Spaces:
Sleeping
Sleeping
File size: 18,856 Bytes
67fb03c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import numpy as np
import time, json, os
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
import json
from torch.utils.tensorboard import SummaryWriter
from omegaconf import OmegaConf
import math
from torch.cuda.amp import GradScaler
# For sampling before training starts
# from datasets.DriveAerNet.data_loader import get_dataloaders, PRESSURE_MEAN, PRESSURE_STD
# For full mesh load and then sample in each training iteration
from datasets.DriveAerNet.data_loader_full import get_dataloaders, PRESSURE_MEAN, PRESSURE_STD
def train(model, train_loader, optimizer, scheduler, cfg, accelerator, scaler):
model.train()
criterion = nn.MSELoss()
losses_press = 0.0
pressure_mean = torch.tensor(PRESSURE_MEAN, device=accelerator.device)
pressure_std = torch.tensor(PRESSURE_STD, device=accelerator.device)
for data in train_loader:
targets= data['output_feat']
targets = (targets - pressure_mean) / pressure_std
optimizer.zero_grad()
if cfg.mixed_precision:
with torch.autocast(device_type = accelerator.device.type):
out = model(data)
total_loss = criterion(out, targets)
scaler.scale(total_loss).backward()
scaler.unscale_(optimizer)
if cfg.max_grad_norm is not None:
accelerator.clip_grad_norm_(model.parameters(), cfg.max_grad_norm)
scaler.step(optimizer)
scaler.update()
else:
out = model(data)
total_loss = criterion(out, targets)
accelerator.backward(total_loss)
if cfg.max_grad_norm is not None:
accelerator.clip_grad_norm_(model.parameters(), cfg.max_grad_norm)
optimizer.step()
if cfg.scheduler == "OneCycleLR":
scheduler.step()
losses_press += total_loss.item()
return losses_press / len(train_loader)
@torch.no_grad()
def val(model, val_loader, cfg, accelerator):
model.eval()
criterion = nn.MSELoss()
losses_press = 0.0
pressure_mean = torch.tensor(PRESSURE_MEAN, device=accelerator.device)
pressure_std = torch.tensor(PRESSURE_STD, device=accelerator.device)
for data in val_loader:
targets= data['output_feat']
targets = (targets - pressure_mean) / pressure_std
out = model(data)
total_loss = criterion(out, targets)
losses_press += total_loss.item()
return losses_press / len(val_loader)
def RelL2loss(x,y):
"""Calculate relative L2 error: mean(||x-y||_2 / ||y||_2) over the batch.
Args:
x: Predicted values (B, N, C)
y: Target values (B, N, C)
Returns:
Mean relative L2 error across the batch
"""
# Ensure inputs are (B, NC)
batch_size = x.size(0)
x_flat = x.view(batch_size, -1) # (B, NC)
y_flat = y.view(batch_size, -1) # (B, NC)
# Calculate L2 norm for each sample in batch
diff_norms = torch.norm(x_flat - y_flat, p=2, dim=1) # (B,)
y_norms = torch.norm(y_flat, p=2, dim=1) # (B,)
# Calculate RelL2 for each sample and take mean over batch
return torch.mean(diff_norms / (y_norms))
def test_model(model, test_dataloader, criterion, path, cfg, accelerator):
"""Test the model and calculate metrics."""
