File size: 18,856 Bytes
67fb03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import numpy as np
import time, json, os
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
import json
from torch.utils.tensorboard import SummaryWriter
from omegaconf import OmegaConf
import math
from torch.cuda.amp import GradScaler

# For sampling before training starts
# from datasets.DriveAerNet.data_loader import get_dataloaders, PRESSURE_MEAN, PRESSURE_STD

# For full mesh load and then sample in each training iteration
from datasets.DriveAerNet.data_loader_full import get_dataloaders, PRESSURE_MEAN, PRESSURE_STD


def train(model, train_loader, optimizer, scheduler, cfg, accelerator, scaler):
    model.train()
    criterion = nn.MSELoss()
    losses_press = 0.0
    
    pressure_mean = torch.tensor(PRESSURE_MEAN, device=accelerator.device)
    pressure_std = torch.tensor(PRESSURE_STD, device=accelerator.device)
    
    
    for data in train_loader:
        targets= data['output_feat']
        targets = (targets - pressure_mean) / pressure_std
        optimizer.zero_grad()

        if cfg.mixed_precision:
            with torch.autocast(device_type = accelerator.device.type):
                out = model(data)
                total_loss = criterion(out, targets)    
            scaler.scale(total_loss).backward()
            scaler.unscale_(optimizer)
            if cfg.max_grad_norm is not None:
                accelerator.clip_grad_norm_(model.parameters(), cfg.max_grad_norm)
            scaler.step(optimizer)
            scaler.update()                                 
        else:
            out = model(data)
            total_loss = criterion(out, targets)
            accelerator.backward(total_loss)            
            if cfg.max_grad_norm is not None:
                accelerator.clip_grad_norm_(model.parameters(), cfg.max_grad_norm)            
            optimizer.step()
        
        if cfg.scheduler == "OneCycleLR":
            scheduler.step()

        losses_press += total_loss.item()

    return losses_press / len(train_loader)


@torch.no_grad()
def val(model, val_loader, cfg, accelerator):
    model.eval()

    criterion = nn.MSELoss()
    losses_press = 0.0
    
    pressure_mean = torch.tensor(PRESSURE_MEAN, device=accelerator.device)
    pressure_std = torch.tensor(PRESSURE_STD, device=accelerator.device)
    
    for data in val_loader:
        targets= data['output_feat']
        targets = (targets - pressure_mean) / pressure_std
        out = model(data)
        total_loss = criterion(out, targets)

        losses_press += total_loss.item()
    return losses_press / len(val_loader)


def RelL2loss(x,y):
    """Calculate relative L2 error: mean(||x-y||_2 / ||y||_2) over the batch.
    Args:
        x: Predicted values (B, N, C) 
        y: Target values (B, N, C) 
    Returns:
        Mean relative L2 error across the batch
    """
    
    # Ensure inputs are (B, NC)
    batch_size = x.size(0)
    x_flat = x.view(batch_size, -1)  # (B, NC)
    y_flat = y.view(batch_size, -1)  # (B, NC)
    
    # Calculate L2 norm for each sample in batch
    diff_norms = torch.norm(x_flat - y_flat, p=2, dim=1)  # (B,)
    y_norms = torch.norm(y_flat, p=2, dim=1)  # (B,)
    
    # Calculate RelL2 for each sample and take mean over batch
    return torch.mean(diff_norms / (y_norms))



def test_model(model, test_dataloader, criterion, path, cfg, accelerator):
    """Test the model and calculate metrics."""
    model.eval()
    total_mse = 0.0
    total_mae = 0.0
    total_rel_l2 = 0.0
    total_rel_l1 = 0.0
    total_inference_time = 0.0
    num_batches = 0
    
    pressure_mean = torch.tensor(PRESSURE_MEAN, device=accelerator.device)
    pressure_std = torch.tensor(PRESSURE_STD, device=accelerator.device)
    
    # Store outputs and targets on all processes
    all_outputs = []
    all_targets = []

    with torch.no_grad():
        for data in tqdm(test_dataloader, desc="[Testing]", disable=not accelerator.is_local_main_process):
            start_time = time.time()

            targets= data['output_feat']
            targets = (targets - pressure_mean) / pressure_std  # Match train/val normalization
            
            outputs = model(data)

            inference_time = time.time() - start_time
            total_inference_time += inference_time

