Spaces:
Sleeping
Sleeping
File size: 32,917 Bytes
67fb03c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
import numpy as np
import time, json, os, math
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
import json
from torch.utils.tensorboard import SummaryWriter
from omegaconf import OmegaConf
from lion_pytorch import Lion
import glob
from utils.vtk_writer import vtk_writer
# For full mesh load and then sample in each training iteration
from datasets.driveaerpp.dataset_loader import get_dataloaders
from torch.cuda.amp import GradScaler
import re
import glob
def save_checkpoint(model, optimizer, scheduler, epoch, best_val_loss, val_MSE_list,
cfg, path, accelerator, log_dir=None):
"""Save a complete training checkpoint."""
if accelerator.is_main_process:
rng_state = torch.get_rng_state()
cuda_rng_states = None
if torch.cuda.is_available():
cuda_rng_states = []
for i in range(torch.cuda.device_count()):
cuda_rng_states.append(torch.cuda.get_rng_state(device=i))
checkpoint = {
'epoch': epoch,
'model_state_dict': accelerator.unwrap_model(model).state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'best_val_loss': best_val_loss,
'val_MSE_list': val_MSE_list,
'cfg': cfg,
'log_dir': log_dir,
'rng_state': rng_state,
'cuda_rng_states': cuda_rng_states,
}
checkpoint_path = os.path.join(path, f'checkpoint_epoch_{epoch}.pt')
torch.save(checkpoint, checkpoint_path)
# Also save as latest checkpoint
latest_checkpoint_path = os.path.join(path, 'latest_checkpoint.pt')
torch.save(checkpoint, latest_checkpoint_path)
print(f"Checkpoint saved at epoch {epoch}")
def load_checkpoint(path, model, optimizer, scheduler, accelerator):
"""Load the latest checkpoint and return training state."""
latest_checkpoint_path = os.path.join(path, 'latest_checkpoint.pt')
if not os.path.exists(latest_checkpoint_path):
print("No checkpoint found, starting from scratch")
return None, 0, 1e5, [], None
print(f"Loading checkpoint from {latest_checkpoint_path}")
checkpoint = torch.load(latest_checkpoint_path, map_location='cpu')
# Load model state
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.load_state_dict(checkpoint['model_state_dict'])
# Load optimizer and scheduler states
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
# Restore random states for reproducibility with error handling
try:
if 'rng_state' in checkpoint and checkpoint['rng_state'] is not None:
torch.set_rng_state(checkpoint['rng_state'])
except Exception as e:
print(f"Warning: Could not restore CPU RNG state: {e}")
try:
# Handle both old and new checkpoint formats
cuda_rng_key = 'cuda_rng_states' if 'cuda_rng_states' in checkpoint else 'cuda_rng_state'
if cuda_rng_key in checkpoint and checkpoint[cuda_rng_key] is not None and torch.cuda.is_available():
cuda_rng_states = checkpoint[cuda_rng_key]
if isinstance(cuda_rng_states, list) and len(cuda_rng_states) > 0:
# Set RNG state for each device
for i, state in enumerate(cuda_rng_states):
if i < torch.cuda.device_count() and state is not None:
torch.cuda.set_rng_state(state, device=i)
except Exception as e:
print(f"Warning: Could not restore CUDA RNG state: {e}")
start_epoch = checkpoint['epoch'] + 1
best_val_loss = checkpoint['best_val_loss']
val_MSE_list = checkpoint['val_MSE_list']
log_dir = checkpoint.get('log_dir', None)
print(f"Resumed from epoch {checkpoint['epoch']}, best val loss: {best_val_loss:.6f}")
return checkpoint, start_epoch, best_val_loss, val_MSE_list, log_dir
def cleanup_old_checkpoints(path, keep_last=3):
"""Remove old checkpoint files, keeping only the most recent ones."""