model.eval()
total_mse = 0.0
total_mae = 0.0
total_rel_l2 = 0.0
total_rel_l1 = 0.0
total_inference_time = 0.0
num_batches = 0
pressure_mean = torch.tensor(PRESSURE_MEAN, device=accelerator.device)
pressure_std = torch.tensor(PRESSURE_STD, device=accelerator.device)
# Store outputs and targets on all processes
all_outputs = []
all_targets = []
with torch.no_grad():
for data in tqdm(test_dataloader, desc="[Testing]", disable=not accelerator.is_local_main_process):
start_time = time.time()
targets= data['output_feat']
targets = (targets - pressure_mean) / pressure_std # Match train/val normalization
outputs = model(data)
inference_time = time.time() - start_time
total_inference_time += inference_time
# Keep metrics as tensors for proper reduction across processes
mse = criterion(outputs, targets)
mae = F.l1_loss(outputs, targets)
# rel_l2 = torch.mean(torch.norm(outputs.squeeze(-1) - targets.squeeze(-1), p=2, dim=-1) /
# torch.norm(targets.squeeze(-1), p=2, dim=-1))
rel_l1 = torch.mean(torch.norm(outputs.squeeze(-1) - targets.squeeze(-1), p=1, dim=-1) /
torch.norm(targets.squeeze(-1), p=1, dim=-1))
rel_l2 = RelL2loss(outputs, targets)
total_mse += mse
total_mae += mae
total_rel_l2 += rel_l2
total_rel_l1 += rel_l1
num_batches += 1
# Store outputs and targets on all processes
all_outputs.append(outputs.cpu())
all_targets.append(targets.cpu())
# Clear references to tensors
del outputs, targets, mse, mae, rel_l2, rel_l1
# Clear GPU cache after all testing
torch.cuda.empty_cache()
# Convert to tensors for reduction
metrics = {
"total_mse": total_mse,
"total_mae": total_mae,
"total_rel_l2": total_rel_l2,
"total_rel_l1": total_rel_l1,
"num_batches": torch.tensor(num_batches, device=accelerator.device),
"total_inference_time": torch.tensor(total_inference_time, device=accelerator.device)
}
# Gather metrics from all processes
gathered_metrics = accelerator.gather(metrics)
# Only calculate averages if we have data
if gathered_metrics["num_batches"].sum().item() > 0:
total_batches = gathered_metrics["num_batches"].sum().item()
avg_mse = gathered_metrics["total_mse"].sum().item() / total_batches
avg_mae = gathered_metrics["total_mae"].sum().item() / total_batches
avg_rel_l2 = gathered_metrics["total_rel_l2"].sum().item() / total_batches
avg_rel_l1 = gathered_metrics["total_rel_l1"].sum().item() / total_batches
total_inference_time = gathered_metrics["total_inference_time"].sum().item()
avg_inference_time = total_inference_time / total_batches
# Gather all outputs and targets from all processes
all_outputs = torch.cat(all_outputs, dim=0)
all_targets = torch.cat(all_targets, dim=0)
# Gather outputs and targets across processes
all_outputs = accelerator.gather(all_outputs.to(accelerator.device))
all_targets = accelerator.gather(all_targets.to(accelerator.device))
# Calculate R² score using complete dataset
if accelerator.is_main_process:
all_outputs = all_outputs.to(torch.float32).cpu().numpy()
all_targets = all_targets.to(torch.float32).cpu().numpy()
ss_tot = np.sum((all_targets - np.mean(all_targets)) ** 2)
ss_res = np.sum((all_targets - all_outputs) ** 2)
r_squared = 1 - (ss_res / ss_tot) if ss_tot > 0 else 0
print(f"Test MSE: {avg_mse:.6f}, Test MAE: {avg_mae:.6f}, R²: {r_squared:.4f}")
print(f"Relative L2 Error: {avg_rel_l2:.6f}, Relative L1 Error: {avg_rel_l1:.6f}")
print(f"Average inference time per batch: {avg_inference_time:.4f}s")
print(f"Total inference time: {total_inference_time:.2f}s for {total_batches} batches")
# Save metrics to a text file
metrics_file = os.path.join(path, 'test_metrics.txt')
with open(metrics_file, 'w') as f:
f.write(f"Test MSE: {avg_mse:.6f}\n")
f.write(f"Test MAE: {avg_mae:.6f}\n")
f.write(f"R² Score: {r_squared:.6f}\n")
f.write(f"Relative L2 Error: {avg_rel_l2:.6f}\n")
f.write(f"Relative L1 Error: {avg_rel_l1:.6f}\n")
f.write(f"Average inference time per batch: {avg_inference_time:.4f}s\n")
f.write(f"Total inference time: {total_inference_time:.2f}s for {total_batches} batches\n")
else:
r_squared = 0.0 # Will be overwritten by broadcast