            # Keep metrics as tensors for proper reduction across processes
            mse = criterion(outputs, targets)
            mae = F.l1_loss(outputs, targets)
            # rel_l2 = torch.mean(torch.norm(outputs.squeeze(-1) - targets.squeeze(-1), p=2, dim=-1) /
                            #   torch.norm(targets.squeeze(-1), p=2, dim=-1))
            rel_l1 = torch.mean(torch.norm(outputs.squeeze(-1) - targets.squeeze(-1), p=1, dim=-1) /
                              torch.norm(targets.squeeze(-1), p=1, dim=-1))
            rel_l2 = RelL2loss(outputs, targets)

            total_mse += mse
            total_mae += mae
            total_rel_l2 += rel_l2
            total_rel_l1 += rel_l1
            num_batches += 1
            
            # Store outputs and targets on all processes
            all_outputs.append(outputs.cpu())
            all_targets.append(targets.cpu())
            
            # Clear references to tensors
            del outputs, targets, mse, mae, rel_l2, rel_l1

    # Clear GPU cache after all testing
    torch.cuda.empty_cache()

    # Convert to tensors for reduction
    metrics = {
        "total_mse": total_mse,
        "total_mae": total_mae,
        "total_rel_l2": total_rel_l2,
        "total_rel_l1": total_rel_l1,
        "num_batches": torch.tensor(num_batches, device=accelerator.device),
        "total_inference_time": torch.tensor(total_inference_time, device=accelerator.device)
    }

    # Gather metrics from all processes
    gathered_metrics = accelerator.gather(metrics)

    # Only calculate averages if we have data
    if gathered_metrics["num_batches"].sum().item() > 0:
        total_batches = gathered_metrics["num_batches"].sum().item()
        avg_mse = gathered_metrics["total_mse"].sum().item() / total_batches
        avg_mae = gathered_metrics["total_mae"].sum().item() / total_batches
        avg_rel_l2 = gathered_metrics["total_rel_l2"].sum().item() / total_batches
        avg_rel_l1 = gathered_metrics["total_rel_l1"].sum().item() / total_batches
        total_inference_time = gathered_metrics["total_inference_time"].sum().item()
        avg_inference_time = total_inference_time / total_batches

        # Gather all outputs and targets from all processes
        all_outputs = torch.cat(all_outputs, dim=0)
        all_targets = torch.cat(all_targets, dim=0)
        
        # Gather outputs and targets across processes
        all_outputs = accelerator.gather(all_outputs.to(accelerator.device))
        all_targets = accelerator.gather(all_targets.to(accelerator.device))
        
        # Calculate R² score using complete dataset
        if accelerator.is_main_process:
            all_outputs = all_outputs.to(torch.float32).cpu().numpy()
            all_targets = all_targets.to(torch.float32).cpu().numpy()
            ss_tot = np.sum((all_targets - np.mean(all_targets)) ** 2)
            ss_res = np.sum((all_targets - all_outputs) ** 2)
            r_squared = 1 - (ss_res / ss_tot) if ss_tot > 0 else 0
            
            print(f"Test MSE: {avg_mse:.6f}, Test MAE: {avg_mae:.6f}, R²: {r_squared:.4f}")
            print(f"Relative L2 Error: {avg_rel_l2:.6f}, Relative L1 Error: {avg_rel_l1:.6f}")
            print(f"Average inference time per batch: {avg_inference_time:.4f}s")
            print(f"Total inference time: {total_inference_time:.2f}s for {total_batches} batches")

            # Save metrics to a text file
            metrics_file = os.path.join(path, 'test_metrics.txt')
            with open(metrics_file, 'w') as f:
                f.write(f"Test MSE: {avg_mse:.6f}\n")
                f.write(f"Test MAE: {avg_mae:.6f}\n")
                f.write(f"R² Score: {r_squared:.6f}\n")
                f.write(f"Relative L2 Error: {avg_rel_l2:.6f}\n")
                f.write(f"Relative L1 Error: {avg_rel_l1:.6f}\n")
                f.write(f"Average inference time per batch: {avg_inference_time:.4f}s\n")
                f.write(f"Total inference time: {total_inference_time:.2f}s for {total_batches} batches\n")
        else:
            r_squared = 0.0  # Will be overwritten by broadcast

    else:
        print("Warning: No data in test_dataloader")
        avg_mse = avg_mae = avg_rel_l2 = avg_rel_l1 = r_squared = 0.0

    return avg_mse, avg_mae, avg_rel_l2, avg_rel_l1, r_squared, avg_inference_time


def train_DriveAerNet_main(model, path, cfg, accelerator):
    train_loader, val_loader, test_loader = get_dataloaders(cfg, cfg.data_dir, cfg.subset_dir, cfg.num_points,
        cfg.batch_size, cfg.cache_dir, cfg.num_workers, cfg.model)
    if accelerator.is_main_process:
        print(
            f"Data loaded: {len(train_loader)} training batches, "
            f"{len(val_loader)} validation batches, "
            f"{len(test_loader)} test batches")
    #Select optimizer
    if cfg.optimizer.type == 'Adam':
        optimizer = torch.optim.Adam(model.parameters(), lr=cfg.lr, weight_decay=1e-4)
    elif cfg.optimizer.type == 'AdamW':
        optimizer = torch.optim.AdamW(model.parameters(), lr=cfg.lr,betas=(0.9, 0.95), weight_decay=0.05)
    