checkpoint_pattern = os.path.join(path, '*_epoch_*.pt')
checkpoint_files = glob.glob(checkpoint_pattern)
if len(checkpoint_files) <= keep_last:
return
# Sort by modification time and remove oldest
checkpoint_files.sort(key=os.path.getmtime)
files_to_remove = checkpoint_files[:-keep_last]
for file_path in files_to_remove:
try:
os.remove(file_path)
print(f"Removed old checkpoint: {os.path.basename(file_path)}")
except OSError:
pass
def train(model, train_loader, optimizer, scheduler, criterion, cfg, accelerator, scaler):
model.train()
losses_press = 0.0
for data in train_loader:
optimizer.zero_grad()
targets = data['output_feat']
if cfg.mixed_precision:
with torch.autocast(device_type = accelerator.device.type):
out = model(data)
total_loss = criterion(out, targets)
scaler.scale(total_loss).backward()
scaler.unscale_(optimizer)
if cfg.max_grad_norm is not None:
accelerator.clip_grad_norm_(model.parameters(), cfg.max_grad_norm)
scaler.step(optimizer)
scaler.update()
else:
out = model(data)
total_loss = criterion(out, targets)
accelerator.backward(total_loss)
if cfg.max_grad_norm is not None:
accelerator.clip_grad_norm_(model.parameters(), cfg.max_grad_norm)
optimizer.step()
# Only step OneCycleLR every batch
if cfg.scheduler == "OneCycleLR":
scheduler.step()
losses_press += total_loss.item()
return losses_press / len(train_loader)
@torch.no_grad()
def val(model, val_loader, criterion, cfg, accelerator):
model.eval()
losses_press = 0.0
for data in val_loader:
targets = data['output_feat']
out = model(data)
# Loss computation in FP32 for maximum stability
targets = targets.float() # Ensure FP32
out = out.float() # Ensure FP32
total_loss = criterion(out, targets)
losses_press += total_loss.item()
return losses_press / len(val_loader)
def test_model(model, test_dataloader, criterion, path, cfg, accelerator):
"""Test the model and calculate metrics.""" ## You reported test models everywhere? Complete evaluation?
model.eval()
total_mse = 0.0
total_mae = 0.0
total_huber = 0.0
total_rel_l2 = 0.0
total_rel_l1 = 0.0
total_mse_list = []
total_mae_list = []
total_huber_list = []
total_rel_l2_list = []
total_rel_l1_list = []
r_2_squared_list = []
total_inference_time = 0.0
num_batches = 0
if cfg.normalization == "std_norm":
with open(cfg.json_file, 'r') as f:
json_data = json.load(f)
pressure_mean = torch.tensor(json_data["scalars"]["pressure"]["mean"], device=accelerator.device)
pressure_std = torch.tensor(json_data["scalars"]["pressure"]["std"], device=accelerator.device)
# Store outputs and targets on all processes
all_outputs = []
all_targets = []
all_physical_coordinates = []
with torch.no_grad():
for data in tqdm(test_dataloader, desc="[Testing]", disable=not accelerator.is_local_main_process):
start_time = time.time()
targets = data['output_feat']
if cfg.chunked_eval:
input_pos = data['input_pos']
B, N, C = input_pos.shape
chunk_size = cfg.num_points
outputs = []
for i in range(0, N, chunk_size):
# start with the raw slice
chunk = input_pos[:, i:i+chunk_size, :] # (B, n_valid, C)
n_valid = chunk.shape[1]
# Pad if last chunk is short
if n_valid < chunk_size:
shape_diff = chunk_size - n_valid
# Wrap from the beginning to make a full chunk
pad = input_pos[:, :shape_diff, :] # (B, shape_diff, C)
chunk = torch.cat([chunk, pad], dim=1) # (B, chunk_size, C)
data['input_pos'] = chunk
out_chunk = model(data) # (B, chunk_size, D)
# Keep only the valid part that corresponds to real points
out_chunk = out_chunk[:, :n_valid, :] # (B, n_valid, D)
else:
data['input_pos'] = chunk
out_chunk = model(data) # (B, chunk_size, D)
outputs.append(out_chunk)
outputs = torch.cat(outputs, dim=1) # (B, N, 3)
else:
outputs = model(data)
