Spaces:
Sleeping
Sleeping
File size: 14,648 Bytes
67fb03c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Important utilities for data processing and training, testing DoMINO.
"""
import os
from typing import Any, List, Optional, Sequence, Tuple, Union
import numpy as np
from scipy.spatial import KDTree
try:
import cupy as cp
CUPY_AVAILABLE = True
except ImportError:
CUPY_AVAILABLE = False
try:
import pyvista as pv
PV_AVAILABLE = True
except ImportError:
PV_AVAILABLE = False
try:
import vtk
from vtk import vtkDataSetTriangleFilter
from vtk.util import numpy_support
VTK_AVAILABLE = True
except ImportError:
VTK_AVAILABLE = False
# Define a typing that works for both numpy and cupy
if CUPY_AVAILABLE:
ArrayType = Union[np.ndarray, cp.ndarray]
else:
# Or just numpy, if cupy is not available.
ArrayType = np.ndarray
def array_type(arr: ArrayType):
"""Function to return the array type. It's just leveraging
cupy to do this if available, fallback is numpy.
"""
if CUPY_AVAILABLE:
return cp.get_array_module(arr)
else:
return np
def calculate_center_of_mass(stl_centers: ArrayType, stl_sizes: ArrayType) -> ArrayType:
"""Function to calculate center of mass"""
xp = array_type(stl_centers)
stl_sizes = xp.expand_dims(stl_sizes, -1)
center_of_mass = xp.sum(stl_centers * stl_sizes, axis=0) / xp.sum(stl_sizes, axis=0)
return center_of_mass
def normalize(field: ArrayType, mx: ArrayType, mn: ArrayType) -> ArrayType:
"""Function to normalize fields"""
return 2.0 * (field - mn) / (mx - mn) - 1.0
def unnormalize(field: ArrayType, mx: ArrayType, mn: ArrayType) -> ArrayType:
"""Function to unnormalize fields"""
return (field + 1.0) * (mx - mn) * 0.5 + mn
def standardize(field: ArrayType, mean: ArrayType, std: ArrayType) -> ArrayType:
"""Function to standardize fields"""
return (field - mean) / std
def unstandardize(field: ArrayType, mean: ArrayType, std: ArrayType) -> ArrayType:
"""Function to unstandardize fields"""
return field * std + mean
def write_to_vtp(polydata: Any, filename: str):
"""Function to write polydata to vtp"""
if not VTK_AVAILABLE:
raise ImportError("VTK or is not installed. This function cannot be used.")
writer = vtk.vtkXMLPolyDataWriter()
writer.SetFileName(filename)
writer.SetInputData(polydata)
writer.Write()
def write_to_vtu(polydata: Any, filename: str):
"""Function to write polydata to vtu"""
if not VTK_AVAILABLE:
raise ImportError("VTK or is not installed. This function cannot be used.")
writer = vtk.vtkXMLUnstructuredGridWriter()
writer.SetFileName(filename)
writer.SetInputData(polydata)
writer.Write()
def extract_surface_triangles(tet_mesh: Any) -> List[int]:
"""Extracts the surface triangles from a triangular mesh."""
if not VTK_AVAILABLE:
raise ImportError("VTK or is not installed. This function cannot be used.")
if not PV_AVAILABLE:
raise ImportError("PyVista is not installed. This function cannot be used.")
surface_filter = vtk.vtkDataSetSurfaceFilter()
surface_filter.SetInputData(tet_mesh)
surface_filter.Update()
surface_mesh = pv.wrap(surface_filter.GetOutput())
triangle_indices = []
faces = surface_mesh.faces.reshape((-1, 4))
for face in faces:
if face[0] == 3:
triangle_indices.extend([face[1], face[2], face[3]])
else:
raise ValueError("Face is not a triangle")
return triangle_indices
def convert_to_tet_mesh(polydata: Any) -> Any:
"""Function to convert tet to stl"""
if not VTK_AVAILABLE:
raise ImportError("VTK or is not installed. This function cannot be used.")
# Create a VTK DataSetTriangleFilter object
tet_filter = vtkDataSetTriangleFilter()
tet_filter.SetInputData(polydata)
tet_filter.Update() # Update to apply the filter
# Get the output as an UnstructuredGrid
# tet_mesh = pv.wrap(tet_filter.GetOutput())
tet_mesh = tet_filter.GetOutput()
return tet_mesh
def get_node_to_elem(polydata: Any) -> Any:
"""Function to convert node to elem"""
if not VTK_AVAILABLE:
raise ImportError("VTK or is not installed. This function cannot be used.")