    #Select scheduler
    if cfg.scheduler == "ReduceLROnPlateau":
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=10, factor=0.1, verbose=True)
    elif cfg.scheduler == "LinearWarmupCosineAnnealing":
        # Linear warmup followed by cosine annealing
        warmup_steps = len(train_loader) * 5  # 5 epochs of warmup
        total_steps = len(train_loader) * cfg.epochs
        
        def lr_lambda(step):
            if step < warmup_steps:
                return float(step) / float(max(1, warmup_steps))
            else:
                progress = float(step - warmup_steps) / float(max(1, total_steps - warmup_steps))
                return max(0.0, 0.5 * (1.0 + math.cos(math.pi * progress)))
        
        scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
    else:
        scheduler = torch.optim.lr_scheduler.OneCycleLR(
            optimizer,
            pct_start=0.05,
            max_lr=cfg.lr,
            total_steps = len(train_loader) * cfg.epochs
        )

    scaler = GradScaler()
    model, optimizer, train_loader, val_loader, test_loader, scheduler, scaler = accelerator.prepare(
                    model, optimizer, train_loader, val_loader, test_loader, scheduler, scaler)
    criterion = torch.nn.MSELoss()
    if cfg.eval:
        # Load the saved state dict and create a fresh model
        state_dict = torch.load(os.path.join(path, f'best_model.pt'))
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.load_state_dict(state_dict)
        best_model = accelerator.prepare(unwrapped_model)
        best_mse, best_mae, best_rel_l2, best_rel_l1, best_r2, inf_time = test_model(best_model, test_loader, criterion, path, cfg, accelerator)
    else:
        # Calculate total parameters
        total_params = sum(p.numel() for p in model.parameters())
        trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)

        # Reset memory stats before training
        torch.cuda.reset_peak_memory_stats()
        torch.cuda.empty_cache()  # Clear any existing cached memory

        best_val_loss = 1e5
        val_MSE_list = []

        start = time.time()    
        
        # Only initialize tensorboard on the main process
        if accelerator.is_main_process:
            # Create a descriptive run name using model type and timestamp
            run_name = f"{cfg.model}{cfg.test_name}_{time.strftime('%Y%m%d_%H%M%S')}"
            project_name = os.path.join("tensorboard_logs", f"{cfg.project_name}")
            log_dir = os.path.join(project_name, run_name)
            writer = SummaryWriter(log_dir)
            
            # Add full config
            config_text = "```yaml\n"  # Using yaml format for better readability
            config_text += OmegaConf.to_yaml(cfg)
            config_text += "```"
            writer.add_text('hyperparameters/full_config', config_text)
            pbar_train = tqdm(range(cfg.epochs), position=0)
        else:
            writer = None
            pbar_train = range(cfg.epochs)
        
        for epoch in pbar_train:
            train_loss = train(model, train_loader, optimizer, scheduler, cfg, accelerator, scaler)

            if cfg.val_iter is not None and (epoch == cfg.epochs - 1 or epoch % cfg.val_iter == 0):
                val_loss_MSE = val(model, val_loader, cfg, accelerator)
                

                if cfg.scheduler == "ReduceLROnPlateau":
                    scheduler.step(val_loss_MSE)
                
                val_MSE_list.append(val_loss_MSE)
                
                if accelerator.is_main_process:
                    # Get peak GPU memory in GB
                    peak_mem_gb = torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024)
                    
                    # Log metrics to tensorboard
                    writer.add_scalar('Loss/train_MSE', train_loss, epoch)
                    writer.add_scalar('Loss/val_MSE', val_loss_MSE, epoch)
                    writer.add_scalar('Learning_rate', scheduler.get_last_lr()[0], epoch)
                    writer.add_scalar('Memory/GPU', peak_mem_gb, epoch)
                    
                    with open(os.path.join(path,'MSE.json'), 'w') as f:
                        json.dump(val_MSE_list, f, indent=2)

                    pbar_train.set_postfix({
                        'train_loss': train_loss, 
                        'val_loss': val_loss_MSE,
                        'lr': scheduler.get_last_lr()[0],
                        'mem_gb': f'{peak_mem_gb:.1f}'
                    })
                    
                    if val_loss_MSE < best_val_loss:
                        best_val_loss = val_loss_MSE
                        unwrapped_model = accelerator.unwrap_model(model) 
                        torch.save(unwrapped_model.state_dict(), os.path.join(path, f'best_model.pt'))
            elif accelerator.is_main_process:
                # Simple progress display without validation
                peak_mem_gb = torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024)
                pbar_train.set_postfix({
                    'train_loss': train_loss,
                    'mem_gb': f'{peak_mem_gb:.1f}'
                })

        end = time.time()
        time_elapsed = end - start
        
        # Get final peak memory for reporting
        if accelerator.is_main_process:
            peak_mem_gb = torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024)