# Metric computations in FP32 for maximum stability
targets = targets.float() # Ensure FP32
outputs = outputs.float() # Ensure FP32
if cfg.physical_scale_for_test == True:
targets[:,:,0] = targets[:,:,0] * pressure_std + pressure_mean
outputs[:,:,0] = outputs[:,:,0] * pressure_std + pressure_mean
inference_time = time.time() - start_time
total_inference_time += inference_time
# Compute all relevant losses and metrics for documentation and analysis
criterion_mse = nn.MSELoss()
criterion_mae = nn.L1Loss()
criterion_huber = nn.HuberLoss(delta=1.0)
mse = criterion_mse(outputs, targets)
mae = criterion_mae(outputs, targets)
huber = criterion_huber(outputs, targets)
# Relative L2 error: mean over batch of (L2 norm of error / L2 norm of target)
rel_l2 = torch.mean(torch.norm(outputs.squeeze(-1) - targets.squeeze(-1), p=2, dim=-1) /
torch.norm(targets.squeeze(-1), p=2, dim=-1))
# Relative L1 error: mean over batch of (L1 norm of error / L1 norm of target)
rel_l1 = torch.mean(torch.norm(outputs.squeeze(-1) - targets.squeeze(-1), p=1, dim=-1) /
torch.norm(targets.squeeze(-1), p=1, dim=-1))
ss_tot = torch.sum((outputs - torch.mean(targets)) ** 2)
ss_res = torch.sum((targets - outputs) ** 2)
r_squared = 1 - (ss_res / ss_tot) if ss_tot > 0 else 0
total_mse_list.append(mse.item())
total_mae_list.append(mae.item())
total_huber_list.append(huber.item())
total_rel_l2_list.append(rel_l2.item())
total_rel_l1_list.append(rel_l1.item())
r_2_squared_list.append(r_squared.item())
total_mse += mse
total_mae += mae
total_huber += huber
total_rel_l2 += rel_l2
total_rel_l1 += rel_l1
num_batches += 1
# Store outputs and targets on all processes for later aggregation and R² computation
all_outputs.append(outputs.cpu())
all_targets.append(targets.cpu())
all_physical_coordinates.append(data['physical_coordinates'].cpu())
path_vtk = path + "/vtk_files"
# Save VTK files for each data(if any data exists)
if len(all_outputs) > 0 and len(all_targets) > 0 and len(all_physical_coordinates) > 0:
if cfg.physical_scale_for_test == False:
targets[:,:,0] = targets[:,:,0] * pressure_std + pressure_mean
outputs[:,:,0] = outputs[:,:,0] * pressure_std + pressure_mean
try:
vtk_writer(outputs, targets, data['physical_coordinates'].cpu(), path_vtk, prefix=data["data_id"][0], config_json_path=cfg.json_file)
except Exception as e:
print(f"[Warning] Could not save VTK files: {e}")
# Clear references to tensors
del outputs, targets, mse, mae, huber, rel_l2, rel_l1
metrics_list = {
"total_mse_list": total_mse_list,
"total_mae_list": total_mae_list,
"total_huber_list": total_huber_list,
"total_rel_l2_list": total_rel_l2_list,
"total_rel_l1_list": total_rel_l1_list,
"r_2_squared_list": r_2_squared_list,
}
# Save metrics_list as a JSON file for per-batch analysis
metrics_list_file = os.path.join(path, 'test_metrics_list.txt')
with open(metrics_list_file, 'w') as f:
json.dump(metrics_list, f, indent=2)
# Convert to tensors for reduction
metrics = {
"total_mse": total_mse,
"total_mae": total_mae,
"total_huber": total_huber,
"total_rel_l2": total_rel_l2,
"total_rel_l1": total_rel_l1,
"num_batches": torch.tensor(num_batches, device=accelerator.device),
"total_inference_time": torch.tensor(total_inference_time, device=accelerator.device)
}
# Gather metrics from all processes
gathered_metrics = accelerator.gather(metrics)
# Only calculate averages if we have data
if gathered_metrics["num_batches"].sum().item() > 0:
total_batches = gathered_metrics["num_batches"].sum().item()
avg_mse = gathered_metrics["total_mse"].sum().item() / total_batches
avg_mae = gathered_metrics["total_mae"].sum().item() / total_batches