c2p = vtk.vtkPointDataToCellData()
c2p.SetInputData(polydata)
c2p.Update()
cell_data = c2p.GetOutput()
return cell_data
def get_fields_from_cell(ptdata, var_list):
"""Function to get fields from elem"""
fields = []
for var in var_list:
variable = ptdata.GetArray(var)
num_tuples = variable.GetNumberOfTuples()
cell_fields = []
for j in range(num_tuples):
variable_value = np.array(variable.GetTuple(j))
cell_fields.append(variable_value)
cell_fields = np.asarray(cell_fields)
fields.append(cell_fields)
fields = np.transpose(np.asarray(fields), (1, 0))
return fields
def get_fields(data, variables):
"""Function to get fields from VTP/VTU"""
if not VTK_AVAILABLE:
raise ImportError("VTK or is not installed. This function cannot be used.")
fields = []
for array_name in variables:
try:
array = data.GetArray(array_name)
except ValueError:
raise ValueError(
f"Failed to get array {array_name} from the unstructured grid."
)
array_data = numpy_support.vtk_to_numpy(array).reshape(
array.GetNumberOfTuples(), array.GetNumberOfComponents()
)
fields.append(array_data)
return fields
def get_vertices(polydata):
"""Function to get vertices"""
if not VTK_AVAILABLE:
raise ImportError("VTK or is not installed. This function cannot be used.")
points = polydata.GetPoints()
vertices = numpy_support.vtk_to_numpy(points.GetData())
return vertices
def get_volume_data(polydata, variables):
"""Function to get volume data"""
vertices = get_vertices(polydata)
point_data = polydata.GetPointData()
fields = get_fields(point_data, variables)
return vertices, fields
def get_surface_data(polydata, variables):
"""Function to get surface data"""
if not VTK_AVAILABLE:
raise ImportError("VTK or is not installed. This function cannot be used.")
points = polydata.GetPoints()
vertices = np.array([points.GetPoint(i) for i in range(points.GetNumberOfPoints())])
point_data = polydata.GetPointData()
fields = []
for array_name in variables:
try:
array = point_data.GetArray(array_name)
except ValueError:
raise ValueError(
f"Failed to get array {array_name} from the unstructured grid."
)
array_data = np.zeros(
(points.GetNumberOfPoints(), array.GetNumberOfComponents())
)
for j in range(points.GetNumberOfPoints()):
array.GetTuple(j, array_data[j])
fields.append(array_data)
polys = polydata.GetPolys()
if polys is None:
raise ValueError("Failed to get polygons from the polydata.")
polys.InitTraversal()
edges = []
id_list = vtk.vtkIdList()
for _ in range(polys.GetNumberOfCells()):
polys.GetNextCell(id_list)
num_ids = id_list.GetNumberOfIds()
edges = [
(id_list.GetId(j), id_list.GetId((j + 1) % num_ids)) for j in range(num_ids)
]
return vertices, fields, edges
def calculate_normal_positional_encoding(
coordinates_a: ArrayType,
coordinates_b: Optional[ArrayType] = None,
cell_length: Sequence[float] = [],
) -> ArrayType:
"""Function to get normal positional encoding"""
dx = cell_length[0]
dy = cell_length[1]
dz = cell_length[2]
xp = array_type(coordinates_a)
if coordinates_b is not None:
normals = coordinates_a - coordinates_b
pos_x = xp.asarray(calculate_pos_encoding(normals[:, 0] / dx, d=4))
pos_y = xp.asarray(calculate_pos_encoding(normals[:, 1] / dy, d=4))
pos_z = xp.asarray(calculate_pos_encoding(normals[:, 2] / dz, d=4))
pos_normals = xp.concatenate((pos_x, pos_y, pos_z), axis=0).reshape(-1, 12)
else:
normals = coordinates_a
pos_x = xp.asarray(calculate_pos_encoding(normals[:, 0] / dx, d=4))
pos_y = xp.asarray(calculate_pos_encoding(normals[:, 1] / dy, d=4))
pos_z = xp.asarray(calculate_pos_encoding(normals[:, 2] / dz, d=4))
pos_normals = xp.concatenate((pos_x, pos_y, pos_z), axis=0).reshape(-1, 12)
return pos_normals
def nd_interpolator(coodinates, field, grid):
"""Function to for nd interpolation"""
# TODO - this function should get updated for cuml if using cupy.
interp_func = KDTree(coodinates[0])
dd, ii = interp_func.query(grid, k=2)
field_grid = field[ii]
field_grid = np.float32(np.mean(field_grid, (3)))
return field_grid
def pad(arr: ArrayType, npoin: int, pad_value: float = 0.0) -> ArrayType:
"""Function for padding"""
xp = array_type(arr)
arr_pad = pad_value * xp.ones(
(npoin - arr.shape[0], arr.shape[1]), dtype=xp.float32
)
arr_padded = xp.concatenate((arr, arr_pad), axis=0)
return arr_padded
def pad_inp(arr: ArrayType, npoin: int, pad_value: float = 0.0) -> ArrayType:
"""Function for padding arrays"""
xp = array_type(arr)
arr_pad = pad_value * xp.ones(
(npoin - arr.shape[0], arr.shape[1], arr.shape[2]), dtype=xp.float32
)
arr_padded = xp.concatenate((arr, arr_pad), axis=0)
return arr_padded
def shuffle_array(
arr: ArrayType,
npoin: int,
) -> Tuple[ArrayType, ArrayType]:
"""Function for shuffling arrays"""
xp = array_type(arr)
if npoin > arr.shape[0]:
# If asking too many points, truncate the ask but still shuffle.
npoin = arr.shape[0]
idx = xp.random.choice(arr.shape[0], size=npoin, replace=False)
return arr[idx], idx
def shuffle_array_without_sampling(arr: ArrayType) -> Tuple[ArrayType, ArrayType]:
"""Function for shuffline arrays without sampling."""
xp = array_type(arr)
idx = xp.arange(arr.shape[0])
xp.random.shuffle(idx)
return arr[idx], idx
def create_directory(filepath: str) -> None:
"""Function to create directories"""
if not os.path.exists(filepath):
os.makedirs(filepath)
def get_filenames(filepath: str, exclude_dirs: bool = False) -> List[str]:
"""Function to get filenames from a directory"""
if os.path.exists(filepath):
filenames = []
for item in os.listdir(filepath):
item_path = os.path.join(filepath, item)
if exclude_dirs and os.path.isdir(item_path):
# Include directories ending with .zarr even when exclude_dirs is True
if item.endswith(".zarr"):
filenames.append(item)
continue
filenames.append(item)
return filenames
else:
FileNotFoundError()
def calculate_pos_encoding(nx: ArrayType, d: int = 8) -> ArrayType:
"""Function for calculating positional encoding"""
vec = []
xp = array_type(nx)
for k in range(int(d / 2)):
vec.append(xp.sin(nx / 10000 ** (2 * (k) / d)))
vec.append(xp.cos(nx / 10000 ** (2 * (k) / d)))
return vec
def combine_dict(old_dict, new_dict):
"""Function to combine dictionaries"""
for j in old_dict.keys():
old_dict[j] += new_dict[j]
return old_dict
def merge(*lists):
"""Function to merge lists"""
newlist = lists[:]
for x in lists:
if x not in newlist:
newlist.extend(x)
return newlist
def create_grid(mx: ArrayType, mn: ArrayType, nres: ArrayType) -> ArrayType:
"""Function to create grid"""
xp = array_type(mx)
dx = xp.linspace(mn[0], mx[0], nres[0], dtype=mx.dtype)
dy = xp.linspace(mn[1], mx[1], nres[1], dtype=mx.dtype)
dz = xp.linspace(mn[2], mx[2], nres[2], dtype=mx.dtype)
xv, yv, zv = xp.meshgrid(dx, dy, dz)
xv = xp.expand_dims(xv, -1)
yv = xp.expand_dims(yv, -1)
zv = xp.expand_dims(zv, -1)
grid = xp.concatenate((xv, yv, zv), axis=-1)
grid = xp.transpose(grid, (1, 0, 2, 3))
return grid
def mean_std_sampling(
field: ArrayType, mean: ArrayType, std: ArrayType, tolerance: float = 3.0
) -> ArrayType:
"""Function for mean/std based sampling"""
xp = array_type(field)
idx_all = []
for v in range(field.shape[-1]):
fv = field[:, v]
idx = xp.where(
(fv > mean[v] + tolerance * std[v]) | (fv < mean[v] - tolerance * std[v])
)
if len(idx[0]) != 0:
idx_all += list(idx[0])
return idx_all
def dict_to_device(state_dict, device, exclude_keys=["filename"]):
"""Function to load dictionary to device"""
new_state_dict = {}
for k, v in state_dict.items():
if k not in exclude_keys:
new_state_dict[k] = v.to(device)
return new_state_dict
def area_weighted_shuffle_array(
arr: ArrayType, npoin: int, area: ArrayType
) -> Tuple[ArrayType, ArrayType]:
"""Function for area weighted shuffling"""
xp = array_type(arr)
# Compute the total_area:
factor = 1.0
total_area = xp.sum(area**factor)
probs = area**factor / total_area
if npoin > arr.shape[0]:
npoin = arr.shape[0]
idx = xp.arange(arr.shape[0])
# This is too memory intensive to run on the GPU.
if xp == cp:
idx = idx.get()
probs = probs.get()
# Under the hood, this has a search over the probabilities.
# It's very expensive in memory, as far as I can tell.
# In principle, we could use the Alias method to speed this up
# on the GPU but it's not yet a bottleneck.
ids = np.random.choice(idx, npoin, p=probs)
ids = xp.asarray(ids)
else:
# Chug along on the CPU:
ids = xp.random.choice(idx, npoin, p=probs)
return arr[ids], ids |