_VELOCITY**2.0
            )

            volume_fields[:, 4:] = volume_fields[:, 4:] / (
                STREAM_VELOCITY * length_scale
            )
        else:
            volume_fields = None
            volume_coordinates = None

        if self.model_type == "surface" or self.model_type == "combined":
            surface_filepath = self.path_getter.surface_path(car_dir)
            reader = vtk.vtkXMLPolyDataReader()
            reader.SetFileName(surface_filepath)
            reader.Update()
            polydata = reader.GetOutput()

            celldata_all = get_node_to_elem(polydata)
            celldata = celldata_all.GetCellData()
            surface_fields = get_fields(celldata, self.surface_variables)
            surface_fields = np.concatenate(surface_fields, axis=-1)

            mesh = pv.PolyData(polydata)
            surface_coordinates = np.array(mesh.cell_centers().points)

            surface_normals = np.array(mesh.cell_normals)
            surface_sizes = mesh.compute_cell_sizes(
                length=False, area=True, volume=False
            )
            surface_sizes = np.array(surface_sizes.cell_data["Area"])

            # Normalize cell normals
            surface_normals = (
                surface_normals / np.linalg.norm(surface_normals, axis=1)[:, np.newaxis]
            )

            # Non-dimensionalize surface fields
            surface_fields = surface_fields / (AIR_DENSITY * STREAM_VELOCITY**2.0)
        else:
            surface_fields = None
            surface_coordinates = None
            surface_normals = None
            surface_sizes = None

        # Add the parameters to the dictionary
        return {
            "stl_coordinates": np.float32(stl_vertices),
            "stl_centers": np.float32(stl_centers),
            "stl_faces": np.float32(mesh_indices_flattened),
            "stl_areas": np.float32(stl_sizes),
            "surface_mesh_centers": np.float32(surface_coordinates),
            "surface_normals": np.float32(surface_normals),
            "surface_areas": np.float32(surface_sizes),
            "volume_fields": np.float32(volume_fields),
            "volume_mesh_centers": np.float32(volume_coordinates),
            "surface_fields": np.float32(surface_fields),
            "filename": cfd_filename,
            "stream_velocity": STREAM_VELOCITY,
            "air_density": AIR_DENSITY,
        }