        # Reset memory stats before final evaluation
        torch.cuda.reset_peak_memory_stats()
        torch.cuda.empty_cache()
        
        # Test final model
        final_mse, final_mae, final_rel_l2, final_rel_l1, final_r2, inf_time = test_model(
            model, test_loader, criterion, path, cfg, accelerator)
        
        # Get peak memory during testing
        if accelerator.is_main_process:
            test_peak_mem_gb = torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024)

            # Create metrics text for final model
            metrics_text = f"Test MSE: {final_mse:.6f}\n"
            metrics_text += f"Test MAE: {final_mae:.6f}\n"
            metrics_text += f"Test RelL1: {final_rel_l1:.6f}\n"
            metrics_text += f"Test RelL2: {final_rel_l2:.6f}\n"
            metrics_text += f"Test R2: {final_r2:.6f}\n"
            metrics_text += f"Inference time: {inf_time:.6f}s\n"
            metrics_text += f"Total training time: {time_elapsed:.2f}s\n"
            metrics_text += f"Average epoch time: {time_elapsed/cfg.epochs:.2f}s\n"
            metrics_text += f"Total parameters: {total_params}\n"
            metrics_text += f"Trainable parameters: {trainable_params}\n"
            metrics_text += f"Peak GPU memory usage:\n"
            metrics_text += f"  - During training: {peak_mem_gb:.1f} GB\n"
            metrics_text += f"  - During testing:  {test_peak_mem_gb:.1f} GB\n"

            # Write to file and add to tensorboard
            metrics_file = os.path.join(path, 'final_test_metrics.txt')
            with open(metrics_file, 'w') as f:
                f.write(metrics_text)
            # Add final metrics to tensorboard as text (replace \n with markdown line break)
            writer.add_text('metrics/final_metrics', metrics_text.replace('\n', '  \n'))

        # Load the best model using state_dict for compatibility
        state_dict = torch.load(os.path.join(path, f'best_model.pt'))
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.load_state_dict(state_dict)
        best_model = accelerator.prepare(unwrapped_model)

        best_mse, best_mae, best_rel_l2, best_rel_l1, best_r2, inf_time = test_model(
            best_model, test_loader, criterion, path, cfg, accelerator)
        
        if accelerator.is_main_process:
            # Create metrics text for best model
            metrics_text = f"Test MSE: {best_mse:.6f}\n"
            metrics_text += f"Test MAE: {best_mae:.6f}\n"
            metrics_text += f"Test RelL1: {best_rel_l1:.6f}\n"
            metrics_text += f"Test RelL2: {best_rel_l2:.6f}\n"
            metrics_text += f"Test R2: {best_r2:.6f}\n"
            metrics_text += f"Inference time: {inf_time:.6f}s\n"
            metrics_text += f"Total training time: {time_elapsed:.2f}s\n"
            metrics_text += f"Average epoch time: {time_elapsed/cfg.epochs:.2f}s\n"
            metrics_text += f"Total parameters: {total_params}\n"
            metrics_text += f"Trainable parameters: {trainable_params}\n"
            metrics_text += f"Peak GPU memory usage:\n"
            metrics_text += f"  - During training: {peak_mem_gb:.1f} GB\n"
            metrics_text += f"  - During testing:  {test_peak_mem_gb:.1f} GB\n"

            # Write to file and add to tensorboard
            metrics_file = os.path.join(path, 'best_test_metrics.txt')
            with open(metrics_file, 'w') as f:
                f.write(metrics_text)
            # Add best metrics to tensorboard as text (replace \n with markdown line break)
            writer.add_text('metrics/best_metrics', metrics_text.replace('\n', '  \n'))

            print(f"\nFinal model metrics - MSE: {final_mse:.6f}, MAE: {final_mae:.6f}, R²: {final_r2:.4f}")
            print(f"Best model metrics - MSE: {best_mse:.6f}, MAE: {best_mae:.6f}, R²: {best_r2:.4f}")
            
            # Close tensorboard writer
            writer.close()