avg_huber = gathered_metrics["total_huber"].sum().item() / total_batches
avg_rel_l2 = gathered_metrics["total_rel_l2"].sum().item() / total_batches
avg_rel_l1 = gathered_metrics["total_rel_l1"].sum().item() / total_batches
total_inference_time = gathered_metrics["total_inference_time"].sum().item()
avg_inference_time = total_inference_time / total_batches
# Gather all outputs and targets from all processes
all_outputs = torch.cat(all_outputs, dim=1)
all_targets = torch.cat(all_targets, dim=1)
# Gather outputs and targets across processes
all_outputs = accelerator.gather(all_outputs.to(accelerator.device))
all_targets = accelerator.gather(all_targets.to(accelerator.device))
# Calculate R² score using complete dataset
if accelerator.is_main_process:
all_outputs = all_outputs.to(torch.float32).cpu().numpy()
all_targets = all_targets.to(torch.float32).cpu().numpy()
ss_tot = np.sum((all_targets - np.mean(all_targets)) ** 2)
ss_res = np.sum((all_targets - all_outputs) ** 2)
r_squared = 1 - (ss_res / ss_tot) if ss_tot > 0 else 0
print(f"Test MSE: {avg_mse:.6f}, Test MAE: {avg_mae:.6f}, Test Huber: {avg_huber:.6f}, R²: {r_squared:.4f}")
print(f"Relative L2 Error: {avg_rel_l2:.6f}, Relative L1 Error: {avg_rel_l1:.6f}")
print(f"Average inference time per batch: {avg_inference_time:.4f}s")
print(f"Total inference time: {total_inference_time:.2f}s for {total_batches} batches")
# Save metrics to a text file
metrics_file = os.path.join(path, 'test_metrics.txt')
with open(metrics_file, 'w') as f:
f.write(f"Test MSE: {avg_mse:.6f}\n")
f.write(f"Test MAE: {avg_mae:.6f}\n")
f.write(f"Test Huber: {avg_huber:.6f}\n")
f.write(f"R2 Score: {r_squared:.6f}\n")
f.write(f"Relative L2 Error: {avg_rel_l2:.6f}\n")
f.write(f"Relative L1 Error: {avg_rel_l1:.6f}\n")
f.write(f"Average inference time per batch: {avg_inference_time:.4f}s\n")
f.write(f"Total inference time: {total_inference_time:.2f}s for {total_batches} batches\n")
# Save outputs and targets as .npy files for further analysis
#np.save(os.path.join(path, 'test_outputs.npy'), all_outputs)
#np.save(os.path.join(path, 'test_targets.npy'), all_targets)
else:
r_squared = 0.0 # Will be overwritten by broadcast
else:
print("Warning: No data in test_dataloader")
avg_mse = avg_mae = avg_huber = avg_rel_l2 = avg_rel_l1 = r_squared = 0.0
# Clear GPU cache after all testing
torch.cuda.empty_cache()
return avg_mse, avg_mae, avg_huber, avg_rel_l2, avg_rel_l1, r_squared, avg_inference_time
def train_driveaerpp_main(model, path, cfg, accelerator):
train_loader, val_loader, test_loader = get_dataloaders(cfg)
if accelerator.is_main_process:
print(
f"Data loaded: {len(train_loader)} training batches, "
f"{len(val_loader)} validation batches, "
f"{len(test_loader)} test batches")
#Select optimizer
if cfg.optimizer.type == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=cfg.lr, weight_decay=1e-4)
elif cfg.optimizer.type == 'AdamW':
optimizer = torch.optim.AdamW(model.parameters(), lr=cfg.lr, weight_decay=0.05)
elif cfg.optimizer.type == 'LION':
optimizer = Lion(model.parameters(), lr=cfg.lr, weight_decay=0.05)
#Select scheduler
if cfg.scheduler == "ReduceLROnPlateau":
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=10, factor=0.1, verbose=True)
elif cfg.scheduler == "LinearWarmupCosineAnnealingLR":
warmup_epochs = int(cfg.epochs * 0.05) # Convert back to epochs
# Linear warmup scheduler
warmup_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer,
start_factor=1e-6, # Start very low (almost zero)
end_factor=1.0, # End at base lr
total_iters=warmup_epochs
)
# Cosine decay scheduler
cosine_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=cfg.epochs - warmup_epochs, # Remaining epochs