else:
print("Warning: No data in test_dataloader")
avg_mse = avg_mae = avg_rel_l2 = avg_rel_l1 = r_squared = 0.0
return avg_mse, avg_mae, avg_rel_l2, avg_rel_l1, r_squared, avg_inference_time
def train_DriveAerNet_main(model, path, cfg, accelerator):
train_loader, val_loader, test_loader = get_dataloaders(cfg, cfg.data_dir, cfg.subset_dir, cfg.num_points,
cfg.batch_size, cfg.cache_dir, cfg.num_workers, cfg.model)
if accelerator.is_main_process:
print(
f"Data loaded: {len(train_loader)} training batches, "
f"{len(val_loader)} validation batches, "
f"{len(test_loader)} test batches")
#Select optimizer
if cfg.optimizer.type == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=cfg.lr, weight_decay=1e-4)
elif cfg.optimizer.type == 'AdamW':
optimizer = torch.optim.AdamW(model.parameters(), lr=cfg.lr,betas=(0.9, 0.95), weight_decay=0.05)
#Select scheduler
if cfg.scheduler == "ReduceLROnPlateau":
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=10, factor=0.1, verbose=True)
elif cfg.scheduler == "LinearWarmupCosineAnnealing":
# Linear warmup followed by cosine annealing
warmup_steps = len(train_loader) * 5 # 5 epochs of warmup
total_steps = len(train_loader) * cfg.epochs
def lr_lambda(step):
if step < warmup_steps:
return float(step) / float(max(1, warmup_steps))
else:
progress = float(step - warmup_steps) / float(max(1, total_steps - warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * progress)))
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
else:
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
pct_start=0.05,
max_lr=cfg.lr,
total_steps = len(train_loader) * cfg.epochs
)
scaler = GradScaler()
model, optimizer, train_loader, val_loader, test_loader, scheduler, scaler = accelerator.prepare(
model, optimizer, train_loader, val_loader, test_loader, scheduler, scaler)
criterion = torch.nn.MSELoss()
if cfg.eval:
# Load the saved state dict and create a fresh model
state_dict = torch.load(os.path.join(path, f'best_model.pt'))
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.load_state_dict(state_dict)
best_model = accelerator.prepare(unwrapped_model)
best_mse, best_mae, best_rel_l2, best_rel_l1, best_r2, inf_time = test_model(best_model, test_loader, criterion, path, cfg, accelerator)
else:
# Calculate total parameters
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
# Reset memory stats before training
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache() # Clear any existing cached memory
best_val_loss = 1e5
val_MSE_list = []
start = time.time()
# Only initialize tensorboard on the main process
if accelerator.is_main_process:
# Create a descriptive run name using model type and timestamp
run_name = f"{cfg.model}{cfg.test_name}_{time.strftime('%Y%m%d_%H%M%S')}"
project_name = os.path.join("tensorboard_logs", f"{cfg.project_name}")
log_dir = os.path.join(project_name, run_name)
writer = SummaryWriter(log_dir)
# Add full config
config_text = "```yaml\n" # Using yaml format for better readability
config_text += OmegaConf.to_yaml(cfg)
config_text += "```"
writer.add_text('hyperparameters/full_config', config_text)
pbar_train = tqdm(range(cfg.epochs), position=0)
else:
writer = None
pbar_train = range(cfg.epochs)
for epoch in pbar_train:
train_loss = train(model, train_loader, optimizer, scheduler, cfg, accelerator, scaler)
if cfg.val_iter is not None and (epoch == cfg.epochs - 1 or epoch % cfg.val_iter == 0):
val_loss_MSE = val(model, val_loader, cfg, accelerator)
if cfg.scheduler == "ReduceLROnPlateau":
scheduler.step(val_loss_MSE)
val_MSE_list.append(val_loss_MSE)
if accelerator.is_main_process:
# Get peak GPU memory in GB
peak_mem_gb = torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024)
# Log metrics to tensorboard
writer.add_scalar('Loss/train_MSE', train_loss, epoch)
writer.add_scalar('Loss/val_MSE', val_loss_MSE, epoch)
writer.add_scalar('Learning_rate', scheduler.get_last_lr()[0], epoch)
writer.add_scalar('Memory/GPU', peak_mem_gb, epoch)
with open(os.path.join(path,'MSE.json'), 'w') as f:
json.dump(val_MSE_list, f, indent=2)
pbar_train.set_postfix({
'train_loss': train_loss,
'val_loss': val_loss_MSE,
'lr': scheduler.get_last_lr()[0],
'mem_gb': f'{peak_mem_gb:.1f}'
})
if val_loss_MSE < best_val_loss:
best_val_loss = val_loss_MSE
unwrapped_model = accelerator.unwrap_model(model)
torch.save(unwrapped_model.state_dict(), os.path.join(path, f'best_model.pt'))
elif accelerator.is_main_process:
# Simple progress display without validation
peak_mem_gb = torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024)
pbar_train.set_postfix({
'train_loss': train_loss,
'mem_gb': f'{peak_mem_gb:.1f}'
})
end = time.time()
time_elapsed = end - start
# Get final peak memory for reporting
if accelerator.is_main_process:
peak_mem_gb = torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024)
# Reset memory stats before final evaluation
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache()
# Test final model
final_mse, final_mae, final_rel_l2, final_rel_l1, final_r2, inf_time = test_model(
model, test_loader, criterion, path, cfg, accelerator)
# Get peak memory during testing
if accelerator.is_main_process:
test_peak_mem_gb = torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024)
# Create metrics text for final model
metrics_text = f"Test MSE: {final_mse:.6f}\n"
metrics_text += f"Test MAE: {final_mae:.6f}\n"
metrics_text += f"Test RelL1: {final_rel_l1:.6f}\n"
metrics_text += f"Test RelL2: {final_rel_l2:.6f}\n"
metrics_text += f"Test R2: {final_r2:.6f}\n"
metrics_text += f"Inference time: {inf_time:.6f}s\n"
metrics_text += f"Total training time: {time_elapsed:.2f}s\n"
metrics_text += f"Average epoch time: {time_elapsed/cfg.epochs:.2f}s\n"
metrics_text += f"Total parameters: {total_params}\n"
metrics_text += f"Trainable parameters: {trainable_params}\n"
metrics_text += f"Peak GPU memory usage:\n"
metrics_text += f" - During training: {peak_mem_gb:.1f} GB\n"
metrics_text += f" - During testing: {test_peak_mem_gb:.1f} GB\n"
# Write to file and add to tensorboard
metrics_file = os.path.join(path, 'final_test_metrics.txt')
with open(metrics_file, 'w') as f:
f.write(metrics_text)
# Add final metrics to tensorboard as text (replace \n with markdown line break)
writer.add_text('metrics/final_metrics', metrics_text.replace('\n', ' \n'))
# Load the best model using state_dict for compatibility
state_dict = torch.load(os.path.join(path, f'best_model.pt'))
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.load_state_dict(state_dict)
best_model = accelerator.prepare(unwrapped_model)
best_mse, best_mae, best_rel_l2, best_rel_l1, best_r2, inf_time = test_model(
best_model, test_loader, criterion, path, cfg, accelerator)
if accelerator.is_main_process:
# Create metrics text for best model
metrics_text = f"Test MSE: {best_mse:.6f}\n"
metrics_text += f"Test MAE: {best_mae:.6f}\n"
metrics_text += f"Test RelL1: {best_rel_l1:.6f}\n"
metrics_text += f"Test RelL2: {best_rel_l2:.6f}\n"
metrics_text += f"Test R2: {best_r2:.6f}\n"
metrics_text += f"Inference time: {inf_time:.6f}s\n"
metrics_text += f"Total training time: {time_elapsed:.2f}s\n"
metrics_text += f"Average epoch time: {time_elapsed/cfg.epochs:.2f}s\n"
metrics_text += f"Total parameters: {total_params}\n"
metrics_text += f"Trainable parameters: {trainable_params}\n"
metrics_text += f"Peak GPU memory usage:\n"
metrics_text += f" - During training: {peak_mem_gb:.1f} GB\n"
metrics_text += f" - During testing: {test_peak_mem_gb:.1f} GB\n"
# Write to file and add to tensorboard
metrics_file = os.path.join(path, 'best_test_metrics.txt')
with open(metrics_file, 'w') as f:
f.write(metrics_text)
# Add best metrics to tensorboard as text (replace \n with markdown line break)
writer.add_text('metrics/best_metrics', metrics_text.replace('\n', ' \n'))
print(f"\nFinal model metrics - MSE: {final_mse:.6f}, MAE: {final_mae:.6f}, R²: {final_r2:.4f}")
print(f"Best model metrics - MSE: {best_mse:.6f}, MAE: {best_mae:.6f}, R²: {best_r2:.4f}")
# Close tensorboard writer
writer.close()
|