File size: 6,450 Bytes
67fb03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

import os
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
import pyvista as pv
import json

class Data_loader(Dataset):
    def __init__(self, cfg, split, epoch_seed=None, mode='train'):
        """
        data_dir: parent directory 
        split: list of int, e.g. [0,1,2,3,4] for train, [5] for val, [6] for test
        num_points: number of points to sample per geometry
        epoch_seed: seed for random sampling (for training)
        mode: 'train', 'val', or 'test'
        """
        self.data_dir = cfg.data_dir
        self.split = split
        self.num_points = cfg.num_points
        self.epoch_seed = epoch_seed
        self.mode = mode
        self.cfg = cfg
        self.meshes = []
        self.mesh_names = []
        for idx in split:
            folder = f"{cfg.data_folder}_{idx}"
            vtp_file = os.path.join(self.data_dir,folder, f"{folder}.vtp")
            if not os.path.exists(vtp_file):
                raise FileNotFoundError(f"{vtp_file} not found.")
            mesh = pv.read(vtp_file)
            self.meshes.append(mesh)
            self.mesh_names.append(folder)
        # For validation chunking
        self.val_indices = None
        self.val_chunk_ptr = 0
        with open(cfg.json_file, "r") as f:
            self.json_data = json.load(f)
     
    def set_epoch(self, epoch):
        self.epoch_seed = epoch
        self.val_indices = None
        self.val_chunk_ptr = 0

    def __len__(self):
        if self.mode == 'train':
            return len(self.meshes)
        elif self.mode == 'val':
            return len(self.meshes)
        elif self.mode == 'test':
            # Number of chunks = total points in all val meshes // num_points + remainder chunk
            total = 0
            for mesh in self.meshes:
                return len(self.meshes)
        else:
            raise ValueError(f"Unknown mode: {self.mode}")

    def __getitem__(self, idx):
        
        if self.mode == 'train' or self.mode == 'val':
            # Each item is a geometry, sample num_points randomly
            mesh = self.meshes[idx]
            n_pts = mesh.points.shape[0]
            rng = np.random.default_rng(self.epoch_seed+idx)
            indices = rng.choice(n_pts, self.num_points, replace=False)
            pos = mesh.points[indices]
            
            pos = torch.tensor(pos, dtype=torch.float32)
            von_mises_stress = torch.tensor( mesh["von_mises_stress"][indices], dtype=torch.float32).unsqueeze(-1)
            x_displacement = torch.tensor( mesh["x_displacement"][indices], dtype=torch.float32).unsqueeze(-1)
            y_displacement = torch.tensor( mesh["y_displacement"][indices], dtype=torch.float32).unsqueeze(-1)
            z_displacement = torch.tensor( mesh["z_displacement"][indices], dtype=torch.float32).unsqueeze(-1)
            target = torch.cat([von_mises_stress, x_displacement, y_displacement, z_displacement], dim=-1)
            
            if self.cfg.normalization == "std_norm":
                von_mises_stress_scaled = (von_mises_stress - self.json_data["scalars"]["von_mises_stress"]["mean"]) / self.json_data["scalars"]["von_mises_stress"]["std"]
                target[:,0:1] = von_mises_stress_scaled

            if self.cfg.pos_embed_sincos:
            
                input_pos_mins = torch.tensor(self.json_data["mesh_stats"]["min"])
                input_pos_maxs = torch.tensor(self.json_data["mesh_stats"]["max"])
                pos_norm = 1000*(pos - input_pos_mins) / (input_pos_maxs - input_pos_mins)

            return {"input_pos": pos_norm, "output_feat": target ,"data_id": self.mesh_names[idx]}

        elif self.mode == 'test':
            # For each mesh in test, scramble all points and return the full mesh
            mesh = self.meshes[idx]
            n_pts = mesh.points.shape[0]
            rng = np.random.default_rng(self.epoch_seed+idx)
            indices = rng.permutation(n_pts)
            pos = mesh.points[indices]
            
            von_mises_stress = torch.tensor( mesh["von_mises_stress"][indices], dtype=torch.float32).unsqueeze(-1)
            x_displacement = torch.tensor( mesh["x_displacement"][indices], dtype=torch.float32).unsqueeze(-1)
            y_displacement = torch.tensor( mesh["y_displacement"][indices], dtype=torch.float32).unsqueeze(-1)
            z_displacement = torch.tensor( mesh["z_displacement"][indices], dtype=torch.float32).unsqueeze(-1)
            target = torch.cat([von_mises_stress, x_displacement, y_displacement, z_displacement], dim=-1)
            
            pos = torch.tensor(pos, dtype=torch.float32)
            
            if self.cfg.normalization == "std_norm":
                von_mises_stress_scaled = (von_mises_stress - self.json_data["scalars"]["von_mises_stress"]["mean"]) / self.json_data["scalars"]["von_mises_stress"]["std"]
                target[:,0:1] = von_mises_stress_scaled

            if self.cfg.pos_embed_sincos:
            
                input_pos_mins = torch.tensor(self.json_data["mesh_stats"]["min"])
                input_pos_maxs = torch.tensor(self.json_data["mesh_stats"]["max"])
                pos_norm = 1000*(pos - input_pos_mins) / (input_pos_maxs - input_pos_mins)

            return {"input_pos": pos_norm, "output_feat": target ,"data_id": self.mesh_names[idx],"physical_coordinates":mesh.points[indices]}

        else:
            raise ValueError(f"Unknown mode: {self.mode}")

def get_dataloaders(cfg):
   
    with open(os.path.join(cfg.splits_file, "train.txt")) as f:
       train_split = [int(line.strip().split('_')[-1]) for line in f if line.strip()]
    with open(os.path.join(cfg.splits_file, "test.txt")) as f:
        test_split = [int(line.strip().split('_')[-1]) for line in f if line.strip()]
    with open(os.path.join(cfg.splits_file, "test.txt")) as f:
        test_split = [int(line.strip().split('_')[-1]) for line in f if line.strip()]

    print("Indices in test_split:", test_split)


    train_dataset = Data_loader(cfg, train_split, mode='train')
    val_dataset = Data_loader(cfg, test_split, mode='val')
    test_dataset = Data_loader(cfg, test_split, mode='test')

    train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False)
    test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)

    return train_loader, val_loader, test_loader