eta_min=1e-6 # End at 1e-6 learning rate
)
# Combine schedulers
scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer,
schedulers=[warmup_scheduler, cosine_scheduler],
milestones=[warmup_epochs]
)
else:
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
pct_start=0.05,
max_lr=cfg.lr,
total_steps = len(train_loader) * cfg.epochs
)
if cfg.loss_type == "mse":
criterion = nn.MSELoss()
elif cfg.loss_type == "mae":
criterion = nn.L1Loss()
elif cfg.loss_type == "huber":
criterion = nn.HuberLoss(delta=1.0)
else:
raise ValueError(f"Unknown loss_type: {cfg.loss_type}")
scaler = GradScaler()
model, optimizer, train_loader, val_loader, test_loader, scheduler, scaler = accelerator.prepare(
model, optimizer, train_loader, val_loader, test_loader, scheduler, scaler)
best_epoch = 0
# Try to load checkpoint before evaluation or training
checkpoint, start_epoch, best_val_loss, val_MSE_list, resumed_log_dir = load_checkpoint(
path, model, optimizer, scheduler, accelerator)
# Before the training loop, after loading checkpoint:
# or -1 if you want to indicate "not set"
if cfg.eval:
# For evaluation, try to load from checkpoint first, then fall back to best_model.pt
if (cfg.train_ckpt_load):
print("Using model from checkpoint for evaluation")
else:
# Load the saved state dict and create a fresh model
load_path = f'metrics/{cfg.project_name}/{cfg.model}_{cfg.test_name}'
# Find all best_model_epoch_*.pt files and get the epoch number from the last one
pattern = os.path.join(os.getcwd(), load_path.lstrip('/'), 'best_case', 'best_model_epoch_*.pt')
best_model_files = glob.glob(pattern)
if not best_model_files:
raise FileNotFoundError(f"No best_model_epoch_*.pt files found in {os.path.join(load_path, 'best_case')}")
# Extract epoch numbers
epoch_numbers = []
for fname in best_model_files:
match = re.search(r'best_model_epoch_(\d+)\.pt', os.path.basename(fname))
if match:
epoch_numbers.append(int(match.group(1)))
if not epoch_numbers:
raise ValueError("No epoch numbers found in best_model_epoch_*.pt filenames")
last_best_epoch = max(epoch_numbers)
state_dict = torch.load(os.path.join(load_path, 'best_case', f'best_model_epoch_{last_best_epoch}.pt'))
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.load_state_dict(state_dict)
model = accelerator.prepare(unwrapped_model)
path = os.path.join(path, "best_case") # Update path to point to best model directory
print("Using best model for evaluation at epoch", last_best_epoch)
best_mse, best_mae, best_huber, best_rel_l2, best_rel_l1, best_r2, inf_time = test_model(model, test_loader, criterion, path, cfg, accelerator)
else:
# Calculate total parameters
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
# Reset memory stats before training
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache() # Clear any existing cached memory
start = time.time()
# Only initialize tensorboard on the main process
if accelerator.is_main_process:
# Create a descriptive run name using model type and timestamp
if resumed_log_dir is not None:
# Resume logging to the same directory
log_dir = resumed_log_dir
print(f"Resuming tensorboard logging to: {log_dir}")
else:
# Create new log directory
run_name = f"{cfg.model}_{cfg.test_name}_{time.strftime('%Y%m%d_%H%M%S')}"
project_name = os.path.join("tensorboard_logs", f"{cfg.project_name}")
log_dir = os.path.join(project_name, run_name)
print(f"Starting new tensorboard logging to: {log_dir}")
writer = SummaryWriter(log_dir)
# Add full config (only if starting fresh)
if checkpoint is None:
config_text = "```yaml\n" # Using yaml format for better readability
config_text += OmegaConf.to_yaml(cfg)
config_text += "```"
writer.add_text('hyperparameters/full_config', config_text)
pbar_train = tqdm(range(start_epoch, cfg.epochs), position=0)
pbar_train.set_description(f"Training (resumed from epoch {start_epoch})" if checkpoint else "Training")
else:
writer = None
log_dir = None
pbar_train = tqdm(range(start_epoch, cfg.epochs), position=0)
# Add checkpoint saving frequency to config (default every 10 epochs)
checkpoint_freq = getattr(cfg, 'checkpoint_freq', 10)
for epoch in pbar_train:
train_loss = train(model, train_loader, optimizer, scheduler, criterion, cfg, accelerator, scaler)
if cfg.val_iter is not None and (epoch == cfg.epochs - 1 or epoch % cfg.val_iter == 0):
val_loss_MSE = val(model, val_loader,criterion, cfg, accelerator)
if cfg.scheduler == "ReduceLROnPlateau":
scheduler.step(val_loss_MSE)
elif cfg.scheduler == "LinearWarmupCosineAnnealingLR":
scheduler.step()
val_MSE_list.append(val_loss_MSE)
if accelerator.is_main_process:
# Get peak GPU memory in GB
peak_mem_gb = torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024)
# Log metrics to tensorboard
writer.add_scalar('Loss/train_MSE', train_loss, epoch)
writer.add_scalar('Loss/val_MSE', val_loss_MSE, epoch)
writer.add_scalar('Learning_rate', scheduler.get_last_lr()[0], epoch)
writer.add_scalar('Memory/GPU', peak_mem_gb, epoch)
with open(os.path.join(path,'MSE.json'), 'w') as f:
json.dump(val_MSE_list, f, indent=2)
pbar_train.set_postfix({
'train_loss': train_loss,
'val_loss': val_loss_MSE,
'lr': scheduler.get_last_lr()[0],
'mem_gb': f'{peak_mem_gb:.1f}'
})
if val_loss_MSE < best_val_loss:
best_val_loss = val_loss_MSE
unwrapped_model = accelerator.unwrap_model(model)
os.makedirs(os.path.join(path, 'best_case'), exist_ok=True)
best_epoch = epoch
# Save the best model state_dict
cleanup_old_checkpoints(os.path.join(path, 'best_case'), keep_last=1)
torch.save(unwrapped_model.state_dict(), os.path.join(path, f'best_case/best_model_epoch_{best_epoch}.pt'))
print("saving best model at epoch", epoch)
elif accelerator.is_main_process:
# Simple progress display without validation
peak_mem_gb = torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024)
pbar_train.set_postfix({
'train_loss': train_loss,
'mem_gb': f'{peak_mem_gb:.1f}'
})
# Save checkpoint periodically
if accelerator.is_main_process and (epoch % checkpoint_freq == 0 or epoch == cfg.epochs - 1):
save_checkpoint(model, optimizer, scheduler, epoch, best_val_loss, val_MSE_list,
cfg, path, accelerator, log_dir)
# Clean up old checkpoints to save disk space
cleanup_old_checkpoints(path, keep_last=3)
end = time.time()
time_elapsed = end - start
# Get final peak memory for reporting
if accelerator.is_main_process:
peak_mem_gb = torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024)
# Reset memory stats before final evaluation
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache()
# Save final checkpoint BEFORE loading best model for evaluation
if accelerator.is_main_process:
save_checkpoint(model, optimizer, scheduler, cfg.epochs - 1, best_val_loss, val_MSE_list,
cfg, path, accelerator, log_dir)
# Test final model (last epoch)
final_mse, final_mae, final_huber, final_rel_l2, final_rel_l1, final_r2, inf_time = test_model(
model, test_loader, criterion, path, cfg, accelerator)
# Get peak memory during testing
if accelerator.is_main_process:
test_peak_mem_gb = torch.cuda.max_memory_allocated() / (1024 * 1024 * 1024)
# Create metrics text for final model
metrics_text = f"Test MSE: {final_mse:.6f}\n"
metrics_text += f"Test MAE: {final_mae:.6f}\n"
metrics_text += f"Test Huber: {final_huber:.6f}\n"
metrics_text += f"Test RelL1: {final_rel_l1:.6f}\n"
metrics_text += f"Test RelL2: {final_rel_l2:.6f}\n"
metrics_text += f"Test R2: {final_r2:.6f}\n"
metrics_text += f"Inference time: {inf_time:.6f}s\n"
metrics_text += f"Total training time: {time_elapsed:.2f}s\n"
metrics_text += f"Average epoch time: {time_elapsed/cfg.epochs:.2f}s\n"
metrics_text += f"Total parameters: {total_params}\n"
metrics_text += f"Trainable parameters: {trainable_params}\n"
metrics_text += f"Peak GPU memory usage:\n"
metrics_text += f" - During training: {peak_mem_gb:.1f} GB\n"
metrics_text += f" - During testing: {test_peak_mem_gb:.1f} GB\n"
# Write to file and add to tensorboard
metrics_file = os.path.join(path, 'final_test_metrics.txt')
with open(metrics_file, 'w') as f:
f.write(metrics_text)
# Add final metrics to tensorboard as text (replace \n with markdown line break)
writer.add_text('metrics/final_metrics', metrics_text.replace('\n', ' \n'))
# --- Log per-batch test metrics for final model ---
metrics_list_file = os.path.join(path, 'test_metrics_list.txt')
if os.path.exists(metrics_list_file):
with open(metrics_list_file, 'r') as f:
metrics_list = json.load(f)
for metric_name, values in metrics_list.items():
for i, v in enumerate(values):
writer.add_scalar(f'per_batch_test_metrics/final/{metric_name}', v, i)
# Load the best model using state_dict for compatibility (into a separate model instance)
from copy import deepcopy
best_model = deepcopy(model)
state_dict = torch.load(os.path.join(path, f'best_case/best_model_epoch_{best_epoch}.pt'))
unwrapped_best_model = accelerator.unwrap_model(best_model)
unwrapped_best_model.load_state_dict(state_dict)
best_model = accelerator.prepare(unwrapped_best_model)
# Test the best model
path_best = os.path.join(path, 'best_case') # Do not overwrite path for final model logging
best_mse, best_mae, best_huber, best_rel_l2, best_rel_l1, best_r2, inf_time = test_model(
best_model, test_loader, criterion, path_best, cfg, accelerator)
if accelerator.is_main_process:
# Create metrics text for best model
metrics_text = f"Test MSE: {best_mse:.6f}\n"
metrics_text += f"Test MAE: {best_mae:.6f}\n"
metrics_text += f"Test Huber: {best_huber:.6f}\n"
metrics_text += f"Test RelL1: {best_rel_l1:.6f}\n"
metrics_text += f"Test RelL2: {best_rel_l2:.6f}\n"
metrics_text += f"Test R2: {best_r2:.6f}\n"
metrics_text += f"Inference time: {inf_time:.6f}s\n"
metrics_text += f"Total training time: {time_elapsed:.2f}s\n"
metrics_text += f"Average epoch time: {time_elapsed/cfg.epochs:.2f}s\n"
metrics_text += f"Total parameters: {total_params}\n"
metrics_text += f"Trainable parameters: {trainable_params}\n"
metrics_text += f"Peak GPU memory usage:\n"
metrics_text += f" - During training: {peak_mem_gb:.1f} GB\n"
metrics_text += f" - During testing: {test_peak_mem_gb:.1f} GB\n"
# Write to file and add to tensorboard
metrics_file = os.path.join(path_best, 'best_test_metrics.txt')
with open(metrics_file, 'w') as f:
f.write(metrics_text)
# Add best metrics to tensorboard as text (replace \n with markdown line break)
writer.add_text('metrics/best_metrics', metrics_text.replace('\n', ' \n'))
# --- Log per-batch test metrics for best-case model ---
metrics_list_file = os.path.join(path_best, 'test_metrics_list.txt')
if os.path.exists(metrics_list_file):
with open(metrics_list_file, 'r') as f:
metrics_list = json.load(f)
for metric_name, values in metrics_list.items():
for i, v in enumerate(values):
writer.add_scalar(f'per_batch_test_metrics/best/{metric_name}', v, i)
print(f"\nFinal model metrics - MSE: {final_mse:.6f}, MAE: {final_mae:.6f}, huber: {final_huber:.6f}, R²: {final_r2:.4f}")
print(f"Best model metrics - MSE: {best_mse:.6f}, MAE: {best_mae:.6f}, huber: {best_huber:.6f}, R²: {best_r2:.4f}")
# Close tensorboard writer
writer.close() |